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Abstract. In precision medicine, multiple factors are involved 
in clinical decision‑making because of ethnic and racial 
genetic diversity, family history and other health factors. 
Although advanced techniques have evolved, there is still 
an economic obstacle to pharmacogenetic (PGx) imple‑
mentation in developing countries. The aim of the present 
study was to provide an alternative pipeline that roughly 
estimate patient carrier type and prescreen out wild‑type 
samples before sequencing or genotyping to determine 
genetic status. Fast co‑amplification at lower denaturation 
temperature (COLD)‑PCR was used to differentiate genetic 
variant non‑carriers from carriers. The majority of drugs are 
hepatically cleared by cytochrome P450 (CYP) enzymes and 
genes encoding CYP enzymes are highly variable. Of all the 
CYPs, CYP2 family of CYP2C9, CYP2C19, and CYP2D6 
isoforms have clinically significant impact on drugs of PGx 
testing. Therefore, five variants associated with these CYPs 
were selected for preliminary testing with this novel pipeline. 

For fast COLD‑PCR, the optimal annealing temperature and 
critical denaturation temperature were determined and evalu‑
ated via Sanger sequencing of 27 randomly collected samples. 
According to precise Tc, to perform in a single‑reaction is 
difficult. However, in this study, this issue was resolved by 
combination of precise Tc using 10+10+20 cycles. The results 
showed 100% sensitivity and specificity, with perfect agree‑
ment (κ=1.0) compared with Sanger sequencing. The present 
study provides a prescreening platform by introducing 
multiplex fast COLD‑PCR as a pharmacoeconomic imple‑
mentation. Our study just present in five variants which are 
not enough to describe patient metabolic status. Therefore, 
other actional genetic variants are still needed to cover the 
actual patient's genotypes. Nevertheless, the proposed method 
can well‑present its efficiency and reliability for serving as a 
PGx budget platform in the future. 

Introduction

Drug‑metabolizing cytochrome P450 (CYP) phase I bioactiva‑
tion system affects drug responses. Among >50 CYPs, genetic 
variations of CYP2C9, CYP2C19 and CYP2D6 enzymes 
potentially affect drug efficacy and toxicity. CYP2C9, 
CYP2C19 and CYP2D6 polymorphisms comprise the most 
frequent enzyme variations because nearly 80% of drugs used 
in today are metabolized by these enzymes. Accordingly, 
these CYP genetic mutations lead to different phenotypes 
of metabolism status, such as ultra‑rapid (UMs), normal, 
intermediate (IMs) and poor metabolizers (PMs). In UMs, 
individuals metabolize drugs very rapidly, resulting in lack of 
response and subtherapeutic plasma concentrations at normal 
doses whereas in IMs or PMs, these lead to altered risk for 
adverse drug reactions (1‑3). For example, altered CYP2D6 
activity affects antidepressant treatment (4) and CYP2C19*17 
leading to UM phenotype causes risk of therapeutic failure in 
drug treatment (5). Therefore, annotations of these CYP genes 
and pharmacogenomics (PGx)‑based drug‑dosing guide‑
lines are being constantly updated to make dose adjustment 
to avoid toxicity and increase drug efficacy (6,7). This may 
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maximize drug efficacy and minimize toxicity for individuals 
from drugs, thereby improving patient compliance and safety. 
Thus, PGx testing has been implemented in these three CYP 
polymorphisms (CYP2C9, CYP2C19 and CYP2D6) to achieve 
optimal quality use of medicines (8). Various approaches 
have been conducted, such as allele‑specific PCR, invader 
assay, pyrosequencing and oligonucleotide microarray (9). A 
variety of testing kits for CYP450 genotyping have also been 
approved by the U.S. FDA, including Amplicon Chip CYP450 
GeneChip®, TaqMan real‑time PCR and Luminex CYP2D6 
and CY2C19 xTAG detection kits (10).

Nevertheless, use of PGx testing as a routine practice is 
still challenging due to an underestimation of clinical impor‑
tance, lack of health information and high cost in developing 
countries (11). Even though physicians are educated on health‑
care, optimistic attitudes to PGx are still demanding because 
of lack of participation in controlled trials and clinical validity. 
One example of variations between pharmacogenetic clinical 
guidelines and recommendations was found in clopidogrel in 
which clinical guidelines and FDA demonstrated different 
recommendations upon the interpretation of PGx testing (12). 
The key role of PGx is to divide drug responders from 
non‑responders for physicians.

The aim of this study was to qualitatively evaluate phar‑
macoeconomic characteristics. The objective of this study was 
to introduce an alternative pipeline to detect mutation before 
traditional genotyping for PGx. Co‑amplification at lower 
denaturation temperature (COLD)‑PCR technology is consid‑
ered to be a better qualitative detection method in minority 
allele detection than conventional PCR because of its feasi‑
bility, simplicity, time‑efficiency and cost‑effectiveness with 
preferential denaturation on mismatch‑forming variants (13). 
There are several forms of COLD‑PCR, among them, fast 
COLD‑PCR is cheapest and easiest. Fast COLD‑PCR is 
a modified form of conventional PCR involving an addi‑
tional parameter, the critical denaturation temperature (Tc), 
primarily suitable for Tm‑reducing mutations (for example, 
G:C>A:T or G:C>T:A) (14). Following this selective denatur‑
ation, only mutant (MT) A/T‑containing alleles are obtained 
and wild‑type (WT) G/C alleles are left double‑stranded (ds). 
This can result in increased sensitivity in the detection of 
low‑abundance variants over conventional PCR (15). It not only 
enables robust enrichment but is also easily accessible with 
high reproducibility. As a consequence of this, COLD‑PCR 
has been widely applied to detect cancer mutations (16‑23). 

To date, there are only a few reports of pharmacogenomics 
(PGx) studies (2,7,12) in which fast COLD‑PCR has not yet 
been applied. Therefore, the present study introduce an afford‑
able methodology to determine whether the patient carries a 
variant without requiring heterozygous or homozygous variant 
typing. Accordingly, this can decrease unnecessary expensive 
direct genotyping in uncharacterized patients. Moreover, the 
present study aimed to demonstrate how to multiplex fast 
COLD‑PCR based on precise Tc values, which has previously 
been difficult because the critical denaturation temperature 
of COLD‑PCR must be controlled precisely (within ±0.2˚C). 
Therefore, it is critical to set up a thermocycler with precise 
temperature. The novel assay panel used selected gene‑associ‑
ated single nucleotide polymorphisms (SNPs) specific to Asian 
populations published in previous studies (24‑28). The present 

method may promote use of more pharmacogenetic‑associ‑
ated SNPs. To assess the efficiency, the testing results were 
compared with those from Sanger sequencing, which is the 
reliable available gold‑standard method (29) to determine 
heterozygous or homozygous patients. 

Materials and methods

Database for searching for sequences of CYP genes. The 
reference sequences of CYP2C9 and CYP2C19 on chromo‑
some 10 (accession no. NC_000010.11) and CYP2D6 on 
chromosome 22 (accession no NC_000022.11) from Homo 
sapiens genome assembly, GHCh38.p13, were downloaded 
from the National Center for Biotechnology Information (ncbi.
nlm.nih.gov, accession date 22 June 2022) to perform target 
gene analysis. Genetic polymorphisms of cytochrome related 
pharmacogenomic studies focusing on Asian populations were 
selected (24‑28). Respective reference SNP (rs) numbers were 
obtained from the Human CYP Allele Nomenclature Database 
and shown in Table I (pharmvar.org/htdocs/archive/index_
original.htm, accession date 22 June 2022). SNPs on reference 
sequences of these genes were mapped on the reference chro‑
mosome sequences and identified using NCBI BLAST tool 
(blast.ncbi.nlm.nih.gov/Blast.cgi). 

Selection of SNPs, new primers and synthetic oligonucleotide 
designs. The novel primers were designed to develop a gene 
panel focusing on CYP2C9, CYP2C19, and CYP2D6 vari‑
ants. Homology to function and evolution with other gene 
families were assessed using Basic Local Alignment Search 
Tool (BLAST) against the GHCh38.p13 assembly (ncbi.nlm.
nih.gov/tools/primer‑blast/, 22 June 2022). DNA melting 
temperature (Tm) of WT and MT variants was predicted 
using the web‑based tool uMelt version 3.6.2, developed by 
the Wittwer lab (dna‑utah.org/, 22 June 2022). Synthetic ds 
DNA fragments (gBlocks®, Integrated DNA Technologies) of 
250‑500 bp for each variant were used for quality control, as 
previously described (30). Position of synthetic ds DNA and 
primer sequences are shown in Table I.

Ethical considerations. All participants were recruited from 
unrelated Thai volunteers with the following inclusion criteria: 
i) Age 18‑60 years old, ii) no history of drug ADRs and SCARs 
and iii) have history of drug ADRs or SCARs (but at the 
time of recruiting participants, have no symptom of ADRs). 
A total of 27 volunteers including 13 males and 14 females 
was recruited between January to March 2022 at Faculty of 
Associated Medical Sciences, Chiang Mai University, Chiang 
Mai, Thailand. All participants provided written consent to 
participate in the study before collecting blood samples from 
vein. The study was approved by Research Ethics Committee, 
Faculty of Associated Medical Sciences, Chiang Mai 
University, Thailand (approval no. AMSEC‑64EX‑130; date of 
approval: 28 December 2021).

DNA extraction. A total of 6 ml of blood samples were 
collected from vein and stored in EDTA tube and DNA extrac‑
tion was performed using the PureLink™ Genomic DNA mini 
kit (Invitrogen; Thermo Fisher Scientific, Inc.), following the 
manufacturer's instructions. At least 200 µl of buffy coat from 
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EDTA blood was used to a final elution volume of 100 µl 
extracted DNA. The quality of extracted DNA was deter‑
mined using an Epoch Microplate Spectrophotometer (BioTek 
Instruments, Inc.) with a 260/280 absorbance ratio of 1.65‑1.80. 
The DNA concentration was normalized to 50 ng/µl.

Optimization of annealing temperature (Ta) and critical 
denaturation temperature (Tc) of fast COLD‑PCR. 
Optimization of Ta was performed by conventional PCR for 
primer annealing to a target sequence. A total of 50 ng genomic 
DNA template was used in a total reaction volume of 12.5 µl. 
PCR reaction was performed using 1X Quick Taq™ HS Dye 
Mix (Toyobo Life Science) with 0.2 µM all primers (Table I) 
according to the manufacturer's instructions. The conditions 
for PCR cycling were 94˚C for 2 min followed by 30 cycles 
at 94˚C for 30 sec, 50‑65˚C with gradient PCR for 30 sec, 68˚C 
for 1 min/kb and 68˚C for 7 min.

Selective denaturation stage (Tc) is vital for fast COLD‑PCR 
to precisely denature the mutated sequence (14,23). First, 10 
rounds of conventional PCR were performed to amplify and 
generate a sufficient template for COLD‑PCR. Afterwards, 
the precise Tc was determined by gradual reduction of the 
denaturation temperature (Tm). The amplified PCR products 
were analyzed by 2% agarose gel electrophoresis in 10x 
Tris‑Borate‑EDTA (TBE) buffer for 40 min. As a result, only 
MT PCR products were observed in comparison with WT and 
MT synthetic DNA templates. The reaction mixture and total 
volume of fast COLD‑PCR were the same as those of conven‑
tional PCR. A total of 10 cycles of conventional PCR and fast 
COLD‑PCR conditions were optimized as follows: 30 cycles 
of precise Tc (gradually decreasing Tm until only MT DNA 
was enriched) for 30 sec, 65˚C for 30 sec, 68˚C for 12 sec and 
final extension of 68˚C for 7 min.

Tc combination of fast COLD‑PCR assay evaluation. To 
multiplex CYP2C9, CYP2C19 and CYP2D6, combined‑Tc fast 
COLD‑PCR was performed, starting from the lowest to highest 
Tc by sequentially adding 10+10+20 cycles. The optimization 
condition was the as the precise Tc determination. An initial 

denaturation of 94˚C for 2 min was followed by 10 cycles 
of conventional PCR, as aforementioned. Next, 10 cycles of 
Tc1 (75.0˚C) for 30 sec with annealing and extension steps 
were performed as aforementioned. Another 10 cycles at Tc2 
(87.0˚C) for 30 sec, followed by 20 cycles of Tc3 (90.5˚C) for 
30 sec with annealing and extension were performed, as shown 
in Fig. 1. Afterwards, the resulting assay was tested and evalu‑
ated on 27 samples in comparison with Sanger sequencing.

Sanger sequencing. After screening 27 samples for all variants 
with fast COLD‑PCR, the resulting positive MT samples were 
determined by traditional Sanger sequencing to determine 
homozygous or heterozygous status. To evaluate the efficiency 
of fast COLD‑PCR screening, all 27 samples were subjected 
to Sanger sequencing. To perform Sanger sequencing, DNA 
samples were amplified using the aforementioned conven‑
tional PCR. The obtained PCR amplicons were sequenced by 
the Sanger reference method at Macrogen, Inc. (31). Sanger 
sequence assemblies were analyzed using SeqMan Ultra 
DNASTAR Bioinformatics Software version 17.2 (dnastar.
com/software/lasergene/seqman‑ultra/, 22 June 2022).

Statistical analysis. As data of COLD‑PCR and Sanger 
sequencing were examined each clinical sample for variants to 
determine whether they will be found to match. Data will be 
converted from category data into quantitative data (data 0‑1 
means negative‑positive). The Cohen's Kappa (κ) agreement 
between two assays was calculated using SPSS software v. 
22.0. Moreover, we have also calculated the allelic frequency 
of five variants found in this study.

Results

Determination of Ta and Tc for initial fast COLD‑PCR 
screening test. Total five variants were selected from CYP2C9, 
CYP2C19, and CYP2D6 genes and these five variants were 
optimized at the Ta, 50‑65˚C. Following this, 65˚C was selected 
as the optimal Ta as all five genetic variants were shown the 
same annealing reaction at 65˚C. No amplification in WT and a 

Table I. Gene panel selection of CYP2C9, CYP2C19 and CYP2D6 variants.

   Position of synthetic oligonucleotide 
Allele Mutation Rs number sequence (length) Primer sequence, 5'3'

CYP2C9*2  430C>T rs1799853 94942072 GAA‑‑‑‑‑‑‑‑‑CGT‑‑‑‑‑‑‑‑‑‑ F: GAAATGGAAGGAGATCCGGC
   TTC 94942561 (490 bp) R: GATATGGAGTAGGGTCACCC
CYP2C19*2  681G>A rs4244285 94781615 CAT‑‑‑‑‑‑‑‑‑GGG‑‑‑‑‑‑‑‑‑  F: CGCCAACCAGAGCTTGGCAT
   GAC 94782055 (441 bp) R: CGGGCCATCGATTCTTGGTG
CYP2C19*3  636G>A rs4986893 94780502 CAC‑‑‑‑‑‑‑‑‑GAT‑‑‑‑‑‑‑‑‑‑ F: GGCCGCCAGAAACGTTTCGA
   TGC 94780955 (454 bp) R: CGGTACTTCAGGGCTTGGTC
CYP2D6*10  100C>T rs1065852 42130444 CAG‑‑‑‑‑‑‑‑GGT‑‑‑‑‑‑‑‑‑  F: GGAAGTCCACATGCAGCAGG
   CGC 42130890 (447 bp) R: GCAGGTATGGGGCTAGAAGC
CYP2D6*41  2988G>A rs28371725 42127601 CCT‑‑‑‑‑‑‑‑‑CCT‑‑‑‑‑‑‑‑‑‑ F: GGTCAAGCCTGTGCTTGGAG
   GTC 42128090 (490 bp) R: CCTACATCCGGATGTGCAGC

Italics indicate start and end synthetic sequence position. Underline indicates location of single nucleotide polymorphisms. F, forward; R, 
reverse; CYP, cytochrome 450; rs, reference SNPs.
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positive band in MT variants were obtained with three different 
Tc values for the five targets: Tc=75.0˚C for CYP2C9*2 (150 bp), 
19*2 (206 bp) and 19*3 (192 bp); Tc=87.0˚C for CYP2D6*41 
(124 bp) and Tc=90.5˚C for CYP2D6*10 (160 bp). These Tc 
results were validated using synthetic WT and MT oligonucle‑
otide templates at a concentration of 50 ng/µl with 10 cycles of 
conventional PCR at Ta=65˚C (Fig. 2). Accordingly, optimal 
Ta at 65˚C and three Tcs (75.0˚C, 87.0˚C and 90.5˚C) for fast 
COLD‑PCR screening test were obtained. 

Establishment and evaluation of combined fast COLD‑PCR. 
The proposed assay was modified to discriminate all variants 
within a single reaction through multiplex fast COLD‑PCR 
by combining three Tc values (75.0, 87.0 and 90.5˚C) with 
10+10+20 cycles. A total of 27 randomly collected samples 

were tested by multiplex performance with control samples 
(Fig. 3). For the detection of CYP2C9*2, only one sample 
(sample 20) showed a positive band (Fig. 3A). For CYP2C19*2, 
positive bands are observed for 15 samples (samples 1, 2, 4, 5, 
9, 10, 12‑14, 16, 21‑23, 25 and 27; Fig. 3B). For CYP2C19*3, a 
positive band is observed for one sample (sample 11; Fig. 3C). 
A total of 21 samples (samples 1, 2, 4, 5, 7‑13, 15, 17, 19‑25 
and 27) was CYP2D6*10‑positive (Fig. 3D). A total of four 
samples (samples 3, 10, 17 and 24) was CYP2D6*41‑positive 
(Fig. 3E). In comparison of fast COLD‑PCR with Sanger 
sequencing, the results show 100% consistency (κ=1.0) for all 
variants (Table II). The results of Sanger sequencing in five 
variants are shown in Fig. 4. Fast COLD‑PCR correctly iden‑
tified heterozygous or homozygous SNPs variant in Sanger 
results as ‘Positive’ and WT sample of Sanger sequencing 
results as ‘Negative’. The percentage of five variants present in 
27 samples as follows: 3.7% of CYP2C9*2 and CYP2C19*3, 
55.5% of CYP2C19*2, 77.7% of CYP2D6*10, and 14.8% of 
CYP2D6*41.

Discussion

Genetic DNA variations of CYP genes alter pharmacokinetics 
and responses to certain drugs. In The Human CYP Allele 
Nomenclature Database (32), CYP2 family is primarily 
involved in drug ‘physiology’, ‘toxicology’ and ‘diverse regu‑
latory mechanisms’ (33). Of CYP2 family members, CYP2D6 
presents highly polymorphic and complex structural varia‑
tions (34) and sequence similarities >90% are seen in CYP2C9 
and CYP2C19 (35). In previous studies, CYP gene copy numbers 
(CYP2D6) have been determined by pyrosequencing (36), 
loop‑mediated isothermal amplification, electrochemical DNA 
chip (37) and real‑time PCR detection (38). Commercial kits 
and advanced genotyping techniques have also been developed 
for clinical implementation, including AmpliChip CYP450, 
TaqMan assays, Luminex xTAG, next‑generation sequencing 
platforms and MassARRAY as systematic algorithms (39). 

Figure 2. Precise Tc validation of five variants obtained by fast COLD‑PCR. 
Lane M, DNA ladder 100 bp; lanes 1 and 2, synthetic WT and MT of 
CYP2C9*2 (150 bp); lanes 3 and 4, synthetic WT and MT of CYP2C19*2 
(206 bp); lanes 5 and 6, synthetic WT and MT of CYP2C19*3 (192 bp); lanes 
7 and 8, synthetic WT and MT of CYP2D6*10 (160 bp) and lanes 9 and 
10, synthetic WT and MT of CYP2D6*41 (124 bp). COLD, co‑amplification 
at lower denaturation temperature; WT, wild‑type; MT, mutant; CYP, cyto‑
chrome P450.

Figure 1. Overall workflow of fast COLD‑PCR. Ten cycles of regular PCR were performed for the target amplicons. Subsequently, fast COLD‑PCR was 
applied as follows: Tc1=75.0˚C (10 cycles), Tc2=87.0˚C (10 cycles) and Tc3=90.5˚C (20 cycles). The final products of five variants were successfully enriched by 
preferential amplification using multiplexed fast COLD‑PCR. The bold text is optimal Ta at 65˚C and stars indicate the SNP position on the mutant sequence. 
COLD, co‑amplification at lower denaturation temperature; WT, wild‑type; MT, mutant; ds, double‑stranded.
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CYP genetic testing is used to monitor patients effectively 
for therapeutic indication. However, the greater challenge of 
PGx testing is economic (40). Therefore, the present aimed 
to introduce a new basic platform to be able to use before 
traditional genotyping methods in unknown patient samples. 
Although the present data cannot demonstrate the extent of 
genotype predictable phenotype, it may serve as the funda‑
mental consideration whether patient has genetic variants. 
Using fast COLD‑PCR as initial screening test and combina‑
tion with other genotyping testing for positive results may 
provide a more affordable approach in precision medicine. 
Therefore, the present study aimed to evaluate fast COLD‑PCR 
as prescreening strategy to monitor patient safety. In addition, 
fast COLD‑PCR is also simple, easy, and cheap enough to be 
widely used in routine lab work.

The present study observed a positive MT band with 
no WT band on 2% agarose gel on the precise Tc of each 
SNP. Previously, different PCR protocols for each reaction 
were required for Tc per amplicon and multiplexing in fast 
COLD‑PCR was problematic due to precise Tc which only 
denatures mutant sequence at its specific temperature. However, 
the present study combined multiplexed fast COLD‑PCR using 
10+10+20 cycles with three different Tc values of five variants 
(from low to high Tc). The performance evaluation showed 
notable results in this single system. The following estimated 
frequencies were obtained in our Thai‑population‑focused 
study: 3.7% in CYP2C9*2 and CYP2C19*3, 55.5% in 
CYP2C19*2, 77.7% in CYP2D6*10, and 14.8% in CYP2D6*41. 
In previous studies, frequencies of only 0.08% for CYP2C9*2, 
25.6% for CYP2C19*2 and 2.5% for CYP2C19*3 alleles were 
found in a Thai population (26,41). For CYP2D6 in Thai 
population, the decreased‑function allele CYP2D6*10 is the 
most common allele found in patients treated with risperidone, 
at 51.8%, followed by CYP2D6*41 at 6.8% (42). Although 
the present allele representation frequency was higher than 
previous studies (26,41,42), it may be due to small sample 
size. Nevertheless, the present COLD‑PCR results showed 
100% agreement with Sanger sequencing results. Therefore, 
the present method may be applicable as an initial test for 
unknown samples before haplotyping. Furthermore, the cost 
(not including DNA extraction) of fast COLD‑PCR in our 
routine pharmacogenetic laboratory service is Thai baht 
(THB) 125/test (USD $3.6), as opposed to THB 1,200/test 
(USD $34.59) for Sanger sequencing. Our study introduces an 
easily applicable prescreening methodology in PGx settings. 

However, the present methodology had limitations. 
One constraint is in enriching only Tm‑reducing variations. 
CYP2C9*3 (1075A>C), a Tm‑increasing mutant, was not 
included and further COLD‑PCR technique, such as full 
COLD‑PCR, is required to detect all types of mutations 
(Tm‑increase, Tm‑equivalent, Tm‑decrease). The present 
study used only 27 samples; thus, larger sample size is 
required to identify further SNPs. The present method is a 
qualitative screening; for patients with positive results, addi‑
tional methods should be used to distinguish homozygous or 
heterozygous genotypes. Nevertheless, the aim of this study is 
to consider PGx testing in a cost‑effective way. Currently, the 
plurality of commercial assay is available, however, our main 
objective is to view PGx testing by applying only conventional 
PCR machine before sequencing or genetic testing. 
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Figure 3. Analysis of 27 samples by combined fast co‑amplification at lower denaturation temperature‑PCR using control samples. (A) CYP2C9*2 (150 bp) 
showed a positive band in 1 sample using a hetero MT control. (B) CYP2C19*2 (206 bp) showed positive bands in 15 samples using both hetero and homo 
MT controls. (C) CYP2C19*3 (192 bp) showed a positive band in 1 sample using a hetero MT control. (D) CYP2D6*10 (160 bp) showed positive bands in 21 
samples using both hetero and homo MT controls. (E) CYP2D*41 (124 bp) showed positive bands in 4 samples using a hetero MT control. WT, wild‑type; MT, 
mutant; CYP, cytochrome P450; hetero, heterozygous; homo, homozygous; NTC, no template control. 
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Figure 4. Sanger sequence profiles with chromatogram on five variants. (A) CYP2C9*2 in WT and hetero MT; (B) CYP2C19*2 in WT, hetero MT and homo 
MT; (C) CYP2C19*3 in WT and hetero MT; (D) CYP2D6*10 in WT, hetero MT and homo MT; (E) CYP2D6*41 in WT and hetero MT. CYP, cytochrome P450; 
WT, wild‑type; MT, mutant; hetero, heterozygous; homo, homozygous.
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The present study approached the first prescreening 
pipeline in mutation detection before traditional genotyping 
methods. Here, fast COLD‑PCR methodology correctly iden‑
tified all WT samples. Only MT samples only need traditional 
genotyping to distinguish homozygous or heterozygous type. 
For example, for CYP2C9*2 and CYP2C19*3, 26 out of 27 
samples were WT. Therefore, sequencing or genetic testing for 
genotype (heterozygous or homozygous) would not be needed 
in 26 samples. Therefore, cost for the whole pipeline would be 
decreased and WT samples reported faster with the present 
screening PCR test. This method may decrease unnecessary 
costs of expensive genotyping in patients. 

To the best of our knowledge, the present study is the first to 
propose fast COLD‑PCR as a solution to the economic barrier of 
PGx implementation. This method only needs conventional PCR 
machine to perform and it shows the results as positive/negative. 
Therefore, it can screen out WT samples and only positive MT 
bands need traditional genetic testing. This method can be used 
to assess genetic variants as an easy cost‑effective strategy. 
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