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1  | INTRODUC TION

Nutrition plays a crucial role in the development of cancer, cardiovas-
cular diseases, and diabetes (Rabhi, Hannou, Froguel, & Annicotte, 
2017). Feeding a high- fat diet (HFD) to experimental animals exerts 
a number of adverse metabolic alterations including hypertriglycer-
idemia, hyperinsulinemia, and glucose intolerance (Buchanan, Youn, 
Campese, & Sipos, 1992; Nascimento et al., 2013). A link between 
obesity, dyslipidemia, glucose intolerance, and hypertension has 

been proved, while insulin resistance and hyperinsulinemia have 
been implicated in the pathogenesis of multiple atherogenic risk fac-
tors (Slawson, Fitzgerald, & Morgan, 2013; Wang, Yuan, Duan, Li, 
& Hou, 2017). Hypertension and obesity as continuing challenges 
to public health efforts are major risk factors for cardiovascular 
morbidity and mortality. The brain is also often a target of dia-
betic complications such that prolonged hyperglycemic conditions 
cause a progressive impairment of neuronal function in the brain 
(Mooradian, 1997; Prasad, Sajja, Naik, & Cucullo, 2014).
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Abstract
Scope: To investigate the effects of chromium histidinate (CrHis) and chromium 
picolinate (CrPic) complex along with biotin to a high- fat diet (HFD) fed to rats on the 
insulin sensitivity and the anti- obesity properties.
Methods: Forty- two Sprague–Dawley male rats were divided into six groups. The 
rats were fed either (a): a standard diet (Control) or (b): a HFD or (c): a HFD with biotin 
(HFD+B) or (d): a combination of HFD and biotin along with CrPic (HFD + B + CrPic) 
or (e): a combination of HFD and biotin along with CrHis (HFD + B + CrHis) or (f): a 
combination of HFD and biotin along with CrHis and CrPic (HFD + B + CrHis + CrPic).
Results: Adding biotin with chromium to HFD improved the glucose, insulin, HOMA- 
IR, leptin, lipid profile, with HFD+B+CrHis treatment being the most effective 
(p = 0.0001). Serum, liver, and brain tissue Cr concentrations increased upon Cr sup-
plementations (p = 0.0001). Supplementing CrHis along with biotin to a HFD 
(HFD + B + CrHis) provided the greatest levels of GLUT- 1, GLUT- 3, PPAR- γ, and  
IRS- 1, but the lowest level of NF- κB in the brain and liver tissues.
Conclusion: Biotin supplementation with chromium complexes, CrHis in particular, to 
a HFD pose to be a potential therapeutic feature for the treatment of insulin 
resistance.
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The essentiality of chromium (Cr) has been questioned in the 
recent studies (Vincent, 2017). Although some studies suggested 
that chromium supplementation decreases insulin levels and im-
proves glucose disposal rates in obese individuals (Cefalu et al., 
1999; Talavera, Reza, & Cerda, 2004), in some other studies, Cr 
supplements to diabetic or healthy subjects did not clearly point 
out beneficial effects in glucose metabolism and diabetes (Bailey, 
2014; Vincent, 2017). In contrast to the results from clinical works 
in humans, studies with rodent models supplemented with Cr have 
unambiguously indicated certain roles of Cr as a pharmacologically 
active element in glucose tolerance factor (Vincent, 2017). In this 
respect, supplementing chromium picolinate (CrPic) to the diet of 
obese rats has been shown to decrease plasma insulin, total choles-
terol, and triacylglycerol concentrations as well as improved glucose 
disposal rates (Sahin et al., 2011; Wang, Zhang, Russell, Hulver, & 
Cefalu,	2006).	The	effects	of	supplementing	different	doses	and	the	
combination of chromium histidinate (CrHis) and CrPic along with 
biotin in rats fed HFD have not been reported. Therefore, the aim of 
this study were to investigate the effects of supplementing differ-
ent complexes of CrHis and CrPic supplementation along with biotin 
on the insulin sensitivity and also to evaluate the anti- obesity prop-
erties of these supplements through their action of mechanism by 
looking at the changes in biomarkers such as PPAR- γ, IRS- 1, GLUTs, 
NF- κB proteins, metabolic parameters, and tissue histopathological 
changes in rats fed HFD.

2  | MATERIAL AND METHODS

2.1 | Animals and diets

Sprague–Dawley male rats (n = 42, 8 weeks old) weighing 180–
220 g were purchased from the Firat University Laboratory Animal 
Research Center (Elazig, Turkey). The animals were reared at the 
temperature of 22 ± 2°C, humidity of 55 ± 5%, and with a 12- h 
light–12- h dark cycle. All animal procedures were approved by 
the Animal Experimentation Ethics Committee of Firat University 
(Elazig,	Turkey)	(Bioethic	Approval	number	2014/17-	164).	All	proce-
dures involving rats were conducted in strict compliance with the 
relevant laws, the Animal Welfare Act, Public Health Services Policy, 
and guidelines established by the Institutional Animal Care and Use 
Committee of the Institute.

2.2 | Experimental design

After 1 week of adaptation period, the rats were divided according 
to BW, which was similar, into six equal groups containing seven 
rats each. The rats were fed either (a): a standard diet as control 
(Control) (12% of calories as fat) or (b): a HFD (42% of calories 
as fat) or (c): a HFD with biotin (300 μg/kg BW per d) (HFD + B) 
or (d): a combination of HFD and biotin along with CrPic (80 μg 
CrPic/kg BW per day) (HFD + B + CrPic) or (e): a combination 
of HFD and biotin along with CrHis (130 μg CrHis/kg BW per 
day) (HFD + B + CrHis) or (f): a combination of HFD and biotin 

along	with	CrHis	 (65	μg CrHis/kg BW per day) and CrPic (40 μg 
CrPic/kg BW per day) (HFD + B + CrHis + CrPic). Table 1 shows 
the  composition of the control and the HFD fed to the rats. All 
chromium- supplemented groups were provided approximately 
10 μg/day elemental chromium. This amount was calculated based 
on	560	μg Cr that is needed for a 70- kg adult human after adjust-
ing doses based on metabolic body size (700.70 = 19.57 kg, needing 
560	μg Cr; ~0.2200.70 = 0.35 kg needing 10.02 μg Cr). The CrPic, 
CrHis, and biotin supplements were dissolved in drinking water 
and offered to rats via drinking water for 12 weeks. Cr- chelates 
[Cr- histidinate (CrHis) or Cr- picolinate (CrPic)] and biotin were sup-

plied by Nutrition 21, Inc. (Purchase, NY, USA).

2.3 | Laboratory analyses

At the end of the experiment, all rats were killed by cervical dislo-
cation. Blood samples were taken from rats from the tail vein in the 
morning, after overnight fasting, and the tissues from the liver and 
brain were removed and processed for biochemical and Western 
blot examination. Fat was trimmed off from the slow- twitch mus-
cles (soleus and gastrocnemius deep portion). Visceral fat and liver 
weights were recorded. Initial body weight (BW), final BW, and feed 
intake were measured. Then, feed efficiency ratio (FER) was calcu-
lated as FER = [(total body weight gain × 100)/total feed intake].

Glucose, total cholesterol (TC), HDL cholesterol (HDL- C), LDL cho-
lesterol (LDL- C), triglyceride (TG), free fatty acids (FFA), total protein 
(TP), total bilirubin (TBIL), blood urea nitrogen (BUN), and creatinine 
serum concentrations as well as alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST) enzyme activities were measured by 
an automatic analyzer (Samsung LABGEO PT10; Samsung Electronics 
Co, Suwon, Korea). Repeatability and device/method precision of 
LABGEOPT10	was	established	according	to	the	IVR-	PT06	Guideline.	
The concentration of serum leptin and insulin levels were measured 
with the rat leptin and insulin assay kit (Cayman Chemical Co., Ann 
Arbor, MI, USA) by ELISA (Elx- 800; Bio- Tek Instruments Inc., Vermont, 
USA). The interassay and intra- assay coefficients of variation were 
4.6%	and	6.3%	and	3.8%	and	5.5%	for	leptin	and	insulin,	respectively.

Insulin resistance index was calculated by homeostasis model 
assessment of insulin resistance (HOMA- IR) as (fasting glucose 
mmol/L) × (fasting insulin mU/L)/22.5. Because this calculation is 
human based, basal concentrations are not the same in the rodents 
and should be re- estimated (strain differences) (van Dijk et al., 2013; 
Katz et al., 2000). Therefore, HOMA- IR was calculated with a for-
mula adapted to Matthews et al. (1985). For Sprague–Dawley male 
rats, reference values were calculated using average fasting glucose 
(5.1 mmol/L) and plasma insulin (43.9 mU/L) concentrations from all 
group (42 rats) at the beginning of the study (day 0). The HOMA- IR 
score was calculated as the product of the fasting insulin level (mU/L) 
and the fasting glucose level (mmol/L), divided by 223.9 for rats. 
The	cutoff	value	to	define	insulin	resistance	was	HOMA-	IR	≥	2.50.	
Rats	presenting	HOMA-	IR	≥	2.50	were	considered	insulin-	resistant.	
Muscle malondialdehyde (MDA) concentrations were measured ac-
cording to the previously described method (Akdemir et al., 2015) 
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with a Shimadzu UV- vis SPD- 10 AVP detector, a CTO- 10 AS VP col-
umn	and	30	mM	KH2PO4	and	methanol	(82.5:	17.5,	v/v,	pH	3.6)	at	
a flow rate of 1.2 ml/min. Column waste was monitored at 250 nm.

Feed, serum, and tissue chromium concentrations were deter-
mined as described previously (Akdemir et al., 2015). For determi-
nation of Cr concentration, about 0.3 g feed, liver, and brain, as well 
as 0.5 ml serum samples were first digested with 5 ml concentrated 
nitric acid in a Microwave Digestion System (Berghof, Eningen, 
Germany) for 30 min. The specimens were subjected to graphite 
furnace atomic absorption spectrophotometer (AAS, Perkin- Elmer, 
Analyst 800, Norwalk, CT, USA).

2.4 | Western blot analyses

The protein levels of GLUT- 1, GLUT- 2, GLUT- 3, GLUT- 4, PPAR- γ, 
IRS- 1, and NF- κB in tissue were determined by Western blotting. To 
determine expressions of the brain and hepatic proteins in Western 
blot analysis, samples were homogenized in phosphate- buffered sa-
line (PBS) with protease inhibitor cocktail (Calbiochem, San Diego, 
CA, USA). The sample (20 μg of protein per lane) was mixed with 
sample buffer, boiled for 5 min, and separated by sodium dodecyl 
sulfate–polyacrylamide (12%) gel electrophoresis under denaturing 
conditions, and then electroblotted onto a nitrocellulose membrane 
(Schleicher and Schuell Inc., Keene, NH, USA). Nitrocellulose blots 
were washed in PBS and blocked with 1% bovine serum albumin in 
PBS for 1 h prior to application of the primary antibodies (GLUT- 
1, GLUT- 2, GLUT- 3, GLUT- 4, PPAR- γ, IRS- 1, and NF- κB; Abcam, 
Cambridge, UK). Primary antibody was previously diluted (1:1000) 
in the same buffer containing 0.05% Tween- 20. The nitrocellulose 
membrane was incubated overnight at 4°C with protein antibody. 
The blots were washed and incubated with horseradish peroxidase- 
conjugated goat antimouse IgG (Abcam). Specific binding was de-
tected using diaminobenzidine and hydrogen peroxide as substrates. 
Protein load was controlled using a monoclonal mouse antibody 
against β- actin antibody (Sigma, St. Louis, MO, USA). Protein levels 
were quantified densitometrically using an image analysis system 
(Image J; National Institute of Health, Bethesda, MD).

2.5 | Statistical analysis

The alteration among groups was analyzed using one- way analy-
sis of variance (ANOVA) followed by the Tukey post hoc test (SAS 
Institute: SAS User’s Guide: Statistics), and p < 0.05 was considered 
statistically significant. Data were stated as a mean and standard 
error of the mean.

3  | RESULTS

3.1 | Body weight, visceral fat, and liver weights

Initial body weights, as planned, were similar among rat groups 
(p > 0.05, Table 2). Feeding rats a HFD compared with control re-
sulted in an increase in final BW, FER, and visceral fat as well as the 

liver weights but a decrease in feed intake (p = 0.0001). However, 
supplementing biotin alone or combination of biotin with CrHis, 
CrPic, or CrHis + CrPic to HFD decreased the final BW, visceral fat, 
and the liver weights, with HFD + B + CrHis treatment having the 
lowest final BW (p = 0.0001). However, adding any supplements to 
the HFD did not change feed intake or FER with the exception of bio-
tin addition to HFD which decreased FER not as much as the other 
supplements (Table 2).

3.2 | Serum metabolites

Feeding HFD to rats resulted in an increase in serum concentrations 
of glucose and insulin as well as HOMA- IR index (p < 0.05, Figure 1). 
Adding each of the supplements, but particularly Cr complexes, to 
a HFD decreased the serum concentrations of glucose, insulin, and 
HOMA- IR index.

Changes in serum metabolites upon feeding HFD supplemented 
with biotin, CrHis, CrPic, and CrHis + CrPic are shown in Table 3. 
Feeding HFD to rats resulted in an increase in serum concentra-
tions of FFA, leptin, TC, and TG as well as serum enzyme activities 
of AST and ALT (p = 0.0001). Adding each of the supplements to a 
HFD decreased the serum concentrations and the enzyme activi-
ties. However, adding biotin and CrHis to HFD resulted in the lowest 
serum FFA, leptin, TC, and TG concentrations and serum AST en-
zyme activities (p = 0.0001), bringing the concentration of TC and 
TG to base values similar to those of control. Feeding HFD alone 
or HFD with various supplements did not change the serum con-
centrations of HDL- C (p = 0.127; Table 3). However, feeding HFD to 
rats increased (p = 0.0001) the serum LDL- C concentrations which 
decreased with each of the supplement added to the HFD, being 
lowest with HFD + B + CrHis treatment (p = 0.0001).

Adding biotin alone or biotin combination with chromium pico-
linate to HFD decreased the serum ALT activities in a similar pattern 
(77.86	 and	77.71	U/L	 for	HFD	+	B,	HFD	+	B	+	CrPic,	 respectively).	
However, adding CrHis and a combination of CrHis and CrPic to HFD 
containing biotin further decreased the ALT enzyme activities, with 
HFD + B + CrHis treatment having the lowest values bringing the 
enzyme activities to base values similar to control. Serum TP, TBIL, 
BUN, and CRE concentrations remained similar among treatments 
(p ≥ 0.06).

3.3 | Oxidative stress indicator and Cr 
concentrations

As an indicator of oxidative stress, serum MDA concentrations in-
creased with feeding HFD to rats (p = 0.0001; Table 4). However, each 
treatment, namely, HFD + B, HFD + B + CrPic, HFD + B + CrHis, and 
HFD + B + CrHis + CrPic decreased the serum MDA concentrations 
with a similar magnitude. Although not significantly, feeding rats a 
HFD containing biotin and CrHis (HFD + B + CrHis) resulted in the 
lowest MDA concentrations.

As expected, supplementing chromium complexes to the diet of 
rats, regardless of being fed with high fat or biotin, increased the 
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serum, liver, and brain Cr concentrations (p = 0.0001; Table 4). In this 
respect, supplementing all Cr sources responded to similar serum, 
liver, and kidney Cr concentrations. Although not significantly, 
serum and tissue Cr concentrations were greater with the treatment 
of HFD + B + CrHis.

Brain Cr concentration remained similar in rats fed either a con-
trol diet or HFD or HFD supplemented with biotin (p = 0.0001). 
However, supplementing Cr complexes, as expected, increased 
the brain Cr concentration. Supplementing different Cr sources 
increased the brain Cr concentration in different magnitude, being 

more increases with the HFD + B + CrHis and HFD + B + CrPic- 
CrHis treatments than that of HFD + B + CrPic.

3.4 | Western blot analyses

Brain GLUT- 1 and GLUT- 3 levels showed similar responses to the 
treatments (Figure 2 Panel a, b). The GLUT levels decreased in HFD- 
fed rats compared to rats fed a control diet (100 vs. 40.99 and 30.37 
for control, GLUT- 1, and GLUT- 3, respectively). Adding biotin and 
CrPic to HFD resulted in increases in the levels; however, adding 
CrHis and a combination of CrHis and CrPic further increased the 
levels	with	a	similar	magnitude	(77.09	vs.	71.76	for	GLUT-	1	and	73.94	
vs.	68.04	for	GLUT-	3,	respectively).

Brain PPAR- γ levels decreased in rats fed HFD diets compared 
to rats fed a control diet (100 vs. 43.38, Figure 2 Panel c). Brain 
PPAR- γ levels increased upon feeding HFD supplemented with 
biotin	 and	CrPic	 (76.62	 vs.	 60.50,	 respectively).	 Further	 increases	
in the expressions were observed with CrHis and a combination 
of CrHis and CrPic supplements. The levels were similar between 
HFD + B + CrHis and HFD + B + CrHis + CrPic treatments (89.97 vs. 
86.96,	respectively).

Feeding a HFD to rats resulted in a decrease in the brain IRS- 1 
levels (Figure 2 Panel d). Although not significantly, adding biotin 
to	 the	 diet	 containing	 HFD	 increased	 the	 level	 (28.10	 vs.	 34.36).	
HFD	+	B	+	CrPic	treatment	resulted	in	increases	in	the	levels	(46.77);	
however, adding CrHis and a combination of CrHis and CrPic to 
HFD further increased the expressions in a similar magnitude 
(64.88	and	61.78	for	HFD	+	B	+	CrHis	and	HFD	+	B	+	CrHis	+	CrPic,	
respectively).

Brain NF- κB levels increased 243% in HFD- fed rats compared 
with those of rats fed a control diet (Figure 2 Panel e). Adding bi-
otin and CrPic to HFD resulted in decreases in the levels, but the 
levels	were	 still	 greater	 than	 those	 of	 control	 (164.48	 and	139.57	
for HFD + B and HFD + B + CrPic, respectively). HFD + B and 
HFD + B + CrPic treatments influenced the levels in similarly. Adding 
CrHis and a combination of CrHis and CrPic to HFD further decreased 

TABLE  2 Body weights and liver–visceral fat weight changes in rats fed a HFD supplemented with biotin and chromium complexes

Item

Treatments

Control HFD HFD + B HFD + B + CrPic HFD + B + CrHis HFD + B + CrPic + CrHis

Initial BW, g 256.00	±	5.03 256.29	±	4.95 256.43	±	7.56 256.86	+	6.45 256.29	±	7.03 256.14	±	8.09

Final BW, g 278.57	±	1.65d 332.57 ± 2.35a 320.14 ± 1.40b 316.57	±	1.19bc 310.29 ± 1.54c 314.57 ± 2.51bc

Feed intake, 
g/d

22.29 ± 0.59a 17.14 ± 0.59b 17.43 ± 0.75b 17.00	±	0.62b 17.14 ± 0.70b 16.86	±	0.51b

FER (g/100 g 
diet)

1.19	±	0.16c 5.30	±	0.06a 4.30 ± 0.28ab 4.14	±	0.26b 3.99 ± 0.29b 3.76	±	0.30b

Visceral fat, g 8.80 ± 0.18e 28.74 ± 0.38a 17.14 ± 0.38b 15.38 ± 0.23dc 15.16	±	0.25d 16.59	±	0.30bc

Liver weights, g 9.79 ± 0.29c 18.17 ± 0.28a 16.75	±	0.44ab 16.31	±	0.56ab 15.49	±	0.62b 15.84	±	0.66b

The data are presented as means and standard error. Means in the same line without a common superscript differ significantly (p < 0.05).
B: biotin; CrPic: chromium picolinate; CrHis: chromium histidinate; FER: feed efficiency ratio = [(Total Body weight gain × 100)/total feed intake]; HFD: 
high- fat diet.

TABLE  1  Ingredients of control and high- fat diet (HFD) fed to 
rats

Control dieta
High- fat 
diet (HFD)a

Casein 200.0 200.0

Starch 579.5 150.0

Sucrose 50.0 149.5

Soybean oil 70.0 —

Beef tallow — 400.0

Cellulose 50.0 50.0

Vitamin–mineral 
premixb

45.0 45.0

L- cysteine 3.0 3.0

Choline bitartrate 2.5 2.5
aThe	control	and	HFD	contained	0.786	±	0.096	and	0.843	±	0.055	mg	Cr	
per kg diets. bThe vitamin–mineral premix provides the following (per 
kg): all- trans- retinyl acetate, 1.8 mg; cholecalciferol, 0.025 mg; all- rac- a- 
tocopherol acetate, 12, 5 mg; menadione (menadione sodium bisulfate), 
1.1 mg; riboflavin, 4.4 mg; thiamine (thiamine mononitrate), 1.1 mg; vita-
min	 B	+	6,	 2.2	mg;	 niacin,	 35	mg;	 Ca-	pantothenate,	 10	mg;	 vitamin	
B + 12, 0.02 mg; folic acid, 0.55 mg; d- biotin, 0.1 mg; manganese (from 
manganese oxide), 40 mg; iron (from iron sulfate), 12.5 mg; zinc (from 
zinc oxide), 25 mg; copper (from copper sulfate), 3.5 mg; iodine (from po-
tassium iodide), 0.3 mg; selenium (from sodium selenite), 0.15 mg; cho-
line chloride, 175 mg. 
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the levels in a similar manner (87.75 vs. 102.85 for HFD + B + CrHis 
and HFD + B + CrHis + CrPic, respectively).

The levels of GLUT- 2 and GLUT- 4 in the liver are shown in 
Figure 3 Panel a and b. The GLUT- 2 levels decreased upon feed-
ing HFD diets in rats compared to a control diet- fed rat (100 vs. 
32.07). Adding biotin to a HFD increased the expression, but not 
significantly (39.02). Adding CrPic to HFD containing biotin resulted 
in	significant	increases	in	the	levels	(61.81).	However,	adding	CrHis	
and a combination of CrHis and CrPic to HFD containing biotin fur-
ther increased the levels in a similar magnitude (81.80 vs. 79.32 for 
HFD + B + CrHis and HFD + B + CrHis + CrPic, respectively).

The GLUT- 4 levels in the liver decreased in rats fed HFD com-
pared to rats fed a control diet. Although not significantly, feed-
ing a HFD supplemented with biotin increased the levels (47.41 

vs. 54.04 for HFD and HFD + B, respectively). However, adding 
CrPic, CrHis and a combination of CrHis and CrPic to HFD con-
taining biotin similarly increased the expressions, with being 
HFD	+	B	+	CrHis	numerically	greater	(73.44,	78.04,	and	68.91	for	
HFD + B + CrPic, HFD + B + CrHis, and HFD + B + CrHis + CrPic, 
respectively).

The rats fed HFD had a low expression of PPAR- γ in the liver 
compared with rats fed a control diet (Figure 3 Panel c). Feeding 
HFD supplemented with biotin, CrPic, and CrHis resulted in 
significant	 increases	 in	 the	 levels	 (60.70,	 66.11,	 and	 90.93	 for	
HFD + B, HFD + B + CrPic, and HFD + B + CrHis, respectively). 
However, supplementing a combination of CrHis and CrPic 
(HFD	+	B	+	CrHis	+	CrPic)	resulted	in	a	decrease	in	the	levels	(69.02)	
similar to the expression levels of HFD + B + CrPic.

F IGURE  1 Effects of supplementing chromium histidinate (CrHis) and picolinate (CrPic) complexes along with biotin on plasma fasting 
glucose, insulin, and homeostatic model assessment insulin resistance (HOMA- IR) in rats fed a high- fat diet (HFD). Each plot represents the 
mean and standard error of the mean. Values within the plots with different superscripts are significantly different (Turkey’s post hoc test, 
p < 0.05)
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Rats consuming HFD had lower liver IRS- 1 levels compared 
with the rats fed a control diet (Figure 3 Panel d). However, supple-
menting HFD with biotin and CrPic increased the levels (58.30 and 
58.11 for HFD + B and HFD + B + CrPic, respectively), and further 
increases with similar magnitude were observed with CrHis and a 
combination of CrHis and CrPic supplementations (79.29 and 81.91 
for HFD + B + CrHis and HFD + B + CrHis + CrPic, respectively).

The liver NF- κB level decreased in rats fed HFD diets compared 
to rats fed a control diet (Figure 3 Panel e). Although not signifi-
cantly,	the	level	increased	with	the	addition	of	biotin	to	HFD	(28.67	
vs.	36.02	for	HFD	and	HFD	+	B,	respectively).	Adding	CrPic	to	HFD	
resulted in significant increases in the levels (59.89). However, add-
ing CrHis and a combination of CrHis and CrPic further increased the 
levels in a similar manner (80.89 vs. 78.28 for HFD + B + CrHis and 
HFD + B + CrHis + CrPic, respectively).

4  | DISCUSSION

Feeding HFD to rats for 12 weeks increased the final BW, visceral 
fats,	and	liver	weights	19.38%,	226.59%,	and	85.60%,	respectively.	
However, feed intake decreased with the same magnitude in all 
treatment groups. Decreased feed intake with feeding HFD could 
be due to an increase in serum leptin concentrations. In accord 
with the results of the present work, prolonged feeding with HFD 
has been shown to lead to obesity (Amin & Nagy, 2009; Buettner, 
Scholmerich, & Bollheimer, 2007; Tuzcu et al., 2011; Zhang, Lv, Li, 
Xu, & Chen, 2008). Obesity is a medical condition leading to seri-
ous health problems including heart disease, type 2 diabetes, certain 
types of cancer, osteoarthritis, and sleep disorders (Slawson et al., 
2013). The treatment of obesity encloses the change of lifestyle in-
cluding heart- friendly eating and increased physical activity, and the 

TABLE  4 Serum MDA and tissue Cr concentrations in rats fed a HFD supplemented with biotin and chromium complexes

Item

Treatments

Control HFD HFD + B HFD + B + CrPic HFD + B + CrHis HFD + B + CrPic + CrHis

Serum MDA, 
nmol/ml

1.011 ± 0.018c 2.201 ± 0.090a 1.573 ± 0.020b 1.526	±	0.037b 1.396	±	0.020b 1.484 ± 0.048b

Serum Cr, μg/ml 0.055 ± 0.002b 0.055 ± 0.003b 0.053 ± 0.005b 0.074 ± 0.001a 0.083 ± 0.001a 0.076	±	0.003a

Liver Cr, μg/g wet 
tissue

0.641	±	0.022b 0.638	±	0.025b 0.676	±	0.029b 0.948 ± 0.019a 1.058 ± 0.034a 0.967	±	0.039a

Kidney Cr, μg/g 
wet tissue

0.619	±	0.009b 0.620	±	0.031b 0.671	±	0.035b 0.906	±	0.036a 1.059 ± 0.053a 0.944	±	0.064a

Brain Cr, μg/g wet 
tissue

0.234 ± 0.009c 0.211 ± 0.013c 0.213 ± 0.012c 0.349 ± 0.013b 0.407 ± 0.012a 0.403 ± 0.008a

The data are presented as means and standard error. Means in the same line without a common superscript differ significantly (p < 0.05).
B: biotin; CrPic: chromium picolinate; CrHis: chromium histidinate; HFD: high- fat diet; MDA: malondialdehyde.

TABLE  3 Serum metabolite concentrations in rats fed a HFD supplemented with biotin and chromium complexes

Item

Treatments

Control HFD HFD + B HFD + B + CrPic HFD + B + CrHis HFD + B + CrPic + CrHis

FFA, mM 2.62	±	0.06d 4.22 ± 0.09a 3.49 ± 0.08b 3.37 ± 0.11bc 3.11 ± 0.05c 3.48	±	0.06b

Leptin, ng/ml 73.86	±	1.84d 220.41 ± 4.51a 188.57 ± 4.20b 186.71	±	2.78bc 166.86	±	9.02c 183.00 ± 3.34bc

TC, mg/ml 66.14	±	6.98c 121.29	±	6.78a 101.43 ± 4.57ab 93.71 ± 9.55abc 70.43	±	6.12c 82.00	±	3.68bc

HDL- C, mg/dl 17.71 ± 0.99 14.00 ± 0.90 14.29 ± 1.48 14.71 ± 1.97 19.70 ± 2.57 15.84 ± 1.39

LDL- C, mg/dl 24.86	±	0.86c 60.71	±	3.85a 48.43 ± 5.19ab 52.86	±	7.64ab 41.14	±	2.46bc 42.71 ± 2.70abc

TG, mg/dl 70.13	±	4.61d 176.29	±	12.09a 132.71 ± 8.37b 118.14	±	10.69bc 72.57 ± 2.93d 93.29	±	6.23cd

AST, U/L 120.57 ± 7.43d 301.00 ± 21.45a 255.43 ± 9.03ab 245.57 ± 13.98ab 184.57 ± 15.47bc 215.86	±	31.89b

ALT, U/L 61.43	±	2.86b 81.29	±	4.26a 77.86	±	3.23a 77.71 ± 7.40a 62.00	±	6.86b 74.86	±	3.97ab

TP, g/dl 6.38	±	0.19 6.70	±	0.35 6.76	±	0.35 6.74	±	0.28 6.51	±	0.43 6.71	±	0.26

TBIL, mg/dl 0.17 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 0.21 ± 0.01 0.21 ± 0.02 0.23 ± 0.01

BUN, mg/dl 14.09 ± 1.17 14.79 ± 1.31 14.64	±	1.12 14.04 ± 1.09 14.17 ± 1.10 14.57 ± 1.28

CRE, mg/dl 0.11 ± 0.01 0.13 ± 0.02 0.13 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.13 ± 0.02

The data are presented as means and standard error. Means in the same line without a common superscript differ significantly (p < 0.05).
AST: aspartate aminotransferase; ALT: alanine aminotransferase; B: biotin; BUN: blood urea nitrogen; CRE: creatinine; CrPic: chromium picolinate; 
CrHis: chromium histidinate; FFA: free fatty acid; HFD: high- fat diet; HDL- C: high- density lipoprotein cholesterol; LDL- C: low- density lipoprotein cho-
lesterol; TC: total cholesterol; TG: triglyceride; TP: total protein; TBIL: total bilirubin.
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use of authorities- approved weight- loss medicines and supplements. 
Biotin and chromium should be considered as supplements in this 
respect.

Biotin supplemented HFD fed to rats decreased final BW, vis-
ceral fats, and liver weights. The results from biotin supplementa-
tion were expected due to the fact that biotin functions as glucose 
and lipid homeostasis through regulating the expression of genes 
needed in the regulation of intermediary metabolism (Fernandez- 
Mejia, 2005). Biotin has been found to stimulate the expression 
of insulin and pancreatic glucokinase, influencing insulin secretion 
(Romero- Navarro et al., 1999), which were also the cases at the 
present work. Parallel to the results of the present work, biotin sup-
plementation has been reported to ease the exacerbated hyperlipid-
emia (Báez- Saldaña et al., 2004; Dukusova & Krivoruchenko, 1972). 
Marshall, Kliman, Washington, Mackin, & Weinland (1980) reported 
a negative correlation between biotin levels and total plasma lipids 
in	healthy	individuals.	Zhang	et	al.	(1996)	also	found	that	hypergly-
cemia is associated with biotin deficiencies in rats. In accord with 

the metabolic parameters measured at the present work, molecular 
parameters also supported the positive effect of biotin fed with HFD 
to rats for GLUT- 1, GLUT- 2, GLUT- 3, GLUT- 4, PPAR- γ, IRS- 1, and NF- 
κB levels in tissues.

The three different Cr sources, namely, CrPic, CrHis, and the 
combination of CrPic and CrHis, were supplemented at the pres-
ent work. CrPic is known as the lipophilic or slow- acting chromium 
complex, whereas CrHis is a hydrophilic or fast- acting chromium 
complex absorbed more quickly than that of CrPic. The combina-
tion of CrPic and CrHis was a mix at the ratio of 1:1 for CrPic:CrHis. 
At the present work, supplementing CrHis along with biotin to HFD 
provided the best results yielding of the greatest levels of GLUT- 
1, GLUT- 3, PPAR- γ, and IRS- 1 but the lowest level of NF- κB in the 
brain tissues, the greatest levels of GLUT- 1, GLUT- 3, and PPAR- γ in 
the liver tissues, the lowest final body weights, visceral fat and liver 
weights, the lowest serum glucose, insulin, FFA, leptin, total choles-
terol, LDL- cholesterol, HDL- cholesterol, and TG concentrations as 
well as lowest AST and ALT enzyme activities. Supplementing CrHis 

F IGURE  2 Effects of supplementing chromium histidinate (CrHis) and picolinate (CrPic) complexes along with biotin on (a) GLUT- 1, (b) 
GLUT- 3, (c) PPAR- γ, (d) IRS- 1, and (e) NF- κB protein levels in the brain of rats fed a high- fat diet (HFD). Data are expressed as percent of the 
control value. Each bar represents the mean and standard error of the mean. Blots were repeated at least three times Western blot analysis 
was performed with actin included to ensure equal protein loading. The data are percentages of the control. Values within the bars with 
different superscripts are significantly different (Turkey’s post hoc test, p < 0.05)
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along with biotin to HFD also yielded second greatest levels of IRS- 1 
and second lowest levels of NF- κB in the liver tissues.

A wide range of metabolic dysfunctions characterized by insu-
lin resistance, impaired glucose tolerance, obesity, intra- abdominal 
adiposity, hypertension, dyslipidemia, increased inflammatory mark-
ers, and oxidative stress is called cardiometabolic syndrome. Such 
conditions as obesity, hyperlipidemia, and diabetes play a crucial 
role in the development of atherosclerotic cardiovascular diseases, 
potential causes of mortality and morbidity (Abdelaal, le Roux, & 
Docherty, 2017; Slawson et al., 2013). Chromium supplementation 
with CrPic, CrHis, or the combination (particularly CrHis alone) to 
HFD containing biotin resulted in an improvement in measured mo-
lecular parameters known to be characteristics to the conditions of 
cardiometabolic syndrome. Supplementing Cr with biotin to HFD 
also resulted in decreases in the final BW, visceral fats, and liver 
weights, promoting weight loss.

Rats fed HFD showed increased blood lipids and leptin con-
centrations which decreased by biotin and Cr supplementations, 

particularly CrHis. Circulating leptin concentrations increases in 
obesity. Therefore, the establishment of leptin resistance is consid-
ered as a major mechanism linking to the onset of obesity. Leptin 
is also crucial for the maintenance of glucose homeostasis and is 
considered as a potent insulin sensitizer (Yu, Park, Wang, Wang, & 
Unger, 2008). In accord with other parameters measured at the pres-
ent work, supplementing biotin but particularly with CrHis improves 
insulin resistance as well as obesity.

Disorders in insulin signaling through disruption in lipid and 
glucose metabolism cause insulin resistance, an important char-
acteristic feature of type 2 diabetes (Cordero- Herrera, Martín, 
Bravo, Goya, & Ramos, 2013). Glucose is transported to the mus-
cle cells via the insulin- sensitive glucose transporter, GLUT4, and 
any disruption in the translocation of GLUT4 from an internal 
membrane pool to surface membranes may cause an impairment 
of insulin- stimulated glucose uptake, eventually leading to insulin 
resistance (Huang & Czech, 2007). Chromium supplements atten-
uate insulin resistance by increasing the translocation of glucose 

F IGURE  3 Effects of supplementing chromium histidinate (CrHis) and picolinate (CrPic) complexes along with biotin on (a) GLUT- 2, (b) 
GLUT- 4, (c) PPAR- γ, (d) IRS- 1, and (e) NF- κB protein levels in the liver of rats fed a high- fat diet (HFD). Data are expressed as percent of the 
control value. Each bar represents the mean and standard error of the mean. Blots were repeated at least three times. Western blot analysis 
was performed with actin included to ensure equal protein loading. The data are percentages of the control. Values within the bars with 
different superscripts are significantly different (Turkey’s post hoc test, p < 0.05)
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transporters in tissues, accompanied by an increase in glucose up-
take by the tissues. The effects of the Cr supplementations, CrHis 
in particular, in attenuating insulin resistance were supported at 
the present work by increased the brain GLUT1, GLUT3, the liver 
GLUT2, and GLUT4 levels.

Increased fasting glucose concentrations were parallel to the in-
creases in the HOMA- IR indexes in rats fed HFD. However, supple-
mentations particularly Cr complexes decreased the index and the 
fasting glucose concentrations. These results once again highlight 
the importance of Cr in metabolic diseases.

The insulin receptor substrate- 1 (IRS- 1) is a key factor in insulin- 
signaling pathways and thus in the development of type 2 diabetes. 
The IRS- 1 expression, previously decreased upon feeding HFD, in-
creased with Cr complex supplementations, particularly CrHis, indi-
cating the effects of Cr in improving insulin resistance by enhancing 
insulin signaling. Increased accumulation of fatty acids in tissues as 
seen in obesity leads serine/threonine phosphorylation of IRS pro-
teins, resulting in a decreased signaling through reduced tyrosine 
phosphorylation and increased proteasomal degradation of IRS- 1 
causing depression in the expression (Shulman, 2000; White, 2002). 
On the other hand, serine/threonine phosphorylation of IRS- 1 can 
also positively influence the insulin action via the residues which are 
specifically phosphorylated (Greene & Garofalo, 2002). A number of 
IRS1 kinases such as isoforms of PKC (protein kinase C), JNK (Jun N- 
terminal kinase), IKK (IκB	kinase),	and	p70S6K	have	been	proposed	
to regulate the insulin action (Tanti et al., 2004).

In accord with the GLUT results, PPAR- γ and IRS- 1 levels also 
responded to biotin and Cr supplementations in a similar way, im-
proving insulin resistance. The peroxisome proliferator- activated 
receptor (PPAR) family plays crucial roles in lipid metabolism, inflam-
mation, glucose homeostasis, cell proliferation and differentiation, 
apoptosis, and aging (Bishop- Bailey, 2000; Chinetti, Fruchart, & 
Staels, 2003; Howroyd, Swanson, Dunn, Cattley, & Corton, 2004). 
There are three isoforms of PPAR receptors that have specific, but 
also overlapping target genes, namely, PPAR- α, PPAR- γ, and PPAR- 
β/δ. Activation of PPAR- γ is known to lead insulin sensitization and 
to enhance glucose metabolism as well as to regulate adipocyte 
differentiation and fatty acid storage (Tyagi, Gupta, Saini, Kaushal, 
& Sharma, 2011). Decreased levels of PPAR- γ in the brain and liver 
tissues of the rats fed HFD were soared to levels near that of control 
with supplementing Cr to HFD, indicating the effects of chromium 
in improving insulin resistance as well as obesity. PPAR- γ activation 
is also known to inhibit the proliferation of malignant cells, including 
liposarcoma, breast adenocarcinoma, prostate carcinoma, colorec-
tal carcinoma, non- small- cell lung carcinoma, pancreatic carcinoma, 
bladder cancer, gastric carcinoma, and glial tumors of the brain 
(Chattopadhyay et al., 2000; Rubin, Zhao, Kalus, & Simpson, 2000).

Nuclear factor- κB (NF- κB) is involved in cellular responses to 
stimuli such as stress, cytokines, free radicals, ultraviolet irradiation, 
and bacterial or viral antigens. Therefore, the role of NF- kB in dis-
eases such as inflammation, metabolic diseases including obesity, 
and cancer has been appreciated (Baker, Hayden, & Ghosh, 2011; 
Ben- Neriah & Karin, 2011; Donath & Shoelson, 2011). A relationship 

between the activation of the transcription factor nuclear factor- κB 
(NF- κB) and fatty acid- induced insulin resistance has been proposed 
(Kim et al., 2001). The expressions of NF- κB at the present work in-
creased in the brain and liver of rats fed a HFD. Supplementation of 
HFD with biotin and Cr reversed these responses (decreased). Qin 
et al. (2008) found that after a week of alcohol treatment in rats, 
IL- 10, an anti- inflammatory cytokine produced by macrophages and 
lymphocytes that inhibit NF- κB, increased in the liver but decreased 
in the brain.

Impairment of neuronal function as seen in stroke and cerebral 
ischemia are associated with diabetes along with prolonged hy-
perglycemia because of impaired cerebral vascular supply (Kissela 
et al., 2005; Li, Britton, Sima, & Dunbar, 2004; Mooradian, 1997; 
Saczynski	et	al.,	2009).	Chen	et	al.	(2016)	found	that	impairment	of	
brain functions such as stroke in rats caused disturbance of tissue 
chromium homeostasis with a net loss through urinary excretion, 
and Cr supplementation restored tissue chromium levels attenuated 
post- stroke brain infarction and hyperglycemia. In this respect, sup-
plementation of Cr may have a potential effect on brain functions as 
also evidenced at the present work.

Accumulation of FFA and cholesterol may lead insulin resistance 
in the brain (Chaurasia & Summers, 2015; Chavez, Holland, Bar, 
Sandhoff, & Summers, 2005; De la Monte et al., 2010). Therefore, 
as evidenced in the present work as well, brain functions, high lipid 
profiles (obesity), and diabetes are all related to each other. The liver 
of rats fed a HFD showed an increased enzyme activity of ALT and 
AST as an indication of hepatic injury which was attenuated by biotin 
and Cr supplementation, particularly CrHis. Similar to the results of 
the present work, obese rats compared with normal rats (nonobese) 
were reported to have greater enzyme activities of ALT and AST 
(Kim,	Ahn,	Kim,	&	Jeong,	2016).

An increased level of serum MDA was observed in rats fed HFD, 
but biotin and chromium supplementations to the HFD decreased 
MDA levels. The results suggest that biotin and chromium have sim-
ilar beneficial effects in attenuating oxidative stress caused by feed-
ing a HFD. In accord with the results of the present work, it has been 
known that overproduction of reactive oxygen species (ROS) occurs 
in obesity caused by feeding a HFD (Furukawa et al., 2004; Zhang, 
Dong, Ren, Driscoll, & Culver, 2005), and the resulting oxidative 
damage leads to diabetes and related complications (West, 2000).

Improved parameters observed with Cr supplementation were 
due to the increased serum and tissue Cr concentrations, resulting 
in an improvement of insulin resistance as well as obesity. Elevated 
Cr concentrations of serum and the tissues in rats of the present 
work supplemented with Cr, CrHis in particular, were similar to those 
reported in different animal species with various doses (Anderson, 
Bryden, Polansky, & Richards, 1989; Wang & Xu, 2004; Wang et al., 
2012; Zha, Wang, Xu, & Gu, 2007). Similar to the results from the 
present work, the apparent superiority of CrHis over CrPic was also 
supported by other studies in diabetic rats fed a HFD (Sahin et al., 
2012; Tuzcu et al., 2011).

In conclusion, our results demonstrate that biotin supplemen-
tation alone or with chromium complexes, CrHis at particular, to a 
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HFD pose to be a potential therapeutic feature for the treatment of 
insulin resistance and in the prevention of diabetes and its second-
ary complications.
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