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Increasing evidence indicates that the melanocortin system is not only a central player in
energy homeostasis, food intake and glucose level regulation, but also in the modulation
of cardiovascular functions, such as blood pressure and heart rate. The melanocortins,
and in particular α- and γ-MSH, have been shown to exert their cardiovascular activity
both at the central nervous system level and in the periphery (e.g., in the adrenal
gland), binding their receptors MC3R and MC4R and influencing the activity of the
sympathetic nervous system. In addition, some studies have shown that the activation
of MC3R and MC4R by their endogenous ligands is able to improve the outcome of
cardiovascular diseases, such as myocardial and cerebral ischemia. In this brief review,
we will discuss the current knowledge of how the melanocortin system influences
essential cardiovascular functions, such as blood pressure and heart rate, and its
protective role in ischemic events, with a particular focus on the central regulation of
such mechanisms.
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THE MELANOCORTIN SYSTEM AND CARDIOVASCULAR
FUNCTIONS

The melanocortin system consists of several melanocortin peptides and their receptors
expressed in the brain, as well as in the periphery. In the central nervous system (CNS),
the proopiomelanocortin (POMC) neurons produce several peptides by post-translational
modification, such as adrenocorticotrophin (ACTH), α-,β-, and γ-melanocyte stimulating
hormone (α-MSH, β-MSH, and γ-MSH), and β-endorphin (Smith and Funder, 1988). These
melanocortin peptides bind to five melanocortin receptor subtypes (MC1R-MC5R) with differential
binding affinity (Kim et al., 2002). Among melanocortin peptides, α-MSH is the most well-known
anorexigenic peptide, able to inhibit food intake and increase energy expenditure mainly through
central MC4R activation (Ollmann et al., 1997). Unlike α-MSH, γ-MSH has stronger affinity for
MC3R than MC4R. Among the five MCRs, MC3R, and MC4R are predominantly expressed in
several brain nuclei and play a central role in the regulation of food intake and energy expenditure
(Seeley et al., 1997; Cone, 2005; Sohn et al., 2013a). The activity of POMC neurons is opposed
by Neuropeptide Y/Agouti-related peptide (NPY/AgRP) expressing neurons, which produce the
MC3R and MC4R inverse agonist AgRP (Ollmann et al., 1997).
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In the brain, POMC expressing neurons are predominantly
located in the arcuate nucleus (ARC) of the hypothalamus and
the nucleus tractus solitarius (NTS) of the brainstem (Young
et al., 1998). Neighboring the ARC POMC neurons, NPY/AgRP
expressing neurons are located on the more ventromedial
area of the ARC.

Both ARC and NTS POMC neurons regulate feeding and
energy homeostasis by sensing long-term adiposity signals
and short-term satiety signals respectively (Zhan et al., 2013).
Consistently, mutations of the POMC gene cause hyperphagia
leading to obesity in both mice and humans (Yaswen et al., 1999;
Challis et al., 2004).

In addition to their well-known effects on food intake and
energy homeostasis, the melanocortin system has been reported
to be able to influence multiple cardiovascular functions. In
particular, melanocortin peptides can regulate blood pressure
(BP) and hearth rate (HR) both as circulating hormones via
numerous neurohumoral and renal mechanisms, and centrally by
acting within the CNS and modulating sympathetic nerve activity
(SNA). Finally, melanocortin peptides have been implicated in
influencing the outcome of certain important cardiovascular
diseases, such as myocardial and cerebral ischemia.

In this review we will focus on revising the current knowledge
about the role of melanocortin peptides and receptors in
cardiovascular function, with particular attention to the central
regulatory mechanisms.

EFFECTS OF THE MELANOCORTIN
SYSTEM ON BLOOD PRESSURE AND
HEART RATE

Although systemic α-MSH administration does not affect BP
(Kuo et al., 2004; Ni et al., 2006), numerous studies have shown
that acute intracerebroventricular (ICV) injection of α-MSH can
increase BP via an increase in the SNA (Hill and Dunbar, 2002;
Matsumura et al., 2002) (Figure 1). In conscious rats, acute
ICV administration of α-MSH has been shown to significantly
increase the mean arterial pressure (MAP) and HR for 1 h,
returning to control levels after 2 h from its administration. On
the other hand, chronic ICV infusion of α-MSH was shown
to increase MAP during the dark period (active phase) for
the first 2 days, while significantly decreasing for the following
5 days compared to controls. On the other hand, the HR was
significantly higher compared to controls throughout the whole
monitoring period (9 days), accompanied by reduced physical
activity and food intake (Hill and Dunbar, 2002). The central
effects of α-MSH on BP were shown to be dependent on MC4R,
as they were completely abolished in Mc4r knock out animals (Ni
et al., 2006). Similar to what was observed by ICV administration
of α-MSH, chronic ICV infusion of the MC3/4R agonist MTII
significantly increased MAP during the 14-day experimental
period. Consistently, chronic infusion of the MC3/4R antagonist
SHU-9119 significantly reduced HR and showed a tendency to
decrease MAP (Kuo et al., 2003). Interestingly, in anaesthetized
rats, direct injection of MTII into the paraventricular nucleus
of the hypothalamus (PVN) increased renal SNA and MAP, and

its effects were abolished by AgRP or SHU9119 (both being
MC3/4R antagonists) pretreatment into the PVN (Li et al.,
2013). However, in such studies performed on anaesthetized
rats, the magnitude of MTII effects on MAP was smaller than
that observed in conscious rats (∼4 mmHg vs. ∼10 mmHg
increase), suggesting that a fully functional SNS might be
required for maximum effects of MCR activation on MAP.
Indeed, the increase in BP observed upon chronic activation
of MC4R is completely abolished by α/β-adrenergic receptors
blockade, indicating that such effect is mediated by SNS activity
(Kuo et al., 2004).

The effects of melanocortin receptor activation and inhibition
has been largely investigated in obesity-induced hypertension,
a condition of great clinical relevance since about 85%
of individuals with metabolic syndrome have hypertension
(Franklin, 2006). In obese Zucker rats, antagonism of MC4R
caused significantly greater reduction in BP compared to lean
control animals (do Carmo et al., 2012). In humans, Mc4r loss-
of-function mutations account for about 5% of all early-onset
obesity cases (Yeo et al., 1998; Vaisse et al., 2000). Obese patients
with Mc4r mutations have smaller prevalence of hypertension,
reduced BP and reduced norepinephrine secretion, despite being
severely obese and showing severe metabolic abnormalities,
such as hyperphagia and hyperinsulinemia (Greenfield et al.,
2009; Greenfield, 2011). In these patients presenting Mc4r
haploinsufficiency, administration of the melanocortin agonist
LY2112688 induced significant increase in BP without changes in
insulin levels (Greenfield et al., 2009).

Similar results were observed in lean forms of hypertension.
In spontaneously hypertensive rats (SHR), in which the increased
BP is caused by hyperactivation of SNS, chronic antagonism
of central MC4R caused greater BP reduction than in lean
normotensive rats, in a similar way to what was observed upon
α/β-adrenergic receptors blockade, despite causing hyperphagia
and weight gain (Da Silva et al., 2008). Finally, the MC3/4R
antagonist SHU-9119 was able to significantly decrease BP in
pharmacological-induced hypertension upon chronic infusion of
nitric oxide synthase inhibitor (L-NAME) (Da Silva et al., 2015).
However, the same study also showed that MC4R antagonism
was not effective in lowering BP in angiotensin-II-induced
hypertension, indicating MC3/4R-independent mechanisms in
SNA modulation (Da Silva et al., 2015).

Different to what was observed with α-MSH and MTII
treatments, injection of γ-MSH originated inconsistent results.
Intravenous (IV) or ICV γ-MSH injections raised BP and HR,
whereas its injection specifically in the NTS had opposite effect
(Li et al., 1996; Humphreys et al., 2011). The effects of γ-MSH
in elevating BP were independent of MC3/4R, as demonstrated
by the inability of AgRP or synthetic antagonists, as well as
the lack of MC3R and MC4R to counteract γ-MSH treatment
effects (Li et al., 1996). On the other hand, ICV administration of
benzamil, an amiloride analog, completely blunted γ-MSH effect,
suggesting that the γ-MSH-dependent increase in BP is mediated
by Phe-Met-Arg-Phe-NH2 (FMRFamide) gated ion channels
rather than by MCRs (Ni et al., 2006) (Figure 1). Additionally, it
has also been shown that γ-MSH can exert its effects on regulating
BP peripherally. Indeed, IV γ-MSH infusion lowered MAP in
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FIGURE 1 | The role of the melanocortin system on BP and HR. Leptin from
adipose tissue and insulin from the pancreas induce the production from
hypothalamic POMC neurons of melanocortin peptides, such as α- and
γ-MSH. By binding their receptors, MC4R and FMRFamide gated ion
channels, respectively, these peptides induce the activation of the
sympathetic nervous system, which in turn increases blood pressure (BP) and
heart rate (HR). The same effects are also caused peripherally by γ-MSH via
its binding to receptor MC3R in the kidney.

high sodium diet-fed (HSD) hypertensive animal models (Mayan
et al., 2003; Ni et al., 2003). The ability of γ-MSH in lowering
MAP was more effective in HSD-fed than Dahl salt-resistant
(DSR) rats and was mediated by the natriuretic effect of γ-MSH
via renal MC3R activation rather than by central mechanisms
(Chandramohan et al., 2009) (Figure 1).

In addition to the prominent role of MC4R and MC3R in
regulation of BP and HR from the CNS, other melanocortin
receptors have been shown to affect cardiovascular functions.
In particular MC1R and MC2R can regulate arterial stiffness
(Rinne et al., 2015), atherosclerosis (Rinne et al., 2018) and
vascular smooth muscle cell proliferation (Tang et al., 2018).
However, their effects seem to be autocrine or paracrine rather
than mediated by the CNS.

Even though the role of ACTH in regulating BP has been
known for over 30 years (Whitworth et al., 1983), the exact
mechanisms through which this melanocortin exerts its effect
are not yet fully understood. Early studies observed that
administration of ACTH was able to increase BP in both
normotensive and hypertensive human subjects (Whitworth
et al., 1983). Additionally, pathological conditions characterized
by high levels of circulating ACTH, such as Cushing’s diseases,
have been associated with hypertension (Cicala and Mantero,
2010). Numerous evidence suggest that the ability of ACTH in
raising BP is mediated by the adrenal gland and its secretion of
glucocorticoids and mineralocorticoids hormones, and involves
natriuresis regulation by the kidneys and regulation of vascular
tone (Connell et al., 1987; Woods et al., 1988; Hatakeyama et al.,
2000). However, ACTH was also shown to be able to increase

BP independently of increase in glucocorticoids, enhancing the
effects of norepinephrine and angiotensin II (Woods et al., 1988).

Finally, early observations pointed at the correlation of
increased plasma levels of another melanocortin, β-endorphin,
and hypertension (Guasti et al., 1996). Following studies showed
that administration of β-endorphin decreased BP and affected the
hormonal profile of both healthy normotensive and hypertensive
individuals, via opioid receptors (Cozzolino et al., 2005), similarly
to what previously observed in rats (Sitsen et al., 1982).

BRAIN NUCLEI INVOLVED IN
MELANOCORTIN-MEDIATED
CARDIOVASCULAR REGULATION

Both MC3R and MC4R are broadly expressed in the CNS
(Mountjoy, 2010). Even though most of the studies used
IV or ICV administration of pharmacological melanocortin
receptor agonists and antagonists, few studies unraveled the
specific brain regions involved in regulating BP and HR via
melanocortin receptors. Among the others, the paraventricular
nucleus of the hypothalamus (PVN) is of central importance
in regulating numerous MC4R-dependent metabolic functions
such as food intake and thermogenesis (Fan et al., 1997;
Huszar et al., 1997). Additionally, direct administration of the
MC4R agonist MTII into the PVN was able to significantly
increase MAP and HR by modulating the renal SNS outflow
(Li et al., 2013). Similar effect of MC4R activation could also be
observed in hyperinsulinemia-induced hypertension (Ward et al.,
2011). Within the hypothalamus, the dorsomedial hypothalamus
(DMH) was also shown to be involved in the increase in BP
caused by higher leptin levels in diet-induced obesity, possibly via
MC4R (Simonds et al., 2014). Tachycardia was also induced by
α-MSH injection in the intermediolateral medulla (Iwasa et al.,
2013), as well as by MTII administration in the parabrachial
nucleus and rostral ventrolateral medulla, indicating that such
functions are not limited to hypothalamic nuclei (Skibicka
and Grill, 2009). Interestingly, α-MSH and MTII injection in
the NTS caused bradycardia, opposite to what was observed
for other nuclei, indicating that the effects on cardiovascular
functions of MC4R activation in the CNS is not uniform
(Tai et al., 2007). Finally, within the brain stem, cholinergic
neurons of the DMV are inhibited by MC4R activation leading
to decreased parasympathetic activity, whereas, in the spinal
cord, IML cholinergic neurons are activated via MC4R inducing
increased sympathetic activity. Thus, re-expression of MC4R in
cholinergic neurons of MC4R knockout mice led to obesity-
induced hypertension (Sohn et al., 2013b).

THE MELANOCORTIN SYSTEM FOR
CARDIOVASCULAR PROTECTION

In addition to their role in regulating HR and BP, numerous
studies have shown that melanocortins, mostly via MC3R and
MC4R, exert important cardiovascular protective functions.
Their protective role has been particularly well characterized in
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animal models of cardiac and cerebral ischemia, respectively,
the first and second main causes of death globally (World
Health Organization, 2019). In particular, following myocardial
ischemia and the consequent cardiac reperfusion, which are
events characterized by high lethality due to the induction of
arrhythmia (Manning and Hearse, 1984), IV administration of
α-MSH and γ-MSH were able to significantly prevent ventricular
tachycardia and ventricular fibrillation (Bazzani et al., 2001;
Guarini et al., 2002). γ-MSH was also able to completely prevent
the MAP fall normally observed following coronary reperfusion.
Such effects were still observed when MC4R was antagonized, but
not with concomitant treatment of MC3R antagonist, indicating
that they are mediated by MC3R rather than MC4R (Guarini
et al., 2002). Interestingly, whereas early studies suggested
that the protective effects of melanocortins might be due to
inhibition of overproduction of reactive oxygen species (Bazzani
et al., 2001) and reduction of inflammation (Wikberg, 1999)
at the ischemic site, following data have indicated that this
improved outcome was, at least partially, mediated by the CNS
(Bazzani et al., 2002). Indeed, ICV administration of ACTH upon
induced myocardial ischemia and reperfusion in rats was able
to reduce the incidence of ventricular tachycardia, ventricular
fibrillation and lethality, and prevent the fall in MAP at a dose
10 times lower than when administrated IV (Bazzani et al.,
2002). Similarly, ICV infusion of the MC4R agonist MTII in rats
following myocardial ischemia improved cardiac structure and
function, and attenuated the fall in HR. The same effects were
observed following ICV leptin infusion, but not in absence of
MC4R, indicating that these effects are mediated by the leptin-
melanocortin axis (Gava et al., 2021).

Cerebral ischemia is a life-threatening event in which the
occlusion of a blood vessel by a blood clot leads to irreversible
neurological damage. Currently the main way to treat this
consists of the administration of thrombolytic agents within up to
3 h from the occurrence, posing risk of cerebral hemorrhage and
with limited benefit (Powers et al., 2019). Remarkably, α-MSH
analog systemic chronic treatment was able to improve the
outcome of transient cerebral ischemia in gerbils and rats by
reducing tissue damage and neuronal loss, and by improving
functional recovery. This was seen particularly within the
hippocampus, a region involved in spatial learning and memory,
that is also particularly sensitive to ischemia-induced cell death
(Giuliani et al., 2006, 2007). Such beneficial effects were prevented
by pre-treatment with MC4R antagonist, indicating that they
are MC4R-mediated (Giuliani et al., 2006, 2007). Interestingly,
in addition to the antiapoptotic effects of MC4R activation,
treatment with α-MSH analog enhanced learning in ischemic
gerbils compared to non-ischemic controls (Giuliani et al., 2006).
This was possibly due to an increase in neurite sprouting and
functional recovery from nerve injury, which improves neuronal
plasticity and reliance on the undamaged hemisphere, which are
typical processes of stoke recovery (Pekna et al., 2012).

Treatment with high dose of ACTH has also been reported
to have life-saving effects in improving cardiovascular function
following aortic dissection (Noera et al., 2001), an uncommon
but mostly fatal condition in which a tear in the inner layer of
the aorta causes its separation from the outer layer, often causing
its rupture. Following studies in rats showed that this seems to

be not mediated by the adrenal gland, but rather mediated by
the descending vagal pathway following central MC4R activation
(Guarini et al., 2004).

The remarkable effects of the melanocortin system in
regulating cardiovascular function, however, have been long
standing obstacle to the use of melanocortin system-modulating
compounds for the treatment of other conditions such as
obesity, without affecting HR and BP. Recently, the MC4R
agonist Setmelanotide has been approved by the Food and
Drug Administration for the treatment of obesity. Interestingly,
patients receiving Setmelanotide did not show any change in
cardiovascular function, HR and BP (Chen et al., 2015; Kühnen
et al., 2016; Clément et al., 2018).

MC4R-MEDIATED LEPTIN AND INSULIN
EFFECTS ON CARDIOVASCULAR
SYSTEM

Leptin is an anorexigenic hormone produced by adipocytes
(Zhang et al., 1994; Frederich et al., 1995). Circulating leptin
conveys information of the body energy status to the brain,
enabling it to maintain the normal energy balance by acting on
leptin receptors (ObRa-ObRf). Deficiency of leptin and leptin
receptors leads to a morbid obese phenotype in both rodents
and humans (Halaas et al., 1995; Chen et al., 1996; Montague
et al., 1997; Clément et al., 1998). Interestingly, obese individuals
with leptin gene mutations and thus, lower leptin levels, do
not show the typical hypertension shown by individuals with
the metabolic syndrome, but rather show hypotension (Mark
et al., 1999; Ozata et al., 1999). In support of leptin’s role in
regulating BP, chronic leptin infusion in lean rats induces an
increase in BP (Carlyle et al., 2002) and an increase SNS activity
(Kalil and Haynes, 2012). However, in diet-induced obesity
characterized by leptin resistance, mice do display hypertension,
which was shown to be blunted by antagonism of ObR in a
selective area of the hypothalamus, the dorsomedial nucleus,
thus suggesting that this area is spared from leptin resistance
(Simonds et al., 2014). In addition, through its receptors,
leptin also requires a functional central melanocortin system,
including POMC neurons and MC4R, for its effects on renal
SNA and BP regulation (Tallam et al., 2005, 2006; da Silva
et al., 2014; Samuelsson et al., 2016). Deletion of ObRs in
POMC neurons abolished both the anorexigenic and the BP
lowering effects of leptin (Do Carmo et al., 2011), and leptin-
driven enhancement in renal SNA was abolished in MC4R
deficient mice (Rahmouni et al., 2003). Consistently, leptin-
induced increase in MAP and HR was completely blocked
by chronic ICV infusion of MC3/4R antagonist SHU-9119 in
rats (Da Silva et al., 2004). Thus, leptin’s ability to increase
BP via SNS activity is mediated by increased POMC neuronal
activity and MC4R activation (Da Silva et al., 2013) (Figure 1).
Finally, in addition to the hypothalamic arcuate and the
dorsomedial nuclei, in obese rabbits, leptin has been shown to
regulate the cardiovascular function by acting directly on the
ventromedial nucleus of the hypothalamus (VMH), as intra-
VMH injections of a leptin receptor antagonist or a MC3/4R
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antagonist, decreases MAP, heart rate, and RSNA compared to
vehicle injected HFD rabbits (Lim et al., 2016).

Insulin, upon release from the pancreas, does not only regulate
glucose homeostasis by promoting glucose absorption, but also
exerts important effects on energy balance and food intake
through the insulin receptors in the ARC (Bruning et al., 2000;
Obici et al., 2002). Such CNS effects of insulin on food intake
are mediated by the melanocortin system, as indicated by their
reduction upon ICV administration of MC4R antagonist (Benoit
et al., 2002). Additionally, insulin is known to have significant
effects on BP regulation by increasing renal sodium reabsorption,
inducing renal SNA, altering transmembrane ion transport, and
inducing hypertrophy of blood vessels (Salvetti et al., 1993).
Consistently, similar to what was observed with leptin, ICV
administration of insulin raises BP by increasing SNA to the
kidney (Muntzel et al., 1995; Huang et al., 1998). There is much
evidence to indicate that insulin’s effect in increasing BP is
mediated by the melanocortin system. Indeed, obese patients
with Mc4r mutations present attenuated insulin-mediated SNA
(Greenfield, 2011), and the increase in renal SNA observed upon
ICV insulin administration in mice was completely abolished in
Mc4r knockout mice, indicating that this effect is mediated by
MC4R (Rahmouni et al., 2003).

CONCLUSION

The melanocortin system is a powerful regulator of
cardiovascular function within the CNS. Additionally, by being
one of the main central players in modulating metabolic
functions such as food intake and energy expenditure, and
the subsequent development of obesity, it offers an important
link between metabolic and cardiovascular diseases, two of the
leading causes of mortality, morbidity and long term disability

worldwide (James et al., 2018). Multiple studies reviewed here
have highlighted how the central melanocortin system, and in
particular the antagonism of the MC3R and MC4R receptors,
are able to significantly decrease elevated BP and HR in both
lean and obese forms of hypertension. Consistently, clinical
observation of obese Mc4r haploinsufficient patients showed that
MC4R loss-of-function causes a significantly lower prevalence
of hypertension. Additionally, the melanocortin system is an
important mediator of the leptin- and insulin-induced forms
of hypertension. Of great clinical importance is also the role
of MC3R activation in preventing ventricular tachycardia and
fibrillation in myocardial ischemia, as well as MC4R agonism
for the treatment and recovery from cerebral ischemia. Thus, the
central melanocortin system appears as a pivotal pharmacological
target for the treatment of a broad range of cardiovascular
diseases, and a better understanding of how its components
influence and regulate cardiovascular functions is of central
importance for relieving the socioeconomic burden of such
pathological conditions.
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