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Abstract

Background: The [3-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial
resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a
computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of
classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational
methods only address Molecular Classification and the performance of these existing methods is unsatisfactory.

Results: We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning
approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of
BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for
each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation
and independent test sets, CCN-BLPred performed better than the other existing algorithms.

Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture
with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the
10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic
BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an
average of 25.64%. The independent test results followed a similar trend.

Conclusions: We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a
classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method
such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique
(SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.
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Background

B-lactamases family

[-lactam antibiotics are an important class of drugs that
are used to treat various pathogenic bacteria to treat
bacterial infections. However, over the course of time,
bacteria naturally develop resistance against antibiotics.
Antibiotic resistance continues to threaten our ability to
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cope with the pace of development of new antibiotic
drugs [1].

One of the major bacterial enzymes that hinders the
effort to produce new antibiotic drugs of the [B-lactam
family is the B-lactamase (BL) enzyme. The BL enzyme
family has a chemically diverse set of substrates. BL de-
velops resistance to penicillin and related antibiotics by
hydrolyzing their conserved 4-atom [-lactam moiety,
thus destroying their antibiotic activity [2]. B-lactam an-
tibiotics effectively inhibit bacterial transpeptidases,
hence, they are also referred to as penicillin binding
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proteins (PBP). Bacteria have evolved BL enzymes to de-
fend themselves against B-lactam antibiotics. This trans-
formation causes the BL enzyme family to have varying
degrees of antibiotic resistance activity. Once a BL en-
zyme is identified, it can be inhibited by a drug known
as clavulanic acid. Clavulanic acid is a naturally pro-
duced BL inhibitor discovered in 1976, and when com-
bined with pB-lactams, it prevents hydrolysis of the
Beta-Lactams. Pathogens develop resistance by modify-
ing or replacing the target proteins and acquiring new
BLs. This results in an increasing number of BLs, BL
variants, and a widening gap between newly discovered
BL protein sequences and their annotations.

The current classification schemes for BL enzymes are
molecular classification and functional grouping. The
molecular classes are A, B, C, and D. Class A, C, and D
act by serine-based mechanism, while Class B requires
zinc as a precursor for activation. Bush et al. originally
proposed three functional groups in 1995: Group 1,
Group 2 and Group 3. More recently [3], the functional
grouping scheme has been updated to correlate them
with their phenotype in clinical isolates. The updated
classification Group 1 (Cephalosporinases) contains mo-
lecular Class C which is not inhibited by clavulanic acid
and contains a subgroup called le. Group 2 (Serine BLs)
contains molecular Classes A and D, which are inhibited
by clavulanic acid and contain subgroups 2a, 2b, 2be,
2br, 2ber, 2c, 2ce, 2d, 2de, 2df, 2e, and 2 f. Group 3
(Metallo-b-lactamases [MBLs]) contains molecular Class
B, which is not inhibited by clavulanic acid and contains
subclasses B1, B2, and B3 and subgroups 3a, 3b and 3c.
A simple Venn diagram showing the relationship between
molecular class and functional groups is shown in Fig. 1.

Numerous studies have been performed to categorize
all the classes of BL and their associated variants, along
with their epidemiology and resistance pattern informa-
tion [4—6]. One of these resources is the P-Lactamase
Database (BLAD) [5], which contains BL sequences
linked with structural data, phenotypic data, and

Functional group  ClassB/ Molecular Class

Group 2 Group 3
Class c) Class A
Group 1 Class D

Fig. 1 Venn diagram showing the relationship between molecular
class and Functional group of Beta Lactamase
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literature references to experimental studies. BLAD con-
tains more than 1154 BL enzymes identified as of July
2015 [7], which are classified into 4 classes [A, B, C and
D] based on sequence similarity [8]. Similarly, these pro-
teins have also been divided into classes based on func-
tional characteristics [9]. BL belonging to classes A, C,
and D have similar folds and a mechanism that involves
a catalytic serine residue whereas class B of BL has a
distinct fold [7]. It is possible to detect the presence of BL
enzymes by conducting various biological experiments;
however, it is both time-consuming and costly. Hence, the
development of computational methods to predict the
identification and classification of BLs is a strong alterna-
tive approach to aid in the annotation of BL.

Few computational studies have been conducted in
order to predict the BL proteins classes. Srivastava et al.
proposed a fingerprint (unique family specific motif)
based method to predict the family of BLs [10]. As this
method relies on extracting motifs in the sequences,
there is inherent limitations when looking specifically
for conserved motifs. Subsequently, Kumar et al
proposed a support vector machine based approach for
prediction of BL classes [11]. This method uses Chou’s
pseudo-amino acid composition [12] and is a two-level
BL prediction method. The first level predicts whether
or not a given sequence is a BL and if so, the second
level classifies the BL into different classes. This method
identifies BL with sufficient accuracy, but underperforms
in classification accuracy.

Feature extraction

We recently developed a comprehensive Feature
Extraction from Protein Sequences (FEPS) web server
[13]. FEPS uses published feature extraction methods of
proteins from single or multiple-FASTA formatted files. In
addition, FEPS also provides users the ability to redefine
some of the features by choosing one of the 544 physico-
chemical properties or to enter any user-defined amino
acid indices, thereby increasing feature choices. The FEPS
server includes 48 published feature extraction methods,
six of which can use any of the 544 physicochemical prop-
erties. The total number of features calculated by FEPS is
2765, which exceeds the number of features computed by
any other peer application. This exhaustive list of feature
extraction methods enables us to develop machine learn-
ing based approaches for various classification problems
in bioinformatics. FEPS has been successfully applied for
the prediction and classification of nuclear receptors [13],
prediction of phosphorylation sites [14], and prediction of
hydroxylation sites [15].

Convolutional neural network (CNN)
To improve identification and classification of BL en-

zymes, we implemented a Convolutional Neural
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Network (CNN) based two-level approach called CNN-
BLPred. CNN is a specific type of deep neural network
that uses a translation-invariant convolution kernel that
can be used to extract local contextual features and has
proven to be quite successful in various domains [16] in-
cluding but not limited to computer vision and image
classification, spam topic categorization, sentiment ana-
lysis, spam detection, and others [17]. The basic struc-
ture of CNNs consists of convolution layers, nonlinear
layers, and pooling layers. Recently, CNN has been ap-
plied to several bioinformatics problems [18].

Moreover, there exist various balancing techniques like
Synthetic Minority Oversampling Technique (SMOTE)
[19], random oversampling (ROS), and random under-
sampling (RUS) to balance the dataset when the number
of positive and negative examples is not balanced. It has
also been observed in several studies that a balanced
dataset provides an improvement in the overall perform-
ance for classifiers. In the field of bioinformatics, Wei
and Dunbrack [19] studied the effect of unbalanced data
and found that balanced training data results in the
highest balanced performance.

Methods

Beta lactamase family classification

Since BL have two types of classification, molecular clas-
ses and functional groups, we designed an algorithm to
identify both types of classification. To our knowledge,
this is the first computational work dealing with the
classification of BL into functional groups.

Benchmark dataset 1: Molecular class/functional group
BL have been classified into four molecular classes: Class
A, Class B, Class C, and Class D. BL have also been clas-
sified into three functional groups: 1, 2, and 3.

We used one training dataset for cross-validation and
two independent datasets for our testing purposes.

For the first benchmark dataset, the positive BL en-
zyme sequences were obtained from the NCBI website
by using ‘Beta-Lactamase’ as a keyword search term to
obtain BL enzyme sequences. In total 1,022,470 se-
quences were retrieved (as of Feb 2017) and sequences
that contained keyword ‘partial’ in the sequence header
were removed. Then, the sequences were split into mo-
lecular classes using keywords ‘Class A, Class B, Class C,
and Class D’. This resulted in 11,987, 120,465, 12,350,
and 4583 sequences for Class A, Class B, Class C, and
Class D respectively (Table 1). This is summarized in
Table 1. For the non-BL enzyme sequences, the same se-
quences used in PredLactamase [11] were used. These
sequences were used as a negative set for our general
(Level 1) BL classifier.

Redundant sequences from each class were removed
using CD-HIT (40%) [20]. This resulted in 278 Class A,
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Table 1 Molecular Class/Functional Group Benchmark Dataset

# Class/Group # of Sequences Before /After CD-hit
1 Class A 11,987/278

2 Class B/Group 3 120,465/2184

3 Class C/Group 1 12,350/744

4 Class D 4853/62

5 Group 2 16,840/340

6 Non BL 497

2184 Class B (Group 3), 744 Class C (Group 1), and 62
Class D sequences. The 340 Group 2 sequences were de-
rived by combining Class A and D sequences. From
these sequences, 95% were used for training and the
remaining 5% of the dataset was left out for independent
testing (Table 2).

Independent datasets

An independent dataset is required to assess the blind
performance of the method. Our experiment incorpo-
rated two independent datasets. The number of se-
quences in the Independent Dataset 1 (Additional file 1)
is shown in Table 2 (created with the remaining 5% of
the left out dataset) and we used the independent data-
set from PredLactamase [11] as our Independent Dataset
2 (Additional file 2). Using Additional file 2: Independ-
ent Dataset 2 allows us to compare our method to the
previously published PredLactamase method.

As discussed earlier, our method consists of two steps:
identification and classification. The identification step
uses the Level 1 predictor and will determine whether a
protein is a BL or not. If the protein is not predicted as
a BL enzyme during the identification step, the process
will stop; otherwise the protein is passed to the next
step, which is classification step. During classification,
predictors for Classes A and B (aka Group 3), C (aka
Group 1), D, and Group 2 are used. This step returns
predictions and probabilities for each predictor and we
take the prediction with the highest probability for each
classification scheme (molecular and functional). Our
method returns multiple predictions in the instance of
multiple predictors returning the same maximum prob-
abilities. The schematic of the one-vs.-rest classification
is depicted in Fig. 2. a set of binary classifiers using a

Table 2 Molecular Class/Functional Group Datasets

# Class/Group Training Independent 1 Independent 2
1 Class A 268 10 4
2 Class B/Group 3 2069 115 6
3 Class C/Group 1 701 43 6
4 Class D 59 3 4
5 Group 2 318 22 8
6 Non BL 478 19 -
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Fig. 2 Schematic of our multi-class classification approach for Beta Lactamase
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one-vs.-rest strategy, and each resulting molecular class
dataset includes data from the other three classes as a
negative set. For example, Class A has 278 positive
examples and 2990 (total of classes B, C and D) negative
examples. Our Group 2 predictor has 318 positive exam-
ples and 2770 (total of groups 1 and 2) as negative ex-

amples. Our Level 1 predictor has 3268 (total BL
sequences) positive examples and 497 negative
examples.

Balanced training data set

Due to the different number of positive and negative
training examples (BL enzymes as well as respective BL
enzymes belonging to each class), we must resolve class
imbalance before moving to classifier training. We bal-
anced our resulting dataset to obtain the optimal accur-
acy. Some of the techniques that we used to solve this
imbalanced dataset problem are random undersampling
(RUS), random oversampling (ROS), and Synthetic
Minority Oversampling Technique SMOTE [21]. RUS is
the procedure of randomly eliminating examples from
the majority class until the number of examples matches
that of the minority class. RUS does not suffer from the
problem of overfitting but can suffer from the loss of po-
tentially useful data. ROS is the opposite of RUS in that
it randomly replicates examples of the minority class
until it matches that of the majority class. Using ROS,

we will not lose potentially useful data; however, the act
of randomly replicating data can cause a model to fit too
closely to the training data and subsequently overfit.
SMOTE is a variation of ROS that solves the overfitting
problem by creating synthetic instances instead of mak-
ing random copies. This method is also useful in that it
can extract more information from data that is very
helpful when our dataset is small.

For the molecular classes, we utilize ROS for Level 1,
Class A, Class C/Group 1 and Group 2 so that we do not
discard any potentially useful data. Because we have a sig-
nificant number of examples of the majority class, we use
RUS for Class B/Group 3 to reduce the potential of over-
fitting. The dataset for Class D is small, so we use SMOTE
to maximize the data practicality. The resulting Dataset is
shown in Table 3 and is used for training the model.

Table 3 Molecular Class/Functional Group Benchmark Dataset
after Balancing

# Class Method Positive Negative
1 Level 1 ROS 3268 3268
2 Class A ROS 2990 2990
3 Class B/Group 3 RUS 1084 1084
4 Class C/Group 1 ROS 2524 2524
5 Class D SMOTE 3200 3200
6 Group 2 ROS 2770 2770
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Protein sequence features

Machine learning algorithms, like CNN, work on vectors
of numerical values. To classify protein sequences using
CNN, we transformed the protein sequences into vectors
of numerical values using FEPS. The features we used in
our study were: k-Spaced Amino Acid Pairs (CKSAAP),
Conjoint Triad (CT), and Tri-peptide Amino Acid
Composition (TAAC). CNNs have superior predictive
power and are well-equipped to learn “simple” features,
however they have limited capabilities for data of mixed
types (complex features). Also, feature embedding is typ-
ically implemented on continuous vector space with low
dimensions. To alleviate these issues, we only evaluate
features that contain whole numbers, i.e. CKSAAP, CT,
and TAAC. The total number of features considered in
the study was 10,912 (Table 4). We describe the features
used in this study below.

Tri-peptide amino acid composition (TAAC)

Tri-peptide Amino-Acid Composition (3-mer spectrum)
of a sequence represents the frequency of three contigu-
ous amino acids in a protein sequence. In other words,
TAAC is the total count of each possible 3-mer of amino
acids in the protein sequence. TAAC is defined as below
where N is length of the sequence.

_ # of tripeptide j y

100 1
N2 (1)

fi

where tripeptide ; represents any possible tripeptide. The
total number of 3-mers is 20% = 8000, i = 1,2,3, ...8000.

Conjoint triad
Conjoint triad descriptors (CT) were first described by
Shen et al. [22] to predict protein-protein interactions.
The conjoint triad descriptors represent the features of
protein pairs based on the classification of amino acids.
In CTD the properties of one amino acid and its vicinal
amino acids and regards any three continuous amino
acids as a unit.

To calculate the conjoint triad, originally the amino
acids are clustered into seven classes based on their di-
pole and the volume of the side chain. The newer
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Conjoint Triad Feature (CTF2) proposed by Yin and
Tan [23] includes the dummy amino acid that is used to
ensure the identical of the window size of the amino
acid sequence. Therefore, the dummy amino acid gets
assigned an extra class, which is noted as O. The whole
21 amino acids are thus classified into eight classes: {A,
G VLI{LL EPL{Y, M, T, S}, {H, N, Q, W}, {R, K}, {D,
E}, {C}, {O}. The rest of the encoding method is the
same as the CT encoding [22]. The amino acids in the
same group are likely to substitute one another because of
the physiochemical similarity. One class is added to ac-
count for possible ‘dummy’ amino acids that are placed
into a sequence. We will refer to this newer Conjoint
Triad features as CT in the rest of the paper. For CT, the
amino acids are catalogued into eight classes; hence the
size of the feature vector for CT is 8x8x8 = 512.

K-spaced amino-acid pairs (CKSAAP)

k-spaced amino-acid pairs features were originally devel-
oped by Chen et al. [24]. Essentially, for a given protein
sequence all the adjacent pairs of Amino Acids (AAs)
(dipeptides) in the sequence are counted. Since there are
400 possible AA pairs (AA, AC, AD, .., YY), a feature
vector of that size is used to represent occurrence of
these pairs in the window. In order to accommodate for
the short-range interactions between AAs, rather than
only interactions between immediately adjacent AAs,
CKSAAP also considers k-spaced pairs of AAs, i.e. pairs
that are separated by k other AAs. For our purpose we
use k=0, 1... 5, where for k=0 the pairs reduce to di-
peptides. For each value of k, there are 400 correspond-
ing features. In total we have 2400 features for CKSAAP.
The feature type and number of features in each type is
summarized in Table 4. As discussed in the results sec-
tion, we obtain best results using CKSAAP as the only
type of feature. Hence, in CNN-BLPred we represent
each protein sequence using CKSAAP only.

Feature importance and feature selection

Feature importance for our purpose refers to determin-
ing the correlation between individual features in our
feature set and the class labels. Highly correlated fea-
tures are very important to our problem and features
with low to no correlation are deemed unimportant to

Table 4 Feature set and Feature Selection Results. CSKAAP [22] refers to the K-spaced amino acid Pairs, CT [20] refers to Conjoint

Triad and TAAC is the Tri-peptide Amino acid composition

Feature Set Total Features

Molecular Class / Functional Group — Total Features after Feature Selection

Level 1 Class A Class B / Group 3 Class C/ Group 1 Class D Group 2
CKSAAP [22] 2400 367 270 240 230 197 266
CT [20] 512 208 151 149 145 147 160
TAAC 8000 325 227 262 249 120 219
ALL 10912 363 288 243 257 195 270
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our problem. There are generally three method types to
determine such importance. The first set of methods is
linear methods, such as Lasso. These are easy to imple-
ment and scale readily to large dataset. However, as their
name implies, linear methods are only able to determine
linear correlations between features and provide no
insight into non-linear correlations. The next set of
methods is kernel methods, such as HSIC Lasso, which
are able to determine non-linear correlations. These
methods, however, do not scale well to large datasets
and will quickly become intractable as the dataset grows.
The last method, which is what we have chosen is called
tree based methods, such as Gradient Boosted Trees,
solves the issues of both previous methods by allowing
us to detect non-linear correlations in a scalable way.

Once the features are extracted, we remove the unim-
portant features from our dataset to improve the overall
quality of our model. We use XGBOOST in Python to
construct the gradient boosted trees [25]. Since our fea-
ture selection method is a tree based method, the feature
importance is calculated based on a common metric
known as impurity. Impurity is generally used to de-
scribe the ability of the feature to cleanly split the input
data into the correct class. The equation used in our
method is Gini Impurity that is denoted as:

G= Z’;Z;Pi(l—l”i) (2)

Where n. is the number class and p; is the probability
value of i. Each node in the gradient boosted trees is
given a Gini impurity index and this is used to calculate
what is called the Gini Importance measure which is cal-
culated as:

1= Gparent - Gsplitl - GsplitZ (3)

Any feature with a relative importance value of <0.001
is considered unimportant. Based on this, we were able
to classify ~97.5% of the total features (for the combin-
ation of all the features) as unimportant and subse-
quently remove them. Table 4 shows the remaining
features after calculating the feature importance and per-
forming feature selection.

Convolutional neural network (CNN)

For our CNN, we input a training data set and a corre-
sponding label set (BL or not, class, etc.) and proceeded
with the following steps. First, we used the schemes de-
scribed in earlier section to construct features for each
proteins. For each protein, there are 10,912 features.
Next, we described the chosen architecture of the CNN
for our purpose. The schematic of the architecture is
shown in Fig. 3. The first layer of our network is the
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Fig. 3 Convolutional Neural Network (CNN) architecture used in
our approach

input layer. Our benchmark dataset, which includes the
selected features in Table 4, is fed into the input layer of
the network which used a stochastic optimization
method called Adam (Adaptive Moment Estimation),
categorical cross entropy as the loss function, and a
learning rate of 0.001.

The next layer of our network is the embedding layer
[26]. This layer is used to identify semantic similarities
between features. Typically, embedding is implemented
on a space with one dimension per word or a continu-
ous vector space with low dimensions. The input dimen-
sions of this layer are the length of the feature vector
space and the output of 128 embeddings that will be
passed into the next layer.

The third layer of our network is the convolutional
layer, which functions as a motif scanner. CNN-BLPred
uses 256 convolutional filters, each scanning the input
sequence with a step size of 1 and window size of 4. The
output of each neuron on a convolutional layer is the
convolution of the kernel matrix and the part of the
input within the neuron’s window size. We used tanh
activations along with L2-Regularization.

The fourth layer is the max-pooling layer. Since con-
volution output can vary in length, we performed max
pooling to extract 2x2 (i.e. the kernel size) feature
maps of the maximum activations of each filter. The
max-pooling layer only outputs the maximum value of
its respective convolutional layer outputs. The
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function of this max-pooling process can be thought
of as determining whether the motif modelled by the
respective convolutional layer exists in the input se-
quence or not.

The dropout layer [10] is then used to randomly mask
portions of its output to avoid overfitting. This is
achieved by eliminating a random fraction of p (the
probability that an element is dropped) hidden neurons
while multiplying the remaining neurons by 1/p. For our
implementation p was set to 0.5.

The final output layer consists of two neurons corre-
sponding to the two classification results with softmax
activation. The two neurons are fully connected to the
previous layer. The deep learning CNN architecture was
implemented using Tensorflow [27] and TF.learn [28].

Model validation

The goal of the model validation is to assess the models
thoroughly for prediction accuracy. In this study two
evaluation strategies were adopted: 10-fold cross valid-
ation and independent test samples.

10- fold cross validation

10-fold cross validation is a model validation technique
to assess how the results of a model will be generalized
to an independent data set. In 10-fold cross validation,
the data is first partitioned into 10 equal segments (or
folds). Then, 10 iterations of training and validation are
performed where in each iteration, 9 folds are used for
training and a different fold of data is held out for valid-
ation. The benchmark dataset is used for this purpose.

Page 227 of 259

Independent test samples

An independent test sample is a set of data that is inde-
pendent of the data used in training the model. In
addition to the k-fold cross-validation, independent test
samples with known BL were used to evaluate the classi-
fication model as well. Independent Datasets 1 and 2
(Additional files 1 and 2) were used for this purpose.

Overfitting

One problem with using deep learning models is that they
are prone to overfitting. Overfitting occurs when a model
fits too well to the training data and is unable to generalize
well. In this research, we incorporated several techniques to
combat this problem. First, we used a simple convolutional
neural network architecture with only one convolutional
layer. This lowers the complexity of our model by minimiz-
ing the possible training parameters, giving our model
fewer opportunities to overfit. Next, we employed sampling,
feature selection, and embedding techniques to augment
our data set. Then, we used L2 regularization and dropout
with the probability 0.5. Also, our model was tuned using
10-fold cross validation during training to determine how
well our model performed at predicting independent sam-
ples. Lastly, our method performs very well when evaluat-
ing our independent dataset; this further demonstrates that
our model is not overfitting. Additional file 3: Figures S1-S6
show the validation loss curves for each classifier.

Evaluation metrics
As discussed earlier, the BL classification is presented as
a 2-level predictor. In the first level given a protein se-
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Fig. 4 Top 10 Features from CKSAAP (k-spaced Amino Acid Pairs). The features and their relative importance after feature selection for Level 1 and
Classes A, B, C and D using XGBOOST
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Table 5 Performance of CKSAAP, TAAC, CT and ALL for Level 1

using 10-Fold CV (ALL refers to CKSAAP + CT + TAAQ)

Methods Level 1

AUC Sen (%) Sp (%) MCC
CKSAAP 1.00 99.90 95.73 0.96
cT 0.98 98.30 93.81 0.92
TAAC 0.98 97.27 92.29 0.89
ALL 1.00 99.77 96.47 0.96

quence, we predict whether that sequence is a BL or not
and in the next level we predict to which class the BL
belongs. The novelty of the approach is that we have im-
plemented both the molecular classes and the functional
groups. As both molecular class and functional groups
contain more than two classes, CNN-BLPred uses the
one-vs.-rest strategy to solve this multi-class classifica-
tion problem. By doing so, the CNN-BLPred assigns for
each class either positive or negative to the test se-
quence, giving rise to four frequencies: true positive
(TP), false positive (FP), true negative (TN), and false
negative (FN).

The above four frequencies are then used to calculate
various evaluation metrics. The metrics include accur-
acy, sensitivity, specificity, and Matthew’s correlation co-
efficient (MCC) and are defined below.

TP + TN
A - 100 4
Ay = Tp TN + EP + EN (%)
TP
itivity = — % 100 5
Sensitivity TP+ EN X (5)
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TN

(TP)(TN)-(EP)(EN)
V(TP + FP)(TP + EN)(IN + FP)(IN + EN)
(7)

The area under the ROC (Receiver Operating Charac-
teristic) curve (AUC) is also used as one of the metrics.
We also compared our CNN-BLPred method with the
existing PredLactamase [11]. The results of cross-
validation were adopted from the PredLactamase paper
and the results for the independent datasets were ob-
tained using their web-server [11].

MCC =

Results

Feature importance and feature selection

As discussed in the methods section, feature importance
is calculated based on a relative importance measure
created by constructing gradient boosted trees. Any fea-
ture with a relative importance value of <0.001 is consid-
ered unimportant. Based upon this value, we were able
to classify ~97.5% of the total features as unimportant
and subsequently remove them. Figure 4 shows the top
10 features calculated from our classification models.
Upon further analysis, we observed that features related
to the Histidine (H) residue were heavily represented
among the top features, which agrees with a previously
published study [29]. This study reported a signalling
system in which membrane-associated histidine kinase
directly binds p-lactams, triggering the expression of a
B-lactamase and resistance to B-lactam antibiotics. It is
also interesting to note that features like WY, WXXXW,
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Fig. 5 ROC Curve for 10-fold cross validation (CKSAAP). All curves follow closely to the left and top border, with AUC above 90%, indicating the
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WXXG, WXV, WF and others were deemed important
for Class D PB-lactamase. This is in agreement with the
observation that tryptophan plays a critical role for the
activity and stability of class D B-lactamase [25].

Performance of the individual feature type

In order to find the best combination of feature types,
we compared the performance of individual features (i.e.
CKSAAP, CT and TAAC) with the performance of the
combination of all features (CKSAAP + CT + TAAC),
which is represented in Table 5 as ALL. The perform-
ance of 10-fold cross validation for each of the features
is shown in Table 5 for Level 1 prediction. A similar
trend was observed for other class predictions. The per-
formance of 10-fold cross validation and Independent
Datasets 1 and 2 (Additional files 1 and 2) for other clas-
ses is shown in Additional file 3: Tables S4a-e. It can be
observed from Table 5 that CKSAAP and the collective
set have the best performance for 10-fold cross valid-
ation. CKSAAP also outperformed all other features for
the independent test as indicated in Additional file 3:
Tables S4a-e. The ROC curves for each of the features
are shown in Fig. 5. From this evaluation, we determined

Table 6 Performance of CKSAAP using 10-Fold Cross Validation

that CKSAAP is the best feature set. Hence, only
CKSAAP is used as the feature set for CNN-BLPred.
The comparison of MCC scores for the 10-fold cross
validation are presented in Fig. 6. We also show the per-
formance of CKSAAP using 10-fold cross validation in
Table 6. The performance of the independent test set of
CKSAAP is shown in Table 7. In addition, other evalu-
ation metrics like Sensitivity, Specificity, Accuracy, F1
score, MCC and AUC of the CKSAAP are shown in
Table 8. The complete results of CNN-BLPred training
are shown in Additional file 3: Table S7.

Performance of the CNN-BLPred

We compared CNN (using CKSAAP as the feature
based on the results in previous section) to other popu-
lar machine learning algorithms. Essentially, we com-
pared the performance of CNN using our simple
architecture with other machine learning methods like
Random Forest and other Deep Learning architectures
like RNN (Recurrent Neural Networks). In addition, we
changed the architecture of our original Convolutional
Neural Network (CNN) by adding another convolutional
layer and max pooling layer after the original max

Table 7 Independent Test Set Performance of CKSAAP

Class/Group AUC Sen (%) Sp (%) MCC  Class/Group AUC Sen (%) Sp (%) MCC
Level 1 1.00 99.90 95.73 0.96 Level 1 0.96 97.60 68.18 0.70
Class A 1.00 9803 100.00 0.98 Class A 0.99 76.92 9868 0.78
Class B/Group 3 1.00 97.94 97.94 0.96 Class B/Group 3 1.00 100.00 9848 0.99
Class C/Group 1 1.00 98.02 99.15 0.97 Class C/Group 1 0.99 86.49 99.21 0.89
Class D 1.00 99.58 99.97 1.00 Class D 1.00 83.33 100.00 091
Group 2 1.00 97.44 99.93 0.97 Group 2 0.99 89.47 96.55 0.81
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Table 8 Complete Results of CNN-BLPred Independent Testing

Class Sensitivity ~ Specificity ~ Accuracy  F1 Score  MCC
Level 1 97.60 68.18 94.18 097 0.70
Class A 76.92 98.68 96.95 0.80 0.78
Class B/Group 3 100.00 9848 99.39 0.99 0.99
Class C/Group 1 86.49 99.21 96.34 091 0.89
Class D 8333 100.00 99.39 091 091

Group 2 77.27 98.59 95.73 0.83 0.81

pooling layer. We call this approach CNN-Ext. We also
compared CNN-BLPred with PredLactamase. For the
comparison of machine learning algorithms, we show
results of both 10-fold cross validation as well as the in-
dependent test results (using Additional file 1: Independ-
ent Dataset 1) in Table 9. It was observed that CNN
performed slightly higher than RF and significantly out-
performed RNN and to some extent CNN-Ext. It must
be noted that although CNN-Ext performs better in
training (likely due to overfitting), it does not perform
similarly in the independent set. In essence, with the
comparison to other various ML algorithms and archi-
tecture, the one we used which is a simple architecture
(with only one convolutional layer and max pooling
layer) performs the best which supports the superior
performance of CNN.

We only present the results of the independent test
(the results of 10-fold cross validation showed similar
trends). It was observed that for each class, a predict-
ive MCC of at least 0.78 and overall MCC were
obtained (overall MCC of 0.81 obtained for CNN-
BLPred* and 0.89 obtained for CNN-BLPred).
Interestingly, our prediction accuracy and MCC for
non-BL was 94.18% and 0.70 respectively for CNN-
BLPred. Fig. 7 shows the comparison between

Table 9 Comparative Results using Benchmark Dataset 1 for RF,
RNN, CNN-ext. and CNN. RF refers to Random Forest. RNN refers
to Recurrent Neural Network. CNN-ext. refers to extended CNN
where we use our original architecture with another convolutional
layer and max pooling layer adding after the original max pooling
layer. CNN refers to the Convolutional Neural Network described
in the paper
# Class/ Training Independent Test

Group RF RNN CNN-ext CNN RF RNN CNN-ext CNN
1 Level 1 097 043 095 096 095 070 069 0.70
2 Class A 097 016 097 098 075 070 078 0.78

3 Class B/ 0.94 -0.04 096 096 094 034 1.00 0.99
Group 3

4 Class ¢/ 092 020 096 097 090 054 089 0.89
Group 1

5 Class D 100 066 099 100 044 006 1.00 091
6 Group 2 096 042 097 097 075 034 081 0.81
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PredLactamase and our CNN-BLPred based on MCC
scores.

Comparing PredLactamase with CNN-BLPred

The results of the independent test samples for our
method CNN-BLPred and PredLactamase using
Additional file 2: Independent Dataset 2 are summarized
in Table 10, in the form of a confusion matrix. The col-
umn labelled ‘correct’ for both predictors show the num-
ber of sequences that were correctly identified while the
one that is labelled ‘incorrect’ shows the number of
sequences that were incorrectly predicted and the incor-
rectly predicted subfamily. The column ACC denotes
the accuracy of each method in percentages. It was
observed can be seen that for all the BL Classes and
non-BL proteins, the accuracy of CNN-BLPred was
higher than PredLactamase method for all the BL classes
and non-BL proteins.

Conclusions

We developed a Deep Learning based method (CNN-
BLPred) to identify BL and subsequently classify them
into respective BL classes. For the first time, in addition
to molecular classes, we also implemented the functional
classification. The BL classification problem is posed as
a multi-class classification problem and solved using the
one-vs.-rest strategy.

The number of embeddings were set to 128 based on
the improved prediction accuracy. CNN-BLPred was
able to predict with near optimal accuracy whether a
query protein sequence belongs to one of the four mo-
lecular classes and/or one of the three functional groups.
In order to use embedding technique effectively, this
method uses CKSAAP features. This feature set was
chosen, in part, because it can be represented as a small,
continuous vector space and also because it outper-
formed other features that fit the same criteria (i.e. CT
and TAACQC).

To combat the class imbalance problem we used tech-
niques such as ROS, RUS, and SMOTE. The number of
features is considerably high compared to the number of
sequences, which makes our classifier subject to the
‘curse of dimensionality’. To solve this issue we employ a
feature selection method known as gradient boosted fea-
tures selection.

Another concern we address is overfitting. Most over-
fitting problems are due to the fact that the dataset used
for testing is used for the training as well. The training
datasets used in this study were filtered from the closely
similar and redundant sequences as explained in the
dataset section. The test sequences, which were used for
evaluation, are the sequences that were not included in
the training dataset. A dataset with a redundancy
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reduction cut-off of 40% was utilized to ensure that our
high prediction performance was not due to the se-
quence similarity of the dataset.

The method was systematically validated with cross
validation and independent test samples using two
sets of datasets that have varying sequence redun-
dancy reduction criteria. Moreover, CNN-BLPred was
compared with other machine learning algorithms like
Random Forest, Recurrent Neural Network and other
architectures of CNN and it was observed that a sim-
ple architecture of CNN works well for our purpose.
Performance on the independent datasets and the
comparative study between the CNN-BLPred and
PredLactamase demonstrated that CNN-BLPred out-
performs other well-established predictors. Deep
Learning algorithms are considered to be better at
learning abstract features from simple features, and
one of the advantages of using Deep Learning is to
get rid of hand-crafted features. The overall better
performance of k-spaced amino acid features (a sim-
ple type of feature) also validates this point for this
problem. Additionally, BL is a multi-domain protein

Table 10 Comparative Results using Independent Dataset 1 for
PredLactamase and CNN-BLPred

Class PredLactamase CNN-BLPred*

Correct  Incorrect  ACC Correct  Incorrect  ACC
A 15 5 7500 18 2 90.00
B 15 5 7500 19 1 95.00
C 15 5 7500 18 2 90.00
D 15 5 7500 19 1 95.00
Overall 75.00 92.50

*CNN-BLPred is testing using Independent Dataset 2

and being able to identify a protein sequence as a BL
will also help in prediction of its structure.

In conclusion, we were able to develop an improved
BL classification method compared to existing
methods based on Convolution Neural Network. A
web site implementing the methodology will be devel-
oped soon to serve the scientific community. In the
meantime, the software for the work is available upon
request to academic researchers from the authors.
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