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Abstract: Expert systems are frequently used to make predictions in various areas. However, the
practical robustness of expert systems is not as good as expected, mainly due to the fact that finding
an ideal system configuration from a specific dataset is a challenging task. Therefore, how to optimize
an expert system has become an important issue of research. In this paper, a new method called
the robust design-based expert system is proposed to bridge this gap. The technical process of this
system consists of data initialization, configuration generation, a genetic algorithm (GA) framework
for feature selection, and a robust mechanism that helps the system find a configuration with the
highest robustness. The system will finally obtain a set of features, which can be used to predict
a pandemic based on given data. The robust mechanism can increase the efficiency of the system.
The configuration for training is optimized by means of a genetic algorithm (GA) and the Taguchi
method. The effectiveness of the proposed system in predicting epidemic trends is examined using
a real COVID-19 dataset from Japan. For this dataset, the average prediction accuracy was 60%.
Additionally, 10 representative features were also selected, resulting in a selection rate of 67% with a
reduction rate of 33%. The critical features for predicting the epidemic trend of COVID-19 were also
obtained, including new confirmed cases, ICU patients, people vaccinated, population, population
density, hospital beds per thousand, middle age, aged 70 or older, and GDP per capital. The main
contribution of this paper is two-fold: Firstly, this paper has bridged the gap between the pandemic
research and expert systems with robust predictive performance. Secondly, this paper proposes a
feature selection method for extracting representative variables and predicting the epidemic trend
of a pandemic disease. The prediction results indicate that the system is valuable to healthcare
authorities and can help governments get hold of the epidemic trend and strategize their use of
healthcare resources.

Keywords: artificial intelligence; expert system; robust design; feature selection; COVID-19; disease
prediction; genetic algorithm; healthcare

1. Introduction

Infectious diseases, if not effectively monitored and controlled, often result in mass
human infections and pose risks of mass mortality, economic recession, and depletion of
medical resources. For instance, coronavirus disease 19 (COVID-19) first broke out in late
2019 in Wuhan, Hubei Province, China [1,2], and then spread rapidly around the world. It
was soon recognized as a global pandemic by the World Health Organization (WHO). In
the next year, COVID-19 began to cause enormous impacts across the world. As of 2022,
COVID-19 continues to spread aggressively from country to country, causing not only over
500 million sick people but also 6 million deaths. The unpredictable nature of COVID-19
has placed a great deal of pressure on governments to set up policies to curb the spread of
the epidemic, and it is likely to cause medical resource depletion [3]. Moreover, COVID-19
has also had many negative effects on the global economic environment [4].
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Since the Omicron variant began to sweep the world, the COVID-19 pandemic has
intensified in many countries due to the high transmissibility of this variant. Despite the
emergence of vaccines approved by emergency-use authorization (EUA), because human
knowledge of this virus is still insufficient, many people are dying from it every day. In
2022, WHO once again warned the world that the spread of COVID-19 should be closely
monitored to prevent a simultaneous increase in the number of moderate and severe cases
and the number of deaths as the virus continues to mutate. WHO also suggested that all
governments should adjust management policies and quarantine measures for severe cases
in a timely manner. Therefore, health authorities’ ability to get hold of the development
trends of the pandemic is particularly important.

Nowadays, the main tasks of healthcare management authorities in epidemic pre-
vention include infection prevention, spread prediction, infection control, treatment of
confirmed cases, and mortality reduction [5]. Until a highly effective method of eliminating
this virus is found (including the improvement of vaccines), monitoring the spread trends
and reducing the mortality of COVID-19 is a priority in epidemic management for govern-
ments seeking to maintain economic activity during the pandemic [6,7]. The prediction
of the epidemic trend is linked to the government’s epidemic prevention policies [8–10].
How to effectively get hold of the changes in the number of deaths is an imperative task
for health authorities because it is conducive to the deployment of medical resources and
the improvement of healthcare policies. Therefore, developing a support system that can
capture the trends of COVID-19 has become an emerging area of research.

The recent years have seen a substantial development of expert systems and publica-
tion of outstanding research findings about such systems in all fields. A human expert can
quickly find feasible solutions to a new problem based on his or her experiences that accu-
mulate over time. The introduction of the LISP programming language by John McCarthy
in 1960 ushered in the development of research on expert systems [11]. Early expert systems
can be represented by the problem-solving model proposed by Feigenbaum et al. in 1970
to determine the structures of chemical molecules [12]. This type of expert system is a rule-
based reasoning system that can be applied to disease diagnosis. Due to certain limitations,
this type of expert system soon hit a bottleneck in its development. For example, rule-based
reasoning systems require the establishment of very complicated conditional formulas,
where the cause–effect relationships are highly restrictive, so they are less flexible, and the
cross-references between cases may be easily ignored. Hence, there is still a gap in decision-
making behavior between expert systems and real human experts. Fortunately, with the
advancement of computer science and the extensive use of personal computers, scholars
have begun to promote new techniques of expert systems. For instance, Aliev et al. [13]
proposed an if–then rules-based fuzzy technique for reasoning with imperfect information
and applied it to evaluate job satisfaction and students’ educational achievement related
to psychological and perceptual issues. Tang and Pedrycz [14] demonstrated the stability
of an expert system. They investigated the oscillation-bound estimation of perturbations
for Bandler–Kohout subproduct (BKS) and constructed upper and lower bounds of BKS
output deviation derived from the simple perturbation of the input set.

Among the numerous techniques of expert systems, artificial intelligence systems
(AIs) have received particular attention from researchers [15–17]. AIs are algorithms
developed to mimic the operation and behavioral patterns of living organisms. They
process information based on past experiences. Through improvements, AIs can more
efficiently enhance the learning performance of expert systems and expand the scope of
problem search, gradually pushing the decision-making ability of expert systems closer
to the level of human experts. As expert systems can be integrated with various types of
AIs, many cross-disciplinary applications have been attempted in areas such as clinical,
healthcare, environmental, and industrial [18–22]. These applications have also contributed
to the flourishing development of expert systems. AIs use datasets to train a model and
create an input–output mapping. This type of operation makes AIs highly appropriate
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for application in data mining, knowledge engineering, medical assessment, diseases
prediction, etc. [15,16,18,23,24].

In the last decade, big data analysis was a new line of research. Advancements in this
area of research have contributed to the growth of expert systems. With the development
of data mining, many big data-driven expert systems have been proposed [25–27]. This
suggests that big data can widen the search scope of expert systems and also improve their
training performances.

Due to the outstanding contribution of AIs to various research fields, it has also
received attention in the field of healthcare. For instance, Malki et al. [28] developed
a supervised decision tree model to predict the spread of COVID-19 infection in many
countries. Khalilpourazari and Hashemi Doulabi [29] designed a hybrid reinforcement
training-based framework to predict the COVID-19 pandemic and help policy makers to
optimize the use of healthcare system capacity and resource allocation. Alam et al. [30]
developed a disease diagnosis using the Internet of Things (IoT) integrated with a fuzzy
inference system to diagnose various diseases.

Recent research has shown that feature selection is the most representative technique
of expert systems. Expert systems usually rely on supervised learning. They need to
be given a set of training data to learn the relationship between “input features” and
“outcomes” [31,32].

Feature selection is a technique for extracting relevant features in data. The basic
concept of feature selection is to find distinctive case features in order to enhance the
learning efficiency of the expert system [33,34].

If the system can omit certain unnecessary features, it can reduce the data comparison
time and achieve a higher accuracy. The main advantage of feature selection lies in its
ability to adopt supervised or hierarchical feature extraction algorithms to replace manual
ways [31]. The growth of feature selection (including feature extraction) is manifested
in the fruitful results of recent research. The outcomes derived from a large amount of
data, in particular, have drawn the attention of experts across all fields [27,32]. However,
the goal of feature selection for expert systems is to learn autonomously from a large
amount of data to create a better model with better training results. In addition, the benefit
of using supervised feature selection in an expert system is that the system model can
autonomously extract appropriate features and define the recognition or prediction result
for each instance.

In an early application of feature selection, Siedlecki and Sklansky [35] used genetic
algorithms (GAs) to deal with large-scale feature selection. They attempted to design a set
of automatic pattern classifiers. Feature selection could help the system extract the features
of patterns suitable for recognition and then deliver the selection results to the system
for prediction.

As to the applications of feature selection in recent years, Lin et al. [36] proposed
a technique using layered genetic programming for feature extraction to deal with the
problem of optimizing the classification of data into two groups. Here, the concept of
“feature extraction” refers to transferring the good features obtained in each evolution to
the GA processing of the next layer, in order to achieve hierarchical optimization. Their
experimental results confirmed that this technique can enhance the problem-solving perfor-
mance of GAs. Quan and Ren [37] proposed a method of product feature extraction for
feature-oriented opinion determination. The feature extraction technique was applied to
deal with opinion mining and perform sentiment analysis for product improvement. They
showed a high applicability of feature selection using comparative domain corpora.

Zhang et al. [38] proposed an ant colony algorithm-based feature selection method
for intelligent fault diagnosis of rotating machinery using a support vector machine. Some
scholars have applied GAs as a data mining technique to extract informative and significant
features in breast cancer diagnosis [39,40]. In addition, GA-based feature selection methods
can deliver a better performance [39]. Gokulnath and Shantharajah [41] employed a GA
as an optimization function based on a support vector machine (SVM) for heart disease
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diagnosis. Khan et al. [42] proposed a hybrid feature selection and reduction scheme for
selecting the high discriminative characteristics in hypertension features. Kwon et al. [43]
employed feature selection methods to support the prediction of osteoporosis. They
conducted a comparison of machine learning with different models and found that features
selected by “survey+checkup” led to a better prediction accuracy than survey or checkup
only. Moreover, machine learning could achieve good performance in disease prediction.
More recent studies of expert systems have empirically demonstrated the effectiveness of
applying feature selection in disease prediction, equipment examination, and mental state
prediction [43–45].

A feature-selection-based expert system is a smart technique that can be used for
describing structured data. It can converge in its own database by inputs of specific
structures, so it can accept a wide range of real cases. With this characteristic, feature
selection is most appropriate for experiments that involve observations with an expert
system [28,29]. As the development trend of a pandemic disease is the result of a features-
and-effect phenomenon that evolves over time, feature selection is a very suitable solution
for the prediction of epidemic trends. A comparison of previous research on feature
selection for prediction is presented in Table 1.

Table 1. Comparison of previous research on feature selection.

Method Issue Year Reference

GA-based algorithm Large set feature extraction 1989 [35]
GA-based algorithm Diagnostic classification 2008 [36]

Comparative domain corpora Product improvement 2014 [37]
Ant-colony-based algorithm Fault diagnosis 2015 [38]

GA-based algorithm Breast cancer diagnosis 2016 [39]
GA-based algorithm Breast cancer diagnosis 2017 [40]
GA-based algorithm Heart disease diagnosis 2019 [41]

Machine learning Hypertension Detection 2021 [42]

Machine learning Comparison of different classifier
ensemble methods 2021 [43]

Machine learning Prediction of osteoporosis 2022 [45]

Previous studies have shown that it is not easy to get impressive learning results
from expert systems [46–49]. Oftentimes, it is necessary to repetitively adjust and test the
parameters of the system. This procedure is very time-consuming and will increase the cost
of system modeling. In addition, the obtained parameter values cannot always guarantee
good prediction performance in the future. The abovementioned situation reduces the
robustness of the expert system. Moreover, when building a pandemic prediction system,
it is necessary to adjust the system parameters whenever needed. In other words, system
adaptability and reliability are also of high importance. Therefore, an effective and stable
system building method must be developed so as to exploit the excellent performance of
expert systems. This study aims to fill two major gaps in the literature: Firstly, the extant
research of pandemics lacks studies on expert systems with a robust predictive perfor-
mance. Secondly, little research has attempted to investigate feature selection methods for
predicting the epidemic trend of a pandemic disease.

In this paper, a modified expert system, called the robust design-based expert system,
is proposed to address the above issues. In addition, a genetic algorithm (GA) framework
and the Taguchi method are integrated into the system to optimize the performance of
the system. A good system configuration can not only increase the system’s prediction
accuracy but also ensure the stable quality of the system. Features selected by the system
can support inferences of epidemic trends. Finally, the feasibility and efficiency of the
proposed system is verified using COVID-19 as an example.
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2. The Expert System with Robust Design
2.1. System Architecture

In this study, a robust design-based expert system is proposed for pandemic prediction.
The system architecture is shown in Figure 1. The operational steps of the expert system
are as follows: First, the dataset is imported from the case database and normalized. Later,
systematic training with the selected parameter levels is conducted. The system will learn
the best pattern of features from the dataset, meaning that the system will obtain a feasible
solution from the genetic algorithm (GA) framework (see Figure 2). However, this solution
does not represent a robust solution of the system under different configurations. The
system will repeatedly execute the procedure under different configurations through the
robustness mechanism until all the runs have been completed. After all the runs have been
completed, a robust result can be obtained.

2.2. Optimization of the System

To enhance the predictive performance of the proposed system, this study applies a
genetic algorithm (GA) to feature selection. GAs have been widely used as a means to
optimize expert systems [34–36]. It is an optimizing technique that mimics the evolutionary
process of biological chromosomes. Based on the concept of genetic evolution, it repeatedly
searches for feasible solutions in order to find an optimal solution to the given problem.
The operating process of the GA is briefly explained as follows:

First of all, the GA stochastically generates an initial set of feasible solutions (called
the initial population), in which each feasible solution is called chromosome and coded
by a value of 0 or 1 (see Figure 3). Later, the fitness of each feasible solution is computed.
The fitness function can be customized by users. A higher fitness value usually indicates
a better solution. In the optimization of an expert system, the fitness function is usually
defined as the accuracy of the inferential result.
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Next, the GA uses the genes in the chromosomes to compute the next generation.
The proposed system adopts the GA as a predictor because of its evolution mechanism
including selection, crossover, and mutation. These mechanisms can help the system
achieve a high prediction accuracy. Selection decides which chromosomes can survive or
should be eliminated; crossover is used to exchange partial sections of the chromosomes
among parents to create the chromosomes of the next generation. Finally, mutation selects
one gene from chromosomes for mutation. The probability of mutation is usually very low.
Through repetitive executions of the above genetic operation, offspring with better fitness
can be generated, and this operation stops when the stopping rule is met.

The GA framework designed for this system is as illustrated in Figure 2. The proposed
system applies the GA to select features in the dataset. This training procedure consists of
six steps as explained below:

Step 1. Design the structure of chromosomes
In order to obtain an optimal combination of features, we encode feature selection in

chromosomes using 0 or 1, as shown in Figure 3. For instance, “0” denotes the correspond-
ing item is unselected, while “1” denotes the item is selected.
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Step 2. Generate the initial population
Before execution of the genetic algorithm, the system has to generate an initial popula-

tion comprising n chromosomes, each containing randomly generated parameter values.
Each chromosome represents a possible solution (the initial feature selection). Given a
total of x features, each chromosome is represented by x genes, and each generation has n
chromosomes. Through evolution from one generation to the next of each generation, a
better solution can be progressively obtained.

Step 3. Compute the fitness of each chromosome
To compute the fitness of each chromosome, we divide the case dataset into two

subsets, including a training dataset and a test dataset. The training dataset is the main
dataset for training the expert system, whereas the test dataset provides the subject to be
tested by the expert system. The training dataset is larger than the test dataset.

For any chromosome i (i = 1, 2, . . . , n), some features in both the training dataset
and the test dataset need to be removed, weakened, or reinforced according to the set of
features stored in the chromosome. Assume that Traini and Testi, respectively, denote the
modified training dataset and the modified test dataset. The fitness of chromosome i can be
computed through the following steps:

(1) Compute the predicted level (PL) for each case in the test dataset. For each case t in
the test dataset, we apply the nearest neighbor method to find the most similar case
in the training dataset Traini to predict the level of this case (the level is represented
by PLt ). The similarity between cases is measured using Euclidean distance.

(2) Compute the fitness of chromosome i (i = 1, 2, . . . , n). The fitness of chromosome i
can be expressed using the following function:

f itness(chromosome i) =
D

∑
t=1

matcht(Traini, Testi)

D
(1)

where D denotes the number of cases in Testi; matcht indicates whether the predicted level
(PLt) matches the actual level (ALt). If PLt = ALt, matcht(Traini, Testi) = 1; otherwise,
matcht(Traini, Testi) = 0. The fitness of a chromosome represents the prediction accuracy
obtained based on the corresponding feature selection. This value is continuously updated
as the evolution progresses. Moreover, it is also used as an indicator to assess the quality
of each chromosome. It provides a reference for subsequent genetic evolution. A better
chromosome is more likely to be chosen for crossover.

Step 4. Apply genetic operators to derive new offspring
After a new generation is generated, the max fitness value searched for in the previ-

ous generation may be changed. As mentioned above, these genetic operators, including
chromosome selection, crossover, and mutation, are intended to help generate new chro-
mosomes. The selection operator determines whether a chromosome should be kept or
eliminated depending on its fitness value. Chromosomes with a higher fitness value are
more likely to survive. For crossover and mutation, the probabilities should be defined
in advance.

Step 5. Repeat Step 3 and Step 4 until the stopping rule is met
Step 3 and Step 4 are iteratively executed until the stopping rule is satisfied. By the

time that the expert system terminates the evolution based on the stopping rule, an optimal
solution will be generated. This solution contains the finally selected features, which are
most useful for the prediction of new cases and optimization of the weighting of features
in the system.

Step 6. Evolution is completed
After genetic evolutions, the system outputs selected features.
However, system configuration affects the solution performance of the GA framework

and further reduce the robustness of the system.
To enhance the robustness of the proposed system, a GA and the Taguchi method are

integrated into the expert system.
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The Taguchi method [50] is utilized to optimize the system. It uses an orthogonal
array and a signal-to-noise ratio (SN ratio) to help expert systems find an optimal system
configuration. The advantage of using an orthogonal array is that it can significantly reduce
the total number of runs of the experiment to slash the time cost, whereas the advantage of
using an SN ratio is that the quality of the system can be measured. The Taguchi method
designed for the system consists of three processes: firstly, set up the parameters of system;
secondly, define the levels of each parameter; finally, generate the orthogonal array for
the system. An example is given as follows. Assume that there are three parameters,
and each parameter has three levels. For a full factorial experiment, the system needs to
perform 27 experiments, which is quite time-consuming. Using the Taguchi method, this
system generates an orthogonal array and needs to perform only nine sets (i.e., L9

(
33)) of

experiments to obtain a reliable solution. In this way, while the system execution time is
being drastically reduced, the system quality can also be ensured.

After the configuration training is completed, the system will measure the mean-
square error (MSE) of the expected results based on the data from each run. The MSE value
has a smaller-the-better characteristic. It is expressed as follows:

MSE =
1
n
×

n

∑
i=1

(Ai − Pi)
2 (2)

where n is the number of observations in the test data, Pi is the predicted value for the ith

observation, and Ai is the actual value of the ith observation.
After measuring the MSE value for each run, the system will estimate the SN ratio

for each configuration. The SN ratio has a larger-the-better characteristic. It is expressed
as follows:

SN = −10 × log

(
1
m

m

∑
j=1

1
MSEj

2

)
(3)

where m is the number of repetitions for each configuration, and MSEj denotes the result
of the jth run.

Finally, the system will obtain the robust configuration Pq (q = 1, 2, . . . , Q) with the
highest total SN ratio from all the runs. It can be expressed as follows:

R
(
con f iguration Pq

)
= Max SNPqk(k=1,2,...,K)

(4)

where K is the number of levels for each parameter.
Details on data collection and performance of the system are provided in Section 3.

3. Results
3.1. Data Collection

Microsoft Excel 2016 (https://www.microsoft.com (accessed on 30 June 2022)) was
installed as the runtime environment to implement the program. The proposed system
was built using Evolver version 8.2 (https://www.palisade.com (accessed on 30 June
2022)) to process the genetic operations in the training. VBA (Visual Basic for Application)
programming was also integrated to build the proposed expert system.

The data used in this study are real COVID-19 data reported from around the world.
The data comprise the statistics of the pandemic provided on WHO’s official website
(https://covid19.who.int (accessed on 30 June 2022). According to the statistics, the number
of daily confirmed cases remains very high and COVID-19 is still severely spreading across
the world (see Figure 4). A large number of infections have been caused since the outbreak
of COVID-19. Daily infections of the virus peaked in the first quarter of 2022. Despite
devotion to pandemic control, all governments around the world have been unable to resist
the repeated growth of infections due to the virus’ continuous mutation and evolution. At
present, hundreds of thousands of confirmed COVID-19 cases are being reported in many
countries every day, indicating that the pandemic is still raging [3,4].

https://www.microsoft.com
https://www.palisade.com
https://covid19.who.int
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Figure 4. Daily new confirmed COVID-19 cases worldwide.

Japan has been one of the hardest-hit areas for COVID-19 in Asia since 2020. More
importantly, Japan decided to postpone the 2020 World Olympic Games in 2021. As shown
in Figure 5, the number of confirmed cases in Japan peaked two times within one year. The
case of Japan shows that it has experienced several ups and downs of the epidemic. In
particular, under the invasion of the Omicron variant virus, Japan also reached the peak
of the epidemic in March 2022. Thus, the spread of the epidemic in Japan has virtually
become the focus of global attention. In this study, we chose Japan as the subject in the
hope of performing an effective prediction of the epidemic trend in Japan. Real data from
Japan were collected for data compilation and subsequent analysis. The data include daily
statistics of confirmed COVID-19 cases in Japan from the outbreak of the pandemic.
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Figure 5. Daily new confirmed COVID-19 cases in Japan. (January 2020–April 2022).

This period spans from January 2020 to April 2022. In this period, the highest number
of daily confirmed cases was 104,345, and the average number of daily confirmed cases
was approximately 9080 with a standard deviation of 19,819. In addition, the death rate
of COVID-19 in Japan was usually higher than 0.003. The highest number of daily death
cases was 322, and the average number of daily death rate was approximately 0.018 with
a standard deviation of 0.012 (see Figure 6). The historical peak of COVID-19 mortality
in Japan occurred in the first year. Although the death rate has gradually decreased, the
death toll remains high because the variant virus increases its susceptibility. It shows
that reducing the mortality rate has become an important challenge for the government
in Japan.
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Figure 6. Daily death rate in Japan. (January 2020–April 2022).

When a pandemic begins to spread in large numbers (such as COVID-19), govern-
ments are most concerned about the rapid rise in confirmed cases. In the post-epidemic
era, governments would pay particular attention to issues relating to the reduction of
the mortality rate, including the treatment of severe cases and how to provide effective
treatments. Therefore, this study uses the death rate as an important evaluation index
and classifies the epidemic situation into different alert states as a reference for healthcare
policy makers.

The dataset comprises 819 days of COVID-19 data in Japan. We defined death rates
for a daily number equivalent to or below 0.005 as low death rates (I), death rates between
0.005 and 0.01 as mid death rates (II), and death rates equivalent to or above 0.01 as high
death rates (III). In the dataset, 83 cases were classified into the low death rate level (I),
34 cases into the mid death rate level (II), and 702 cases into the high death rate level (III).
Death rate is defined as follows:

Death rate =
total deaths

total con f irmed cases
(5)

In addition, this study uses demographic variables including population, population
density, middle-aged population (middle age), population aged 65 or older (aged 65 older),
population aged 70 or order (aged 70 older), cardiovascular disease death rate (CVD
death rate), diabetes prevalence, hospital beds per thousand, and GDP per capital. The
descriptive variables of COVID-19 collected in this study include new confirmed cases,
hospital patients, ICU patients, people vaccinated, people fully vaccinated, and stringency
index. These variables are used as the features of the COVID-19 dataset (as shown in
Table 2). All the above variables are continuous variables.

Table 2. Levels of key parameters for system.

Parameter Level 1 Level 2 Level 3

PS × GN 200 × 100 400 × 50 100 × 200
CR 0.5 0.75 1.0
MR 0.05 0.075 0.1

3.2. Performance of the System

After data collection, we imported all the data into the system to train features through
the GA framework. After training, the selected features could be used to predict the
number of death cases over the next 120 days. The training dataset consists of data from
22 January 2020 to 31 December 2021. The validation dataset spans from 1 January 2022 to
21 April 2022.

To optimize training and system performance, using an appropriate system configura-
tion is very important. Different configurations of parameters affect the performance of the
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system in finding a solution. Based on the Taguchi method [30], we adopted an orthogo-
nal array and SN ratio to find the optimal set of parameters, including (1) population ×
generation (PS × GN), (2) crossover rate (CR), and (3) mutation rate (MR).

As shown in Table 2, for each parameter, three different levels were adopted in the
system. Considering the solution seeking time, the number of PS × GN was set as 20,000.
Therefore, the system was designed to execute an L9

(
33) experiment, where 9 at the bottom

indicates the number of experimental runs, 3 at the center stands for the number of levels,
and 3 at the top represents the number of parameters.

The experimental runs were based on the three levels of each parameter. The MSE
value in each configuration of parameter levels was measured three times (m = 3) to obtain
MSE1, MSE2, and MSE3. The MSE function has a smaller-the-better characteristic.

After measuring MSEs, the system estimated the SN ratio for each configuration. Then,
the system computed the results from all the runs of the experiment respectively.

Table 3 shows the MSEs and SN ratios from all of the runs of the experiment. As
mentioned above, the SN ratio has a larger-the-better characteristic. The system summed
the SN ratios from all of the runs of the experiment (as shown in Table 4) and selected the
levels with the max sum. Consequently, the system obtained the configuration with the
highest robustness of parameters as follows: PS = 400, GN = 50, CR = 0.75, and MR = 0.05.
The average accuracy for the death rate level inference of the proposed system was 60%.

Table 3. The L9(33) orthogonal array for system.

Experiment PS × GN CR MR MSE1 MSE2 MSE3 SN

1 1 1 1 0.0006010890 0.0006444215 0.0006394203 −64.0492353808
2 1 2 2 0.0004591344 0.0013799845 0.0004216040 −65.6009508154
3 1 3 3 0.0004056524 0.0004205735 0.0004056524 −67.7348319371
4 2 1 2 0.0004388614 0.0005938607 0.0006411313 −65.4242838171
5 2 2 3 0.0006394203 0.0006298676 0.0005938010 −64.1511242272
6 2 3 1 0.0011535812 0.0006116809 0.0004205265 −64.8091223273
7 3 1 3 0.0004344587 0.0006110492 0.0004362107 −66.4448913140
8 3 2 1 0.0005938607 0.0005989994 0.0004195332 −65.7611583377
9 3 3 2 0.0006485800 0.0004341845 0.0004500635 −66.2389340652

Table 4. Sum of SN ratios.

PS × GN CR MR

Level 1 −197.3850181333 −195.9184105119 −194.6195160458 *
Level 2 −194.3845303716 * −195.5132333803 * −197.2641686977
Level 3 −198.4449837169 −198.7828883296 −198.3308474783

* Selected level with the max sum of SN.

After a robust configuration was obtained (including selected features), Japan’s epi-
demic data from 22 January 2020 to 31 December 2021 was imported into the system to
predict the epidemic trend over the next 120 days. The results are shown in Table 4 and
Figure 7. In addition, from the 15 features, 10 more representative ones were also selected,
resulting in a selection rate of 67%.
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Figure 7. Prediction of robust design-based expert system. (January 2022–April 2022, in Japan).

It can be easily discovered from Table 5 that these features are mainly descriptive
variables and demographic variables relating to COVID-19. As to the features associated
with CVD death rate and diabetes prevalence, no significant difference was found between
different epidemic levels. The gray line shows the actual data, while the green one rep-
resents the epidemic trend predicted by the proposed system (see Figure 7). The results
indicate that the mean number of daily death cases of the proposed system was 151 persons
with a standard deviation of 94 persons in this span of prediction. In the actual data, the
mean number of daily death cases was 89 persons with a standard deviation of 84 persons.
The time point of the increase in the death rate estimated by this system is slightly earlier
than the actual data. Overall, it is quite close to the actual situation. A further comparison
of the system’s prediction with the actual data was conducted.

Table 5. Selected and unselected informative features of COVID-19 in Japan.

Feature Selection

Descriptive variables of COVID-19
New confirmed cases Selected
Hospital patients Unselected
ICU patients Selected
People vaccinated Selected
People fully vaccinated Selected
Stringency_index Unselected

Demographic variables
Population Selected
Population density Selected
Cardiovasc death rate Unselected
Diabetes prevalence Unselected
Hospital beds per thousand Selected
median_age Selected
Aged 65 older Unselected
Aged 70 older Selected

GDP per capital Selected

It can be discovered that the prediction of the proposed system was close to the real
situations. As shown in Figure 7, the system has captured the potential trend pattern of
the outbreak. For example, there was an obvious increase in the number of death cases in
Japan during the prediction period (i.e., 18 January 2022–22 February 2022). In the actual
data, the number of daily death cases grew rapidly from 10 to 332 within four weeks. This
abnormal surge was captured by the system effectively. In addition, the following trend
in the epidemic situation was also predicted by the system. The results indicate that the
performance of the proposed system is good.
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Furthermore, the robust design-based expert system can give a warning when the
number of death cases is about to rise (as shown in Figure 8). For management author-
ities, this represents a practical and managerial implication concerning the formulation
of measures.
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Figure 8. Monitoring levels for COVID-19 suggested by the system. (January 2022–April 2022,
in Japan).

For instance, when the epidemic is mild, the system suggests a monitoring level of I,
meaning that healthcare authorities can maintain the current management policy. When
the death rate grows higher than 0.01, the system will suggest a monitoring level of III.
Healthcare authorities should: impose restrictions on the economic activity of certain
industries and adopt crowd diversion measures for confirmed cases; require patients with
mild illnesses to implement home quarantine, so as to reserve the medical capacity for
patients in moderate or severe conditions; provide special care to patients in high-risk
groups (including elderly and young children); and set up easily accessible PCR testing
sites to instantly identify confirmed cases and provide medication. After the epidemic
reaches its peak and begins to slow down through levels III and II with a decreasing
death rate, the system suggests a monitoring level of I. Healthcare authorities are advised
to progressively relax social management measures, lift the limitations on the economic
activity of all industries, and also encourage people to conduct self-health management (as
shown in Figure 8).

The monitoring levels suggested by the system based on dynamic changes in the pan-
demic cases can assist the authorities concerned to plan and deploy in advance. Therefore,
the proposed system can be very helpful in practical applications where it is used as a
policy support system.

To explore whether different compositions of the training dataset would affect the
system’s predictive performance, we created three training datasets respectively consist-
ing of 100%, 95%, and 90% of the training data. For each training dataset, the training
was carried out five times, and the MSE was measured. Finally, analysis of variance
(ANOVA) was applied to test if there was any significant difference in prediction accuracy
between datasets.

Table 6 shows the ANOVA results, which suggest that under the significance level of
0.05, there was no significant difference in prediction accuracy between the training results
with 5% and 10% reduced data.
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Table 6. ANOVA result for training datasets.

Sum of
Squares

Degree of
Freedom

Mean Sum of
Square F-Test p Value

Between groups 1.1043 × 10−5 2 5.52149 × 10−6 2.776 0.102
Within groups 2.38722 × 10−5 12 1.98935 × 10−6

Total 3.49152 × 10−5 14

4. Discussion

This study applied a robust design-based expert system with a feature selection
learning mechanism to predict the possible trends of a pandemic disease. This system was
designed to combine the strengths of the GA framework and the Taguchi method. In the
case of Japan, the experimental results indicate that the proposed system can successfully
capture the possible trends of COVID-19. The predicted results are close to the actual
situations, meaning that the system’s capability is assured. With a unique design, the
system can deliver good performance and stable quality. The prediction results of the
system may be helpful for the government when estimating the death rate of the virus.
Healthcare authorities can also employ the system to support formulation of epidemic
management policies and allocation of medical resources.

Building an effective expert system is not easy [41,43]. This type of system usually
requires repetitive tests, which are very time-consuming but do not guarantee the robust-
ness of its results [44]. From the experimental results, we can find that the robust design
has demonstrated its outstanding efficacy in improving the expert system. The orthogonal
array design has significantly reduced the total number of runs of the experiment. The SN
ratio can correctly reflect the differences between system configurations to further ensure
the prediction quality of the system.

We also found that although the GA architecture is suitable for learning feature
selection when performing an expert system experiment, the amount of the training dataset
must be sufficient to obtain good results. In addition, due to the selection, crossover, and
mutation mechanisms designed in the GA framework, the evolution of each feature in the
chromosome can be evaluated accurately. This is key to the success of the feature selection
expert system. Hence, the GA framework can achieve a good performance.

The proposed system can signal an alert when there is a rise in the level of death
cases, which means that the number of severe cases has risen too. This alert has an
important management implication for healthcare management authorities. If we can
capture an imminent increase in the domestic death of the epidemic, the government can
make necessary deployments in advance [7,8]. This way, the government’s use of medical
resources can be more effective, and its responses to the pandemic can also be more timely.
Thus, the proposed system is effective in supporting epidemic management.

Policy implications: In fact, the government’s healthcare resources are limited. If
changes in the number of severe cases or death cases in the country cannot be correctly
assessed, the government’s deployment of medical resources will be affected first. For
example, when the epidemic is slowing down, health authorities can allow more patients
with mild symptoms to stay in the hospital for treatment and observation and also delay
their discharge time. Conversely, if the epidemic becomes more serious (i.e., the number of
death cases grows rapidly), health authorities need to deploy ahead of time and change the
management policies for mild and severe patients. For instance, when medical resources
are insufficient, some countries may advise patients with a mild illness to stay at home to
avoid medical collapse. Take Japan as an example. The repeated changes in the epidemic
situation have put tremendous pressure on the government’s patient care policy. This
highlights the importance of situational judgment. Therefore, the government’s primary
task in COVID-19 management is to get hold of changes in the death rate in its territory
and then make immediate adjustments of health care policies according to the epidemic
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trend. This kind of timely and situation-based response is conducive to the deployment of
medical resources and patient management.

In the present, many countries have adopted policies that favor living with the virus.
However, the spread and mutation of COVID-19 still pose a high threat. For example, de-
spite the release of EUA-approved vaccines, many countries still experience large numbers
of breakthrough infections after widespread vaccination. This phenomenon shows that
epidemic control cannot rely solely on EUA-approved vaccines. All countries should be
cautious in monitoring, isolation, and social management of confirmed cases. In the mean-
time, how to effectively get hold of the daily number of death cases becomes crucial and is
an important task for governments when building an epidemic management information
system. It determines whether governments can monitor the epidemic development in real
time and adjust the degree of relaxation or contraction of medical resources at any time, so
as to control the rate of virus transmission within the limits of national resources. Therefore,
effective epidemic predictions with an appropriate support system can contribute greatly
to epidemic control.

Management implications: In this study, the features considered in the prediction of
COVID-19 epidemic trends consisted of descriptive variables and demographic variables.
From the dataset of Japan, the average prediction accuracy was 60%. The system shows
better accuracy given three levels of alert state were considered (e.g., there are three levels
which means the probability is 33.33%). In addition, 10 representative features were also
selected, resulting in a selection rate of 67% with a reduced rate of 33%. According to the
experimental results, among the descriptive variables, new confirmed cases, ICU patients,
and people vaccinated are important factors affecting the mortality of COVID-19 in Japan.
In comparison, hospital patients and stringency index are not critical to the prediction result.

Among the demographic variables, population, population density, hospital beds per
thousand, middle age, aged 70 older, and GDP per capita are all critical to the mortality of
COVID-19 in Japan. However, CVD death rate, diabetes prevalence, and aged 65 older are
not significantly related to mortality.

From the above findings, we can infer that, in addition to the descriptive variables
that healthcare units are more concerned about (e.g., people vaccinated), the demographic
structure of a country also significantly affects the pandemic mortality. This suggests that
governments should pay attention to the correlation between the country’s demographic
structure and the important descriptive variables of COVID-19, because the mortality of
the pandemic may increase significantly with increases in certain descriptive variables such
as new confirmed cases and ICU patients.

Therefore, the interactions between the abovementioned features and the differences
in their importance should be a research topic worthy of further research.

This study was subject to two main limitations. First, the descriptive variables of
COVID-19 are aggregated statistical data, and the database is not classified by virus variants
determined through gene sequencing. Second, the subject of this study was Japan but the
spread of the epidemic varies from country to country. With a good predictive performance,
the proposed system can be applied to predict the spread of new COVID-19 variants and
explore the differences in death rate between different variants. Moreover, the differences in
importance between features is also an interesting research issue. The system architecture
of this study can be modified for the research of the above issues in the future.

5. Conclusions

Expert systems are increasingly used in important applications. Healthcare manage-
ment organizations across the world are seeking more accurate methods to predict the
spread of epidemics and support policy adjustment. Considering the tremendous impacts
that COVID-19 has brought to the world and the need for healthcare authorities to build a
highly adaptive prediction system, this study proposes an enhanced artificial intelligence
prediction technique called the robust design-based expert system. The GA framework and
Taguchi method are integrated into this system to optimize the performance of the system.
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The epidemic data in Japan are employed to develop a prediction system for COVID-19.
The prediction accuracy of proposed system was 60%. In addition, the feature selection
rate of the system was 67% with a reduction of 33%. The experimental results indicate
that the proposed system is effective in predicting the epidemic trend over the next four
months (about 120 days). The proposed system can be utilized to support the prediction
of epidemic trends as well as the deployment of resources. Future researchers can apply
this system to analyze the epidemic trends in countries with more serious outbreaks and
further explore the differences between countries and what can be improved with regard
to the application of this expert system.
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