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Abstract

Multiscale geometric analysis (MGA) is not only characterized by multi-resolution, time-fre-

quency localization, multidirectionality and anisotropy, but also outdoes the limitations of wave-

let transform in representing high-dimensional singular data such as edges and contours.

Therefore, researchers have been exploring new MGA-based image compression standards

rather than the JPEG2000 standard. However, due to the difference in terms of the data struc-

ture, redundancy and decorrelation between wavelet and MGA, as well as the complexity of

the coding scheme, so far, no definitive researches have been reported on the MGA-based

image coding schemes. In addressing this problem, this paper proposes an image data com-

pression approach using the hidden Markov model (HMM)/pulse-coupled neural network

(PCNN) model in the contourlet domain. First, a sparse decomposition of an image was per-

formed using a contourlet transform to obtain the coefficients that show the multiscale and mul-

tidirectional characteristics. An HMM was then adopted to establish links between coefficients

in neighboring subbands of different levels and directions. An Expectation-Maximization (EM)

algorithm was also adopted in training the HMM in order to estimate the state probability matrix,

which maintains the same structure of the contourlet decomposition coefficients. In addition,

each state probability can be classified by the PCNN based on the state probability distribution.

Experimental results show that the HMM/PCNN -contourlet model proposed in this paper

leads to better compression performance and offer a more flexible encoding scheme.

1 Introduction

The ability of multiscale geometric analysis (MGA) theory to process high-dimensional data is

better than that of wavelet transform [1]. Since the birth of the JPEG2000 standard, researchers

have conducted extensive research on image coding based on the MGA method, among which

the most representative research results include image coding based on Ridgelet transform [2–

5], Curvelet transform [6, 7], Contourlet transform [8–16], Bandelet transform [17, 18], and

based on directional wavelet transform [19], etc. Besides, due to computational complexity

and redundancy problems, these researches focused primarily on Contourlet transform. Spe-

cifically, in 2004, Eslami and Radha proposed an image coding method, wavelet-based
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contourlet transform (WBCT), using CDF 9/7 wavelet instead of Laplacian pyramid (LP)

decomposition to solve the 4/3 redundancy in the Contourlet, and also achieved good image

compression performance [9, 10]. Nguyen constructed a new directional filter bank (DFB) in

2005 with six high-pass directional subbands and two low-pass directional subbands, and pro-

posed a new contourlet transform, whose image coding performance is better than that of

wavelet transform [20]. In 2009, Tanaka [21] proposed a new type of contourlet transform in

combination with a two-dimensional DFB bank and directional wavelets, which were both

simple implementation and low calculation costs, and its image coding performance is supe-

rior to the contourlet proposed by Minh N. Do [1]. In 2012, Hong and Hang built a short-type

directional filter, whose DFB is implemented in only a few selected directional subbands. The

selection of subbands was accomplished by a mean-shift-based decision procedure, and the

embedded subband coding with optimized truncation (ESCOT) coding was adopted, which

reduced computational complexity and achieved better image compression performance [22].

In 2013, Gehrke et al. [23] established a mathematical relationship between the coding gain

and the DFB coefficient, and a new DFB was proposed based on the numerical optimization

criterion of DFB coding gain in the lifting scheme, and its image compression performance

outperformed the contourlet. In 2015, Naimi and Beloulata [24] proposed a multiple descrip-

tion image coding method based on contourlet transform, which can reliably transmit useful

information to the encoder, so as to effectively code when packet loss occurs during the trans-

mission of compressed code stream. They also demonstrated that the image coding perfor-

mance surpassed wavelet transform. In 2016, Nejati et al. [25] presented the boosted multi-

scale dictionary learning in the wavelet domain for image compression, which had better

image compression performance than JPEG, JPEG2000 and JPEG-XR methods. Besides, there

is also a need to clarify that MGA-based coding can be utilized not only for image data com-

pression, but also for digital watermarking [26], dictionary learning [27, 28], image quality

assessment [29], image recognition [30, 31], and so on.

In recent years, research on contourlet based image coding tends to be combined with

human visual features. This is because the natural image itself contains a lot of redundant

information, which can be further compressed [32, 33]; simple cells in the visual cortex recep-

tive field possesses a sparse coding mechanism, which can remove a lot of redundant informa-

tion and capture only useful information [34–36]. This is selective attention to visual

perception [37–39]. The idea of considering human visual features for MGA can best be real-

ized in image data compression applications. For this reason, we would like to report the result

of research on image data compression of combined HMM/PCNN model in the contourlet

domain, which is based on the previous research [40].

The paper is organized as follows: In Section 2, the study introduces some theoretical prepa-

rations, including the contourlet transform and the HMM-contourlet model. In Section 3, a

PCNN model and an adaptive PCNN are illustrated. Section 4 gives the SPIHT algorithm and

its procedure. Section 5 explains how to adjust the SPIHT algorithm in the contourlet domain

and combine the HMM model with a PCNN to realize a hybrid HMM–PCNN, thereby

improving the SPIHT algorithm by classifying the coefficients. Section 6 describes the algo-

rithm used in the proposed approach, the experimental results and their analysis, and conclu-

sions are discussed in Section 7.

2 Theoretical preparation

2.1 Contourlet transform

The contourlet transform is composed of a Laplacian pyramid (LP) and directional filter banks

(DFBs), where the former composition extracts the high-frequency partition of an image,
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while the latter composition collects the directional information of the high-frequency parti-

tion and achieves a more efficient performance in terms of sparse representation [1]. Contour-

let transform usually first uses multiscale decomposition to capture the point discontinuities

distributed along the geometric edges of an image, which is similar to that of wavelet, and then

the transform links the closed point discontinuities into linear structures, namely contour seg-

ments, based on the directional information. This process can be iterated from a coarse signal

to a detailed signal, resulting in a series of bandpass images, as shown in Fig 1.

In 2005, Do and Vetterli [1] proposed a simplified DFB, which is intuitively constructed by

two blocks. The first block is a quincunx filter bank which has two channels, which can divide

a 2-D spectrum plane into horizontal and vertical portions. The second block is a shearing

operator adopted for reordering the samples of the image, as is shown in Fig 2.

An LP and DFBs are combined to form a two-stage filter bank in the contourlet transform.

DFBs are used for capturing the direction information of the high-pass partition. However,

some low-pass partitions may leak into the high-pass partitions, implying that a simple DFB

cannot achieve the sparse representation of an image. Therefore, an LP is used to make up for

this drawback of DFB: after removing the low-pass partition of an image, the DFB processes

the high-pass partition and links the point discontinuities to describe the geometric edges of

the image, namely, the contours.

Fig 1. Iterated LP decomposition from coarse signal to fine signal.

https://doi.org/10.1371/journal.pone.0236089.g001

Fig 2. A 2-D spectrum partitioning using quincunx filter banks with fan filters.

https://doi.org/10.1371/journal.pone.0236089.g002
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2.2 HMM in contourlet domain

An image can be decomposed into many coefficients distributed in many directional subbands

at different scales. In other words, a subband contains a bound of coefficients that exhibit spe-

cific directional features. According to the statistics carried out by Po and Do [41], these coeffi-

cients are in generalized Gaussian distribution but marginally non-Gaussian. The entire

distribution can be described as a zero-mean Gaussian mixture model, in which the coeffi-

cients can be divided into large ones that possess larger variance and present the edges of the

geometry, and small ones that possess smaller variance and present the plane areas. A single

contourlet coefficient is in one of the two states. Therefore, Po and Do [41] used various hid-

den states to label the coefficients and link them with the hidden states. There are links

between the coefficient and its parent, its cousins, and its neighbors. Statistics show that the

parent coefficient is the most significant predictor when considering the three types of related

coefficients individually [41]. To reduce the complexity of the model, we only adopt the rela-

tionship between the coefficient and its parent. As mentioned above, these coefficients are

actually correlated with each other through hidden states. Thus, we adopt an HMM to describe

the statistical model. An HMM in contourlet will cause the tree structure to be consistent with

the spatial orientation tree in an SPIHT algorithm [15, 42].

In an HMM in the contourlet domain, the hidden state chain is used to describe the state of

the coefficient, while the state observation chain is used to describe the value of the coefficient.

A parent state is correlated with four child states. From the coarsest scale, the initial hidden

state spreads through the tree structure by iteratively multiplying the state transition matrix.

The coefficient value can then be calculated by multiplying the hidden state by the observation

probability matrix. The tree structure of the HMM is shown in Fig 3. In order to estimate the

parameters of the HMM, we used the EM algorithm [43].

3 PCNN model

3.1 The parametric model of PCNN

Eckhorn [44] proposed a connection model in 1990 that revealed pulse synchronization emis-

sions in the cat’s visual cortex. After that, Johnson presented a pulse coupled neural network

(PCNN) based on Eckhorn’s model in 1999 [45], which implemented a function similar to the

visual cortex of the mammalian brain. Different from other artificial neural networks, the

PCNN consists of only a single layer which is formed by a 2-D array of neurons without

Fig 3. Links of the subbands of a contourlet decomposed by 4,4,8,8 directions at each scale. The hidden states

(black circles) are correlated to predict the observation states (white circles).

https://doi.org/10.1371/journal.pone.0236089.g003
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training. Fig 4 shows a simplified PCNN model, which consists of three parts: the input mod-

ule, the nonlinear modulation module and the pulse generator. The formulas for describing

the PCNN model are as follows:

FijðnÞ ¼ expð� aFklÞFijðn � 1Þ þ Sij þ VF
X

kl

MijklYklðn � 1Þ ð1Þ

LijðnÞ ¼ expð� aLklÞLijðn � 1Þ þ VL
X

kl

WijklYklðn � 1Þ ð2Þ

UijðnÞ ¼ FijðnÞð1þ b LijðnÞÞ ð3Þ

EijðnÞ ¼ expð� aEÞEijðn � 1Þ þ VEYijðnÞ ð4Þ

YijðnÞ ¼

(
1; UijðnÞ � EijðnÞ

0; otherwise
ð5Þ

where aFkl, a
L
kl and αE are the time constants; VF, VL, VE are the magnitude thresholds; β is the

linking strength of PCNN. Each neuron is denoted with indices (i, j), and one of its neighbor-

ing neurons is denoted as (k, l). Sij is the stimulation of the neuron at (i, j). In nth iteration, the

feeding input Fij(n) is combined with the linking input Lij(n) to form the internal activity

Uij(n) of the neuron. The neuron receives input signals via feeding matrixMijkl, and each neu-

ron is linked to its neighbor, so that the output signal Yij(n) of a neuron modulates its neigh-

bor’s activity via the linking matrixWijkl. Once a neuron is excited, it begins to communicate

with its neighbors and encourages it through interconnections ofWijkl. When the internal

activity Uij(n) is greater than the dynamic threshold Eij(n), the corresponding neuron will be

triggered, otherwise the neuron will remain in its earlier state. The internal activity consists of

the feeding input and the linking input, so its value is affected by both Fij and Lij. Thus, if a

neuron is activated, the neighboring neurons with similar tension will also be activated in the

next iteration.

Fig 4. Structure of a PCNN.

https://doi.org/10.1371/journal.pone.0236089.g004
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Due to its unique structure, PCNN has many outstanding characteristics that are beneficial

to image compression and image classification [46]. These characteristics are pulse coupling,

nonlinear multiplicative modulation, neighbor-capturing and threshold mechanism of expo-

nential attenuation. Among these characteristics, neighbor-capturing is the most important,

because the classification can be implemented by this feature, and an adaptive method

designed to obtain a more reasonable β.

3.2 Adaptive PCNN model

Is has been studied that the linking strength β has an influence on the activation increment of

a neuron. Specifically, larger β results in easier activation. Besides, β varies with the differences

between a certain pixel and its surrounding pixels, which means that larger differences lead to

easier activation. Therefore, to establish appropriate β values for all neurons, a contrast opera-

tor dec(i, j) is adopted in this paper to measure the differences between the neighboring central

pixels in the grayscale image.

devði; jÞ ¼
maxf ði; jÞ � minf ði; jÞ

maxf ði; jÞ
; b ¼ devði; jÞ ð6Þ

wheremaxf(i, j) andminf(i, j) represent the maximum value and minimum value of the con-

tourlet coefficients in the neighborhood of a target pixel. Through this operator, an adaptive β
can be obtained: high contrast of the local area around a pixel means the corresponding neu-

ron is in an active state and will be easily triggered. Therefore, the local contrast of the target

pixel can be normalized to calculate the adaptive β as a real parameter of PCNN, and the calcu-

lation is expressed as shown in Eq (7), where S is a decomposition subband and G is the gradi-

ent of a local area.

Gi ¼

� 1 0 1

� 2 0 2

� 1 0 1

2

6
6
6
4

3

7
7
7
5
� S;Gj ¼

1 2 1

0 0 0

� 1 � 2 � 1

2

6
6
6
4

3

7
7
7
5
� S;G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x þ G2

y

q
ð7Þ

Simialr to the configuration in [40], we set VE and αE are set as VE = 1 − G, αE = G for the

adaptive PCNN model.

4 SPIHT algorithm

In the SPIHT algorithm [47], the spatial orientation tree is defined as a structure that links the

coefficients across adjacent subbands, as shown in Fig 5.

For a certain wavelet coefficient, where (i, j) are the coordinates of the coefficient, four sets

are defined as follows: O(i, j) is the set of coordinates of all offspring of the coefficient; D(i, j) is

the set of coordinates of all descendants of the coefficient; H is the set of coordinates of all spa-

tial orientation tree roots; L(i, j) = D(i, j)—O(i, j).
SPIHT adopts a classification criterion in which all coefficients are assumed to be either sig-

nificant or insignificant with respect to established thresholds. That is to say, a coefficient is

either important, if it is larger than the threshold, or unimportant, as shown in the function:

SnðTÞ ¼

(
1; maxðjci;jjÞ � 2n

0; maxðjci;jjÞ < 2n
ð8Þ

where T is a set of coordinates, 2n is the threshold and ci,j indicates the wavelet coefficients
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distributed in each subband, indexed by the coordinate subscripts i and j. Based on the distri-

bution characteristics of the wavelet coefficients and the structure of the spatial orientation

tree, we define three lists to organize the coefficients in implementing the coding: significant

pixels (LSP), insignificant pixels (LIP), and insignificant sets (LIS). With these denotations,

SPIHT algorithm can be described as follows:

Initialization N = floor(log2(max(|c(i, j)|))), where N indicates the upper limit of the encod-

ing loop; Initialize the threshold T0 = 2N; Initialize the lists, letting LIS = {D(i, j)|(i, j) 2 H, chas-
nonzerodescendant} and label all elements in LIS with “A”, LSP = ;, LIP = {(i, j)|(i, j) 2 H}.

Sorting pass

1. For each element c(i, j) in the LIP, if c(i, j) is significant, output Sn(i, j) = 1. Then move the

coordinate of c(i, j) into the LSP and output the sign of c(i, j). If c(i, j) is insignificant, then

output Sn(i, j) = 0.

2. For each element D(i, j) in the LIS.

(i). If the elements in D(i, j) are significant and labelled with “A”, output Sn(i, j) = 1. If the

offspring of D(i, j) is significant, then output both the Sn(i, j) = 1 and the sign bit, while

simultaneously adding the coordinates of the offspring to the LSP. If the offspring of

D(i, j) is insignificant, output Sn(i, j) = 0 and add the coordinates of the offspring to the

LIP. If the offspring have descendants, move the coordinates of those descendants to the

LIS and label the corresponding coefficients with “B”.

Fig 5. A spatial orientation tree in a wavelet. The coefficient colored black has no descendants; other coefficients of

same colors possess branches that extend in one direction.

https://doi.org/10.1371/journal.pone.0236089.g005
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(ii). If the elements in D(i, j) are insignificant, output Sn(i, j) = 0. For the pixel set labelled

with “B”, if the pixel set is significant, output Sn(i, j) = 1, add each descendant to the LIS,

label the coefficient with “A”, then remove the descendants from the LIS. If the elements

in D(i, j) are insignificant, then output Sn(i, j) = 0.

Refinement pass Output N bits of the absolute value of the coefficient in the last coding

level from the beginning, where N is the exponential of the current threshold.

Quantization scale update Decrease N by 1 and go to the sorting pass.

5 HMM/PCNN-contourlet coding using SPIHT

5.1 The method

In [41] Po and Do proposed a contourlet-HMM method that there are excellent performances

for image denoising and retrieval. We know further that hybrid HMM/ANN model has been

successfully applied in the field of speech recognition. That is because the combined model

takes advantage of the pattern classification ability of ANN and the modeling ability of HMM

in spatiotemporal use. Therefore, we would try to apply a hybrid HMM/ANN model in the

contourlet domain for image processing applications such as image compression. As the third

generation of ANN, PCNN model simulates the activity of neurons in cat’s visual cortex that

not only has good biological characteristics, does not need any training and learning, but also

is easy to combine with other methods. Simultaneously PCNN model also indicates the excel-

lent performance in the field of image fusion application. Therefore, in this paper the PCNN

model is selected as an ANN model, eventually we propose a hybrid HMM/PCNN model in

the contourlet domain for image compression. In brief, The HMM/PCNN model make full

use of the HMM’s advantages of learning ability, decoding ability, ability to process the time

sequence signals, and PCNN’s static classification ability. There are several ways to combine

the HMM and a PCNN:

1. Normalize the time sequence signal using the HMM, and then input the processed signal

into the PCNN to do the classification.

2. Use PCNN to calculate the observation matrix of HMM.

3. Use PCNN to implement the three algorithms (forward algorithm, backward algorithm,

Viterbi algorithm) in the HMM.

4. Establish an HMM network.

Therefore, based on all the contents mentioned before, we would like to combine HMM

and PCNN to optimize the Po and Do’s model, then apply this model to SPIHT to validate its

effectiveness.

According to Po and Do’s work, the distribution of the contourlet coefficients has the fol-

lowing characteristics [41]:

1. The coefficients in the same subband are distributed as a zero-mean Gaussian mixture con-

ditioned on their parent coefficients.

2. There are two types of coefficients within the Gaussian mixture distribution: the large ones

possess a large variance and a low peak, while the small ones possess a small variance and a

high peak. The former presents the edges and the latter presents the plane areas.

Based on the distribution characteristics, Po and Do successfully established an HMM con-

tourlet domain, where the state transition matrix and state probability matrix were calculated

and used. In order to combine the HMM and PCNN, we need to add PCNN to the HMM in
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contourlet. Inspired by the first kind of combination of HMM and PCNN mentioned above,

we hope to find some features in the contourlet coefficients for PCNN to process, and the fea-

ture space found is the state probability.

The reasons for choosing state probability as classification features are as follows:

1. the magnitudes of the coefficients are unreliable for judging coefficients being large or

small, since the magnitude of a certain coefficient may be quite small, but it exists in a

Gaussian distribution with large variance;

2. Some coefficients may have near or equal probabilities of being large or small, which may

lead to uncertainty in the processing results, because these coefficients cannot be well

identified;

3. the EM algorithm for the HMM when describing the same image can result in different

parameters, where once the difference between the new parameter and the last parameter is

less than the given threshold, the iterative process stops, which causes the process to con-

verge to different parameter sets, leading to the uncertainty of the process result. Therefore,

in order to improve the processing efficiency, we use PCNN to produce a Boolean output:

to transfer the uncertainty of some coefficients’ probabilities into certainty.

Therefore, to implement the classification of the state probability matrix, we adopt the

PCNN mentioned above. The state probability matrix has the same multilayer and multidirec-

tional structure as the contourlet subbands. For a certain coefficient c(i, j, k), x(denoting the x-th

coefficient of the kth subband in the jth direction at the ith scale) and its corresponding two-

state probabilities sl
ði;j;kÞ;x and ss

ði;j;kÞ;x(denoting the large state and small state, respectively), they

satisfy

pðsl
ði;j;kÞ;xjcði;j;kÞ;xÞ þ pðs

s
ði;j;kÞ;xjcði;j;kÞ;xÞ ¼ 1 ð9Þ

The state probabilities distributed in each subband are considered as “pixels” whose gray

levels vary between 0 and 1. If the probabilities in the PCNN are inputted with given parame-

ters, the PCNN produces a two-value output, where 0 represents a small state and 1 represents

a large state. With this output, a clearer subband of the state probability matrix can be obtained

using the Zelda test image, as shown in Fig 6.

To sum up, we first decompose the image into contourlet coefficients, then we establish an

HMM in contouret domain and obtain the state transition matrix and state probability matrix.

After that, we adopt PCNN to process the state probability matrix to separate the coefficients

in the same subband into two groups. Finally, we encode the coefficients with SPIHT.

Since the classification operation of coefficients is considered in our coding scheme, there

is need to adjust the original coding method, just as the two classified coefficients are encoded

with different compression rates and transmitted separately. After decoding, the two types of

classified coefficients are recombined for reconstruction.

5.2 Implementation

The flowchart of the HMM/PCNN-contourlet model using the SPIHT algorithm is as follows:

firstly, the contourlet transform was adopted for an image to obtain the coefficients, and then

HMM was used to model the coefficients in a tree strcuture. HMM underwent training by the

EM algorithm to obtain the state probability matrices. Moreover, PCNN was applied to classify

the subband coefficients into two groups according to state probability values. Finally, all the

subband coefficients were coded, transmitted, and decoded with the SPIHT algorithm.
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To implement the SPIHT algorithm in the contourlet, the distribution format of the coeffi-

cients must be considered. The distribution of the related contourlet coefficients is shown in

Fig 6. Its structure is similar to that of wavelet coding, in which coefficients are distributed in

subbands of different scales and different directions. There are also interscale links between

coefficients of different scales in adjacent subbands. However, compared to wavelet, two differ-

ences still require attention in contourlet coding. The first is that each parent contourlet coeffi-

cient has four children, while each parent wavelet coefficient has only three. The second is that

the structure of links between related coefficients changes with the variation of decomposition

direction at different scales, while stationary links exist among parent wavelet coefficient and

their children. Therefore, to implement this coding in the contourlet domain, it is necessary to

adjust the spatial orientation tree. The concrete implementation is presented as shown in Fig 7

For the first difference, we established one more directional link for the root coefficients to

ensure that, except for the coefficients in the highest frequency partition, each coefficient has

four children in the contourlet domain, which makes the original spatial orientation tree

Fig 6. Two subbands of the state probability of “Zelda”, the leftside of each shows unprocessed subband and the

rightside shows processed subband. It can be observed that the state probability processed by PCNN is clearer than

the unprocessed probability and easier to classify.

https://doi.org/10.1371/journal.pone.0236089.g006

Fig 7. Related coefficients distribution in a contourlet. The coefficient colored black is the root of the other colored

ones; coefficients of same colors are in the same direction.

https://doi.org/10.1371/journal.pone.0236089.g007
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become a new tree structure. For the second difference, the link structures between related

coefficients on adjacent scales changed when the number of decomposition directions differed

on the two scales due to multiple directions in the contourlet. Thus, we improve the indexing

method of correlation coefficients in the spatial orientation tree.

In a contourlet transform, each coefficient is correlated with a corresponding node in the

tree, and each parent node is related to four children nodes. The process of indexing a specific

coefficient is actually realized by searching the coordinates of the nodes in the tree. The

decomposition results in various coefficient matrices (or subband matrices) at different levels

and directions, but the coefficient matrices in each subband can be processed as a whole, as

shown in Fig 8

For a clearer description, assuming that the coordinates of a certain node are (x, y) and the

length of the root matrix is T; then all possible indexing methods for offspring can be described

as follows:

If (x, y) is in the root, then the coordinates of its offspring are

ðT þ x; yÞ ð10Þ

ðT þ x;T þ yÞ ð11Þ

ð2T þ x; yÞ ð12Þ

ð2T þ x;T þ yÞ ð13Þ

If the 2(n+1)th subband is the horizontal decomposition, then the coordinates of the off-

spring are

ðT þ 2x � 1; yÞ ð14Þ

ðT þ 2x;T þ yÞ ð15Þ

Fig 8. Coordinates of the whole decomposition distribution.

https://doi.org/10.1371/journal.pone.0236089.g008

PLOS ONE The contourlet domain for image data compression

PLOS ONE | https://doi.org/10.1371/journal.pone.0236089 August 13, 2020 11 / 23

https://doi.org/10.1371/journal.pone.0236089.g008
https://doi.org/10.1371/journal.pone.0236089


ðT þ 2x � 1; 2n� 1T þ yÞ ð16Þ

ðT þ 2x; 2n� 1T þ yÞ ð17Þ

If the 2(n+1)th subband is the vertical decomposition, then the coordinates of the offspring

are

ð2nT þ x; 2y � 1Þ ð18Þ

ð2nT þ x; 2yÞ ð19Þ

ð2nþ1T þ x; 2y � 1Þ ð20Þ

ð2nþ1T þ x; 2yÞ ð21Þ

We replaced the original coefficient indexing method with this improved one to adapt to

the variable spatial orientation tree structure of the contourlet. With this adjustment, a novel

SPIHT coding algorithm based on contourlet is proposed. The entire coding procedure is con-

sistent with that of wavelet; the difference lies only in the concrete implementation, as analyzed

above. Fig 9 shows the coding results using a Goldhill test image.

In fact, due to the redundancy caused by an LP of the contourlet transform, the application

of SPIHT in the contourlet alone cannot achieve better coding performance than SPIHT in

wavelets. In [10], they made improvements to solve the problem of redundancy and depen-

dency in the wavelet domain. In their work, LP decomposition was replaced by wavelet

decomposition, which maintained a non-redundant transform, as shown in Fig 10. In our

study, a hybrid HMM–PCNN was adopted to meet the expectation of a better coding result

than a SPIHT contourlet.

Fig 9. SPIHT based on a contourlet with 4,4,8,8 directions at each level; (a) Original image, (b) Reconstructed image

after coding with 0.15 bpp, (c) Reconstructed image after coding with 0.3 bpp. It can be observed that (c) is clearer than

(b) Reprinted from [40] under a CC BY license, with permission from IEEE publisher, original copyright 2019.

https://doi.org/10.1371/journal.pone.0236089.g009
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6 Experimental results and analysis

6.1 PCNN parameters

Based on the forementioned methods for PCNN, we’ve illustrated some key points to achieve

the adaptivity. Herein, other parameters of PCNN are set as follows: aLkl ¼ a
F
kl ¼ 0:8; VL = VF =

0.5;Wijkl =Mijkl = [1 1 1;1 0 1;1 1 1]; N = 10; where N is the iteration times,Wijkl is the weight

matrix of the linking channel connections, andMijkl is the weight matrix of the feeding channel

connections.

6.2 Experimental procedure

The entire experimental flowchart is shown in Fig 11.

The algorithm of the contourlet-HMM–PCNN model for SPIHT coding is as follows:

Fig 10. Improved contourlet-based SPIHT and contourlet-based SPIHT perfomance. (a) shows the original image.

(b) shows the method in [9], which adopts the contourlet that replaces the LP decomposition with wavelet. (c) shows

the image coded with an contourlet based SPIHT. From the images, it can be observed that textures in (b) are more

clear than the textures in (c) Reprinted from [40] under a CC BY license, with permission from IEEE publisher,

original copyright 2019.

https://doi.org/10.1371/journal.pone.0236089.g010

Fig 11. Hybrid HMM–PCNN model in the contourlet domain for the SPIHT algorithm, where CHMM denotes the

HMM in the contourlet domain. Reprinted from [40] under a CC BY license, with permission from IEEE publisher, original

copyright 2019.

https://doi.org/10.1371/journal.pone.0236089.g011
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1. Use contourlet to decompose the original image into coefficients. The levels of decomposi-

tion chosen were [2, 2, 3, 3], which resulted in 4, 4, 8, 8 subbands at each decomposition

level. In the contourlet transform, a 9/7 filter was used as a pyramid filter and a PKVA filter

was used as a directional directional filter.

2. Train the coefficients with EM algorithm to obtain the HMM in the contourlet domain.

With the HMM, the state probability matrix, the Gaussian standard deviation matrix, and

the transition probability matrix can be obtained.

3. Input each state probability matrix into the adaptive PCNN for the state probabilities to be

classified, and classify the coefficients in the corresponding subbands according to the

result. In this step, the PCNN processes the state probabilities and divides them into differ-

ent groups, which is similar to the segmentation of images in the pixel domain:

1. Denote a subband partition of the state probability matrix as sj,k, n.

2. Set Fij = 0, Lij = 0, Uij = 0, Eij = 0, Yij = 0.

3. Use the 3 × 3 matrix of the PCNN linking channel of the PCNN to perform a convolu-

tional operation with the subband.

4. Calculate Fij, Lij, Uij, Eij, Yij. If the maximum iteration number is reached, stop

triggering.

5. Choose an element in the state probability matrix that represents a large coefficient with

an output of 1.

6. Deduct the triggered subband from the original subband to obtain two separated sub-

bands slj;k;n and ssj;k;n.

7. Multiply the state probability subbands ssj;k;n and slj;k;n by the corresponding coefficient

subbands to obtain the classified coefficients csj;k;n and csj;k;n.

4. Encode the two groups of classified coefficients using the SPIHT algorithm. Note that dif-

ferent compression ratios can be used for both parts. In our experiment, both groups used

the same compression ratios.

5. Receive two bit streams, and combine them into the entire distribution of decoded coeffi-

cients, and then recompose the coefficients into a reconstructed image.

6.3 Experimental results

This experiment was performed on MATLAB R2018b on a PC with Intel Core i7-7700/3.6

GHz/16 GB. The size of all gray images are 512 rows and 512 columns. To evaluate the perfor-

mance of the proposed algorithm, we used the comparing criteria like peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM). In Table 1, standard SPIHT in wavelet was used

as the baseline to make a comparison with the contourlet SPIHT. The abbreviation WT refers

to wavelet transform and CT refers to contourlet transform. In Table 2, the large ratio refers to

the compression rate of the coefficients with larger variance, and the small ratio refers to the

compression rate of the coefficients with smaller variance.

Table 1 shows the image compression results of the SPIHT based on the contourlet trans-

form, while Table 2 shows the image compression results of the SPIHT based on the contour-

let-HMM–PCNN model. Both tables use the same image to show the performance of the
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coding method: Butterfly, Barbara, Zelda, Goldhill, Man, Mandrill, Peppers, and Camera. Figs

12 and 13 show an objective comparison of the performances of the two algorithms. Fig 14

shows some subjective visual comparisons between wavelet SPIHT coding performance and

the contourlet-HMM–PCNN SPIHT encoding performances.

As can be seen from the above figures and tables, as far as PSNR and SSIM are concerned,

the performance of the contourlet-HMM–PCNN SPIHT coding scheme is better than the sim-

ple combination of SPIHT and contourlet. The proposed algorithm resulted in a PSNR of 0.1

to approximately 1.1 dB higher and an SSIM of 0.01 to approximately 0.04 higher than the

original algorithm, indicating that the contourlet-HMM–PCNN model actually optimizes the

coding process.

In some other comparisons, the compression rates in the contourlet-HMM–PCNN SPIHT

and the wavelet SPIHT were both 0.15 bpp, but it could be seen that the wavelet SPIHT still

performed better than the SPIHT contourlet with the HMM–PCNN model. Image reconstruc-

tion performed by the wavelet SPIHT tends to have clearer boundary areas, especially in the

high-frequency parts. Therefore, once the redundancy caused by the LP in the contourlet

transform is removed, better results can be obtained.

Similarly, in [48], the author proposed a novel generalized SPIHT algorithm, called set par-

titioning coding system (SPACS), which has good performance. Therefore, in Table 3, we

make a brief comparison between our method and that of SPACS. The image ‘barbara’ is used

and PSNR values are compared at different bit rates. It can be seen from the table that the per-

formance of the contourlet HMM-PCNN based model is poor, which is mainly due to the

Table 1. Image compression performance of SPIHT.

image Butterfly Barbara

Rate(BPP) 0.1500 0.2000 0.2500 0.3000 0.1500 0.2000 0.2500 0.3000

WT PSNR(dB) 27.645 28.203 28.543 30.125 24.563 24.998 25.296 25.677

CT PSNR(dB) 25.947 26.80 27.130 27.296 23.023 23.585 23.843 24.010

WT SSIM 0.7064 0.7592 0.8064 0.8130 0.6531 0.6730 0.7150 0.7624

CT SSIM 0.6911 0.7178 0.7408 0.7456 0.6004 0.6329 0.6359 0.6581

image Zelda Goldhill

Rate(BPP) 0.1500 0.2000 0.2500 0.3000 0.1500 0.2000 0.2500 0.3000

WT PSNR(dB) 30.962 31.586 32.792 33.112 27.684 28.174 28.746 30.543

CT PSNR(dB) 30.867 30.907 32.021 32.337 25.827 26.340 26.866 27.242

WT SSIM 0.8306 0.8522 0.8726 0.8591 0.7138 0.7372 0.7862 0.8111

CT SSIM 0.8239 0.8247 0.8524 0.8591 0.6109 0.6472 0.6750 0.6944

image Man Mandrill

Rate(BPP) 0.1500 0.2000 0.2500 0.3000 0.1500 0.2000 0.2500 0.3000

WT PSNR(dB) 24.201 24.784 25.231 26.464 20.982 21.203 21.771 22.364

CT PSNR(dB) 24.014 24.606 24.932 25.169 20.690 21.194 21.438 21.777

WT SSIM 0.6002 0.6529 0.6812 0.7061 0.4197 0.4884 0.5103 0.5384

CT SSIM 0.5859 0.6238 0.6516 0.6718 0.4066 0.4632 0.4951 0.5188

image Peppers Camera

Rate(BPP) 0.1500 0.2000 0.2500 0.3000 0.1500 0.2000 0.2500 0.3000

WT PSNR(dB) 27.541 28.203 29.461 30.521 27.743 28.641 29.354 31.231

CT PSNR(dB) 27.101 27.861 28.261 28.488 27.001 27.730 28.519 28.867

WT SSIM 0.7539 0.7847 0.7948 0.8411 0.7923 0.8179 0.8388 0.8515

CT SSIM 0.7354 0.7594 0.7703 0.7816 0.7653 0.7995 0.8236 0.8398

https://doi.org/10.1371/journal.pone.0236089.t001
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redundancy of the contourlet transform. However, as shown in other experiments, the con-

tourlet HMM-PCNN model has proven to show better performance than the contourlet

model.

We also compared the proposed method with several recently proposed learning based

mthods including the method by Theis [49], Balle [50], the fully convolutional vector quantiza-

tion network(VQNet) [51], the soft-to-hard VQ based method (SHVQ) [52], and a state-of-

the art BPG method was also compared [51]. Both the PSNR and the SSIM were used to evalu-

ate the performance of the test methods, and the test images are from Kodak. The test results

are shown in Figs 15 and 16. Note that the test image Butterfly is from reference [53].

We mainly tested the algorithms with low bit rate since contourlet transform is redundant

and performs poorly at high bit rate encoding. According to the PSNR results, it can be

observed that at lower bit rate our model performs similarly with the methods of Theis and

Balle. With the bit rate becoming larger, our method is inferior to the other methods.

Table 2. Image compression results of SPIHT based on the contourlet-HMM–PCNN model on different bit rate (bpp).

Image Groups of big coefficients Group of small coefficients PSNR(dB) SSIM

Butterfly 0.1500 0.1500 26.5959 0.7231

0.2000 0.2000 26.9279 0.7369

0.2500 0.2500 27.0572 0.7474

0.3000 0.3000 27.5864 0.7658

Barbara 0.1500 0.1500 23.5534 0.6374

0.2000 0.2000 23.9111 0.6699

0.2500 0.2500 24.2305 0.6867

0.3000 0.3000 24.6280 0.7132

Zelda 0.1500 0.1500 31.4631 0.8386

0.2000 0.2000 32.0071 0.8506

0.2500 0.2500 32.0854 0.8667

0.3000 0.3000 32.4087 0.8639

Goldhill 0.1500 0.1500 26.3568 0.6462

0.2000 0.2000 26.9466 0.6778

0.2500 0.2500 26.2877 0.7034

0.3000 0.3000 27.4705 0.7196

Man 0.1500 0.1500 24.5138 0.6298

0.2000 0.2000 24.9985 0.6628

0.2500 0.2500 25.5123 0.6900

0.3000 0.3000 25.7233 0.7097

Mandrill 0.1500 0.1500 21.1476 0.4572

0.2000 0.2000 21.5482 0.5013

0.2500 0.2500 21.8008 0.5303

0.3000 0.3000 22.0296 0.5618

Peppers 0.1500 0.1500 27.7252 0.7569

0.2000 0.2000 28.1414 0.7732

0.2500 0.2500 28.4153 0.7872

0.3000 0.3000 28.7465 0.7920

Camera 0.1500 0.1500 27.6717 0.7998

0.2000 0.2000 28.1938 0.8283

0.2500 0.2500 28.6629 0.8472

0.3000 0.3000 29.1115 0.8628

https://doi.org/10.1371/journal.pone.0236089.t002
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Generally, the BD-rate increases by 6.1% when compared with VQ-Net, reduces by 0.4% when

compared with Theis’s method, increases by 5.9% when compared with Balle’s method.

According to the SSIM result, it can be observed that our method performs not so satisfactory

when compared to the other methods.

The compression of the classified coefficients with different proportions is as follows: As

shown in the flowchart, another novel characteristic of our method is that the original coeffi-

cients are separated into two categories. Consequently, we can encode the two parts at different

levels to achieve flexible data transmission. As mentioned earlier, the coefficients modelled by

HMM represent two states: plain area as low frequency and edges or contours as high fre-

quency. Although in previous experiments, we used the same compression rate for both parts,

the fact is that we can use different proportions for the two sets of coefficients. Table 3 shows

how different proportions of data affect compression performance, where loop 1 and loop 2

indicate the encoding loops for the two categories, respectively. Generally, with more encoding

Fig 12. Comparison of PSNR between the contourlet transform and contourlet-HMM–PCNN algorithms.

https://doi.org/10.1371/journal.pone.0236089.g012

Fig 13. Comparison of SSIM between the contourlet transform and contourlet-HMM–PCNN algorithms.

https://doi.org/10.1371/journal.pone.0236089.g013
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loops, the compression performance will be better. Fig 17 offers an intuitive visual evaluation

for part of the data listed in Table 4.

In the SPIHT algorithm, there is an idea that important information should be transmitted

first, where the value of a certain contourlet coefficient indicates its importance. On the con-

trary, the state probability produced by the learning procedure is also taken into consideration

in our method, which makes it a two-stage selection: the area with saliency is first selected and

then the significant coefficients are transmitted in the area. In reality, the first stage can be

Fig 14. Visual comparisons between contourlet-HMM–PCNN SPIHT and wavelet SPIHT coding performances.

Reprinted from [40] and [53] under a CC BY license, with permission from IEEE publisher, original copyright 2019,

OSA publisher, original copyright 2014, respectively.

https://doi.org/10.1371/journal.pone.0236089.g014

Table 3. Comparison with SPACS algorithm.

Bitrate(BPP) 0.125 0.25 0.5 1

PSNR of ours(dB) 23.5334 24.2305 27.8603 31.1103

PSNR of SPACS(dB) 24.7584 27.4278 31.2271 36.1186

https://doi.org/10.1371/journal.pone.0236089.t003
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considered as saliency detection, which is based on a probabilistic model. The initial coeffi-

cients are classified into the different parts of an image, which is driven by the distribution of

the data itself rather than human-like attention. In the HMM model, there exist only two

states, so the image can only be classified into two parts, and the PCNN is adopted to generate

a pulse output that can only present two states. In our future research, an HMM with more

states will be used to achieve a more refined classification of an image.

7 Conclusion

In this paper, we fully utilized both the combined model that took advantage of the modeling

ability of the HMM in spatio–temporal use and the pattern classification ability of a PCNN to

construct a hybrid HMM–PCNN model. Moreover, we modulated the image data to match

the HMM–PCNN model. Finally, we verified the effectiveness of the hybrid HMM–PCNN in

contourlet model part [40] through an image compression application with the well-known

SPIHT algorithm: its performance is better than that of the SPIHT contourlet coding. PCNN

Fig 15. Comparisons on PSNR.

https://doi.org/10.1371/journal.pone.0236089.g015

Fig 16. Comparisons on SSIM.

https://doi.org/10.1371/journal.pone.0236089.g016
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has been proven to be a good classifier in recognizing the features captured by the HMM

model, resulting in a more efficient coding method. In future research, we will further use

human visual attention and saliency features to create more effective sparse representations of

texture images.

Fig 17. Visual performance of compression with different proportion of encoding level, for the both two kinds of

coefficients, deeper encoding loop results in better reconstruction.

https://doi.org/10.1371/journal.pone.0236089.g017

Table 4. Compression with different proportion.

Loop1 Loop2 PSNR(dB) SSIM

6 7 18.5784 0.2098

6 8 19.1519 0.2342

6 9 19.6488 0.2624

7 7 22.0211 0.3702

7 8 23.1609 0.3711

7 9 23.7102 0.5002

8 7 24.1670 0.5184

8 8 25.6844 0.6302

8 9 26.5936 0.7080

9 7 25.6114 0.6288

9 8 26.9780 0.7417

9 9 27.3179 0.7892

https://doi.org/10.1371/journal.pone.0236089.t004
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