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Abstract: The article describes an interpolation–analytical method of reconstruction of the IAPWS-
95 equations of state and the modified Benedict–Webb–Rubin equations of state with 32 terms
(mBWR32). The method enables us to provide the thermodynamic closure in 3D computational fluid
dynamics (CFD) calculations of turbomachinery flows with real working media, such as steam and
Organic Rankine Cycle (ORC) fluids. The described approach allows for the sufficient accuracy of 3D
flow calculations and does not require a significant increase in computational cost over perfect gas
calculations. The method is validated against experimental data from measurements and compared
with computational results from the model using the Tammann equation of state. Three turbine
blading systems are considered—a multi-stage configuration from a low-pressure cylinder of a large-
power steam turbine and two ORC microturbines working with organic media HFE7100 and R227ea.
The calculation results obtained using the described method of approximation of the IAPWS-95
and mBWR32 equations exhibit satisfactory agreement with the experimental data, considering
pressures, temperatures and enthalpies in key sections, as well as turbine power and efficiency in
a wide range of changing thermodynamic parameters. In contrast, the Tammann equation of state
provides acceptable results only for relatively small changes of thermodynamic parameters.

Keywords: 3D CFD; equation of state; turbine flow; steam turbine; ORC turbine

1. Introduction

Computational fluid dynamics (CFD) methods are widely used in various fields of
science and technology: power engineering, aviation and astronautics, chemical industry,
oil and gas industry, etc. A leading approach in CFD for gas dynamics and turbomachinery
applications is based on numerical integration of the Reynolds-averaged Navier–Stokes
(RANS) equations. In order to close RANS equations and establish a relation between
the thermodynamic quantities, equations of state are used, the choice of which depends
essentially on the reliability of the obtained computational results.

Currently, the most common equations of state used in 3D calculations are the perfect
gas, Tammann, and Van der Waals equations [1–4]. In many cases, their use is justified and
provides acceptable results. A significant increase in the accuracy of the obtained results
can be achieved with an individual selection of the equations’ constants, as appropriate for
the actual range of change of thermodynamic parameters.

However, when the processes occur in a wide range of thermodynamic conditions
(as in multi-stage steam turbines or in ORC turbines with a large pressure ratio), or when
a phase transition takes place, the simulation accuracy can be significantly reduced [4].
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Then, it is necessary to apply more complex equations of state that are polynomials with a
large number of terms. Examples of such equations are the IAPWS-95 equations of state [5]
and various forms or modifications of the Benedict–Webb–Rubin equations [6–9]. The
IAPWS-95 equations are used to describe the thermodynamic properties of water and
steam, while the Benedict–Webb–Rubin equations of state are applied to a wider range of
working fluids and are among basic equations of the USA National Institute of Standards
and Technology [10]. Unfortunately, direct use of these equations in 3D flow calculations
is currently impossible, because in this case, the computing processor time increases by
1.5–2 orders of magnitude.

In response to this question, in the present paper, an interpolation–analytical method
to represent thermodynamic functions in complex state equations such as IAPWS-95
equations of state and Benedict–Webb–Rubin equations of state is proposed. The use of this
method in 3D CFD calculations allows us to ensure sufficient computational accuracy and,
on the other hand, does not require a significant increase in computational costs over perfect
gas computations. Here, one of the most accurate modifications of the Benedict–Webb–
Rubin thermal equation of state that has 32 terms is used. A method for the determination
of constants of the modified Benedict–Webb–Rubin equation of state with 32 terms, on
the basis of the available fields of thermodynamic values, is described. These constants of
the mBWR32 equation are given for fluids HFE7100 [11] and R227ea [12] working in the
investigated ORC microturbines.

Three-dimensional (3D) CFD calculations of the flow parts of a low-pressure cylinder
(LPC) of a large power steam turbine and two ORC microturbines are carried out with the
help of the software package IPMFlow [13]. The results of CFD calculations obtained with
the proposed reconstruction of the IAPWS–95 and mBWR32 equations are compared with
the available experimental data from the considered turbines and also with the computa-
tional results obtained using the Tammann equation of state. The main purpose of these
studies is the validation of the proposed approach of approximating complex thermody-
namic equations of state rather than a detailed analysis of the thermodynamic processes
and flow phenomena occurring in the investigated turbomachines. In addition, admissible
intervals of change of thermodynamic parameters, for which the use of Tammann equation
of state can yield reasonable results, are established.

2. Mathematical Model
2.1. Flow Solver

Three-dimensional (3D) CFD calculations are performed using the IPMFlow software
package [13], which is the evolution of earlier software packages FlowER and FlowER–
U [14]. It implements the following elements in the mathematical model: Reynolds-
averaged unsteady Navier–Stokes equations [15,16], Menter’s k-ω SST two-equation turbu-
lence model [17], the finite volume method, and the implicit quasi-monotone high-order
ENO-scheme [18]. Such an approach to provide 3D CFD is typical for calculations of tur-
bine flow parts [19,20]. In most cases for steady flows, the computational domain includes
one blade-to-blade channel of each blade row, with periodic boundary conditions. At
the boundaries between adjacent blade rows, values of thermodynamic parameters are
averaged in the circumferential direction and exchanged. To speed up the convergence
process, a quasi-multigrid algorithm [21] and an individual time step are used. Usually, a
block-structured H-type grid is used for calculations. The domain of tip leakage is meshed,
whereas the domain of shroud leakage is not meshed, and the so-called sink-source ap-
proach is used. This approach enables extractions and injections of the fluid streams from
and into the main flow domain, so it can be applied to over-the-shroud leakages, inter-disk
leakages, and technological extractions [22]. In order to obtain computational results with
acceptable accuracy, it was found sufficient to use about 500,000 cells (elementary volumes)
in one blade-to-blade channel in each row and a mesh resolution near walls that provided
y+ values below 2. Every time, final computations were proceeded by grid independence
checks.
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2.2. Equations of State

The equation of perfect gas and the caloric equations of state obtained on its ba-
sis [23,24] are most widely known and most often used in 3D CFD calculations. Using
the perfect gas equation, it is possible to carry out CFD calculations in flow parts with a
relatively short expansion/compression line, such as in a single stage of a high or medium
pressure steam turbine cylinder in the superheated steam zone, in one stage of an air
compressor of a gas turbine engine, or in a single-stage industrial fan, etc. The constants
of the equation of state in such calculations are usually determined by the “average”
thermodynamic values between the inlet and outlet.

The Tammann thermal equation of state is quite simple but at the same time more
accurate:

P + p0 = ρRT. (1)

It differs from the perfect gas equation by the presence of an additional constant.
The caloric equations of state obtained on the basis of the thermal equation of state are
described in detail in the paper [25]. The extensive experience of the authors has shown
that for the calculation of turbomachinery flows, the constants for the Tammann equation
should be determined from values of total temperature, pressure and density at the inlet to
the flow domain, as well as isentropic static values of temperature, pressure and density at
the outlet of the computational domain. Then, the constants R, p0, and γ can be determined
from Equation (1) and the following relation:

P + p0

ργ
= const.

The IAPWS–95 equation is nowadays the most accurate equation of state that describes
the properties of water and steam. Its detailed description and the corresponding caloric
equations of state are presented in [5].

The modified Benedict–Webb–Rubin thermal equation of state with 32 terms has the
following form [26–28]:

P = ρRT + ρ2
[

G(1)T + G(2)T1/2 + G(3) + G(4)
T + G(5)

T2

]
+ ρ3

[
G(6)T + G(7) + G(8)

T + G(9)
T2

]
+ρ4

[
G(10)T + G(11) + G(12)

T

]
+ ρ5[G(13)] + ρ6

[
G(14)

T + G(15)
T2

]
+ ρ7

[
G(16)

T

]
+ρ8

[
G(17)

T + G(18)
T2

]
+ ρ9

[
G(19)

T2

]
+ ρ3

[
G(20)

T2 + G(21)
T3

]
exp

(
γρ2)

+ρ5
[

G(22)
T2 + G(23)

T4

]
exp

(
γρ2)+ ρ7

[
G(24)

T2 + G(25)
T3

]
exp

(
γρ2)+ ρ9

[
G(26)

T2 + G(27)
T4

]
exp

(
γρ2)

+ρ11
[

G(28)
T2 + G(29)

T3

]
exp

(
γρ2)+ ρ13

[
G(30)

T2 + G(31)
T3 + G(32)

T4

]
exp

(
γρ2).

(2)

The above equation and its corresponding forms have a very complex shape. The
caloric equation and equations describing thermodynamic functions corresponding to the
BWR32 equation are enclosed and described in detail in Appendix A.

2.3. Determination of Constants of the Benedict–Webb–Rubin Equation of State

Usually, constants for equations of state, including mBWR32, are determined based on
the experimental data. In the literature, one can find information about constants of simple
equations of state for various types of working fluids. Open information about values
of constants for the mBWR32 equation of state is available only for a few working fluids.
However, there are various software packages, for example REFPROP [10] that allows us
to calculate the array of fields of thermodynamic functions yi for a fairly wide range of
working fluids. Based on them, it is possible to determine the constants for the working
fluids of our interest.
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The gas constant R is determined as a ratio of the universal gas constant to the
molecular weight of the considered working fluid. The remaining constants γ and G(i) are
determined using the least squares method to assure the smallest square deviation of the
dimensionless unknown function from the array base point values:

∑n
i=1

(
fi − yi

yi

)2
→ min, (3)

where fi—the required thermodynamic function of the mBWR32 equation of state at point i
of the array; yi—value of the thermodynamic function at point i, obtained using REFPROP
software package; n—dimension of the base points array. Problem (2) can be solved in
the following way: if γ is assumed as known and constant, then the condition (2) can be
replaced by the condition:

∑n
i=1

(
fi − yi

y2
i

∂ fi
∂Gj

)
= 0, j = 1..37. (4)

Expression (3) forms a system of 37 linear equations with respect to 37 unknowns
G (j) for the thermodynamic functions: pressure, Helmholtz free energy, entropy and the
partial derivative of pressure to density at constant temperature. The linear system of
Equation (3) is solved by the Gauss method with dominant diagonal terms. The accuracy
of calculations is set at a quadruple precision with 32 characters. Such a large mantissa is
needed to maintain the required high accuracy. The global search for the solution of the
problem defined by Equation (2) is carried out by varying γ in the range:

−Kρ2
∗ ≤ γ ≤ Kρ2

∗ and K = 100
m6

kg2

where ρ* is the value of density at the critical point. Constants are found for the simultane-
ous fulfilment of condition (2) for the following thermodynamic functions: pressure, the
Helmholtz free energy, entropy, and the partial derivative of pressure to density at constant
temperature.

The values of the constants of the mBWR32 equation, obtained using the method
described above, for water vapour, HFE7100, and R227ea as working fluids in the inves-
tigated turbines are summarized in Appendix B. As initial data, thermodynamic arrays
obtained using the REFPROP [10] program were taken at (1) 1100 points in the entire range
of variation and 73 points on the saturation line for temperature from 280 to 800 K and
pressure up to 96 MPa for water vapour, (2) 610 points in the entire range of variation
and 35 points on the saturation line for temperature from 300 to 600 K and pressure up to
3 MPa for HFE-7100, and (3) 800 points in the entire range of variation and 45 points on the
saturation line for temperature from 150 to 470 K and pressure up to 8.6 MPa for R227ea
working fluid.

2.4. Method of Interpolation–Analytical Representation of Thermodynamic Functions

As mentioned earlier, the direct use of complex equations of state (IAPWS-95, mBWR32,
etc.) in numerical algorithms for 3D viscous flow calculations leads to an increase in compu-
tational time by 1.5–2 orders of magnitude, which is unacceptable. To reduce computational
cost, an interpolation–analytical method of representation of thermodynamic functions is
used. This method was first applied to take into account the thermodynamic properties
of water and steam in 3D calculations based on the IAPWS-95 equation of state in [29].
According to this approach, the required thermodynamic functions are determined from
the following dependencies:

T = p
ρRZt

; ρ = p
h Zρ; u = p

ρ
Zu
Zt

; p = ρ · u · Zp; a =
√

p
ρ

Za
Zt

; h = p
ρ

(
1 + Zu

Zt

)
; CV = R · ZCv; S = R · ZS; up = Zu

ρ·Zt
;

uρ = − p
ρ

Zu
Zt

; Sp = CV
p ; Tp = 1

ρR·Zt
; Tρ = − p

ρ2R·Zt
,
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where Zt = Zt(ρ,p), Zρ = Zρ(h,p), Zu = Zu(ρ,p), Zp = Zp(ρ,u), ZCv = ZCv(ρ,p), ZCp = ZCp(ρ,p),
and ZS = ZS(ρ,p) are the dimensionless compressibility coefficients for the corresponding
thermodynamic functions. These are determined by interpolation from pre-calculated
arrays of the base points. This approach has significant advantages over the “direct” in-
terpolation of thermodynamic functions, which is used in some software packages [30,31].
This is due to the fact that the range of variation of the dimensionless compressibility
coefficients is much narrower, and unlike the required thermodynamic functions, the
dimensionless compressibility coefficients are monotonic functions of the assumed depen-
dent variables. Due to this, arrays of base points of much smaller dimensions can be stored
to ensure the acceptable interpolation accuracy. Furthermore, to reduce the dimensions
of the arrays without sacrificing the accuracy, the independent variables of pressure and
density are considered in a logarithmic scale. To interpolate the compressibility coefficients,
polynomials of the third degree are used. Values of the dimensionless compressibility
coefficients are defined in the base points as:

Zt =
p

ρRT , Zu = u
RT , Zρ = hρ

p , Zp = p
ρ·u ,

Za =
a2

RT , ZCv = Cv
R , ZCp =

Cp
R , ZS = S

R ,

where the corresponding values of p, ρ, T, u, h, a, cp, cv and S are calculated using the
thermal equations of state (IAPWS-95, mBWR32, etc.). A more detailed description of the
interpolation method has been presented in the work of Rusanov et al. [29].

3. Comparison of Computational Results and Experimental Data
3.1. Low-Pressure Cylinder of 360 MW Steam Turbine

The steam flow in the low-pressure cylinder (LPC) of a 360 MW turbine was investi-
gated experimentally and numerically. A view of the investigated LPC is shown in Figure 1.
Thermodynamic parameters were measured in span-wise distribution in axial diffusers
behind stages 3, 4, and 5 by probes 1, 2, and 3, respectively and in the exit diffuser by probe
4, as shown in Figure 1. Details of the experimental study and measurement method were
described in earlier publications [4,32].
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Materials 2021, 14, 6879 6 of 20

A numerical study of this LPC using various equations of state was first presented
in [4]. In that paper, CFD results obtained using the equation of state for a perfect gas with
constant and variable specific heats were compared and validated against experimental
data. It was shown that specifying the heat capacities as linear functions of temperature
brought the obtained results closer to the experiment; however, this approach significantly
worsened the stability of the computational code. The results of calculations of this LPC
using the IAPWS-95 equation of state and their comparison with computational results
based on the perfect gas equation and Van der Waals equation of state were shown in [29].
A fundamental improvement in the coincidence of experimental data and computational
results while using the IAPWS-95 equation of state was illustrated.

In this study, the LPC is investigated numerically with the help of CFD code IPMFlow,
making use of three equations of state—the Tammann equation, the IAPWS-95 equation,
and the mBWR32 equation. To carry out the calculations, the following boundary condi-
tions are assumed—the total pressure and temperature at the inlet, and the static pressure
at the outlet (see Table 1). The calculations take into account two recuperative extractions
after stages 3 and 4, with the mass extraction of 6 and 5.5 kg/s respectively, as well as
inter-disk and over-the-shroud leakages [4]. The fifth stage rotor blade is unshrouded, so
there is a meshed radial gap available for tip leakage flow.

Table 1. Inlet/outlet boundary conditions and isentropic quantities.

P*
in, kPa T*

in, K ρ*
in, kg/m3 Pex, kPa Tisex, K ρisex, kg/m3 ∆His, kJ/kg

519 539 2.12 8.3 315.21 0.06485 699.2

The constants of the Tammann equation of state are determined from values of total
thermodynamic parameters at the inlet and isentropic ones at the outlet (Table 1). The
values of constants of the Tammann equation and the isentropic enthalpy difference be-
tween the inlet and outlet of the flow part obtained on its basis are presented in Table 2.
The isentropic enthalpy drop obtained from the Tammann equation of state is 9.2% greater
than that obtained from the IAPWS-95 and mBWR32 equations of state.

Table 2. Constants of the Tammann equation of state and the resultant isentropic enthalpy drop.

γ R, J/(kg·K) p0, kPa ∆HisT, kJ/kg

1.154 455.1 1.002 763.85

Table 3 shows a comparison of the calculation results with experimental data, includ-
ing pressures, temperatures, enthalpies, and flow rates at the outlet of the subsequent
stages 3, 4, and 5. It can be seen that the differences between the experimental data and
calculation results obtained using the IAPWS95 and mBWR32 equations of state are in-
significant. The greatest difference is observed for the static temperature behind the third
stage, −1.2%; in the other cases, the differences are much smaller than 1%, which is in
favour of the presented computational method. The differences between the experimental
data and calculation results obtained with the help of the Tammann equation of state are
much more significant and, in some cases, reach 15%. However, it should be noted that the
results obtained using the Tammann equation are more accurate compared to the perfect
gas equation with constant heat capacities and similar in quality to the results obtained
using the perfect gas equation with variable specific heats [4,29].
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Table 3. Comparison of experimental and calculated pressures, temperatures, enthalpies, and flow
rates at the outlets from stages 3, 4, and 5.

Parameter Experiment Tammann IAPWS95 mBWR32

Inlet

P *, kPa 519

T *, K 539

H *, kJ/kg 2993.64

Outlet of stage 3

P, kPa 79.9 78.85 79.92 79.91

∆P, % 1.3 −0.03 0.15

T, K 371.2 429.4 366.71 366.71

∆T, % −15.7 1.21 1.21

H, kJ/kg 2647 2647.2 2643.51 2643.51

∆h, % −0.01 0.13 0.13

G, kg/s 107.9 103.8 107.63 107.64

∆G, % 3.8 0.25 0.24

Outlet of stage 4

P, kPa 34.9 34.87 35.04 35.02

∆P, % 0.09 −0.4 −0.34

T, K 346.4 390.58 345.88 345.87

∆T, % −12.75 0.15 0.15

H, kJ/kg 2531 2503.5 2525.14 2527.14

∆h, % 1.09 0.23 0.23

G, kg/s 100.9 97.6 101.11 101.12

∆G, % 3.27 −0.21 −0.22

Outlet of stage 5

P, kPa 8.3

∆P, % 0.0 0.0 0.0

T, K 314.8 334.63 315.38 315.38

∆T, % −6.3 −0.19 −0.19

H, kJ/kg 2350 2326.9 2353.27 2353.27

∆h, % 0.98 −0.14 −0.14

G, kg/s 96 91.39 95.81 95.81

∆G, % 4.81 0.2 0.2

Figures 2 and 3 show a comparison of distributions of static and total pressure, merid-
ional, and tangential flow angles downstream of stages 3, 4, and 5 of the investigated large-
power steam turbine, which were obtained experimentally using the mBWR32 equations
of state. The computed values are averaged along the circumference. A good agreement
between experimental and calculation results can be observed both in the main flow area
and in the regions of influence of tip/shroud leakage.
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3.2. Radial ORC Turbine with HFE7100 Working Fluid

A 2.5 kW ORC micro power plant working on organic fluid HFE7100 supplied from
the wood chips boiler was developed at the Institute of Fluid Flow Machinery, Polish
Academy of Sciences (IMP PAN) as a model cogeneration unit dedicated for household
applications. A general view of the micro-power plant is shown in Figure 4. A detailed
description of the plant with its operational experience and the results of experimental
studies can be found in the papers [33–35].
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Academy of Sciences (IMP PAN) as a model cogeneration unit dedicated for household 
applications. A general view of the micro-power plant is shown in Figure 4. A detailed 
description of the plant with its operational experience and the results of experimental 
studies can be found in the papers [33–35]. 
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Figure 3. Meridional (γ) and tangential (β) flow angles distributions along the blade beyond the third (a), fourth (b), and
fifth (c) stages.

The main element of this cogeneration unit is a multi-stage radial microturbine. The
turbine consists of four stages, where the first two stages are centripetal (radial inward),
and the other two are centrifugal (radial outward). The turbine has small dimensions; the
outlet edges of the fourth-stage rotor blades are located at a diameter of 74.5 mm (relative
to the turbine rotation axis). The stator and rotor blades from all stages have tip gaps
near the meridional contours of size 0.15 mm. The first stage is designed with partial
admission supply (degree of partial admission − 0.5). The design rotational velocity is
equal to 20,000 rpm. A view of the individual elements and meridional section of the ORC
microturbine flow part is illustrated in Figure 5.



Materials 2021, 14, 6879 10 of 20
Materials 2021, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. View of the experimental ORC power plant at IMP PAN. 

The main element of this cogeneration unit is a multi-stage radial microturbine. The 
turbine consists of four stages, where the first two stages are centripetal (radial inward), 
and the other two are centrifugal (radial outward). The turbine has small dimensions; the 
outlet edges of the fourth-stage rotor blades are located at a diameter of 74.5 mm (relative 
to the turbine rotation axis). The stator and rotor blades from all stages have tip gaps near 
the meridional contours of size 0.15 mm. The first stage is designed with partial admission 
supply (degree of partial admission − 0.5). The design rotational velocity is equal to 20,000 
rpm. A view of the individual elements and meridional section of the ORC microturbine 
flow part is illustrated in Figure 5. 

Numerical studies of microturbine flow and comparison of computational results 
with the experimental data are carried out for three operational regimes. Boundary con-
ditions for these regimes, including inlet total temperatures and pressures, as well as out-
let static pressures, rotational speeds, and isentropic parameters are provided in Table 4. 
The calculations were made using two equations of state—the Tammann and mBWR32 
equation. The Tammann equation constants are determined from total parameters at the 
inlet and isentropic parameters at the outlet as in Table 4. Values of the Tammann equa-
tion constants and the isentropic enthalpy difference between the inlet and outlet of the 
flow part obtained on its basis are presented in Table 5. It can be seen that the maximum 
difference between the isentropic enthalpy drop obtained from the Tammann equation of 
state is 8% compared to that found from the REFPROP [10] software. 

  

Figure 4. View of the experimental ORC power plant at IMP PAN.

Numerical studies of microturbine flow and comparison of computational results with
the experimental data are carried out for three operational regimes. Boundary conditions
for these regimes, including inlet total temperatures and pressures, as well as outlet
static pressures, rotational speeds, and isentropic parameters are provided in Table 4.
The calculations were made using two equations of state—the Tammann and mBWR32
equation. The Tammann equation constants are determined from total parameters at the
inlet and isentropic parameters at the outlet as in Table 4. Values of the Tammann equation
constants and the isentropic enthalpy difference between the inlet and outlet of the flow
part obtained on its basis are presented in Table 5. It can be seen that the maximum
difference between the isentropic enthalpy drop obtained from the Tammann equation of
state is 8% compared to that found from the REFPROP [10] software.

Table 4. ORC microturbine operational regimes. Inlet/outlet boundary conditions and isentropic quantities.

№ Ω, rpm P*
in, kPa T*

in, K ρ*
in, kg/m3 Pex, kPa Tisex, K ρisex, kg/m3 ∆His, kJ/kg

1 18,120 760.2 427 75.07 203.2 403.32 16.56 15.16

2 19,620 786.8 416.1 85.73 192.7 390.06 16.34 15.28

3 19,000 750 413.7 80.84 175 387.41 14.83 188

Table 5. Constants of the Tammann equation of state and the resultant isentropic enthalpy drop.

№ γ R, J/(kg·K) p0, kPa ∆HisT, kJ/kg |∆HisT−∆His|
∆His

100%

1 1.038 21.96 −56.6 14.29 5.75

2 1.038 20.31 −63.35 14.09 7.76

3 1.039 20.77 −55.76 14.62 7.93
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Figure 5. CAD model of a 2.5 kW ORC turbine: (a) stator of stage 1 and 2, (b) rotor of stage 1 and 2,
(c) rotor of stage 3 and 4, (d) meridional section of the microturbine flow part.

The comparisons of calculated results and experimental data are shown in Table 6. In
the experiment, the power and, accordingly, the efficiency were measured at the generator
terminals. The power and efficiency of the microturbine calculated in CFD studies were
corrected taking into account the generator efficiency whose average value was determined
at 85%. As it can be seen from the presented comparison, the results obtained using the
mBWR32 equation of state are much closer to the experimental data than those obtained
using the Tammann equation. For the mBWR32 equation, the maximum discrepancy
between the experiment and computation in mass flow is 6.5%, in power, it is –2.7% and
in efficiency, it is –4.1%. At the same time, for the Tammann equation of state, those
discrepancies are 10.9%, 7.4%, and 6.2%, respectively.
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Table 6. Comparison of experimental and calculated microturbine flow rate, power, and efficiency
for given operational regimes as defined in Table 4.

Operational Mode Experiment/Computation G, kg/s N, kW η, %

1

Experiment 0.1796 1.8188 66.82

Tammann 0.1955
(+8.86%)

1.9539
(+7.43%)

69.96
(+3.14%)

mBWR32 0.1882
(+4.81%)

1.8604
(+2.29%)

65.21
(−1.61%)

2

Experiment 0.189 2.0824 72.05

Tammann 0.2098
(+10.88%)

1.9461
(−6.54%)

65.84
(−6.21%)

mBWR32 0.2014
(+6.45%)

2.0889
(+0.32%)

67.98
(−4.07%)

3

Experiment 0.185 1.9353 65.88

Tammann 0.2031
(+9.8%)

2.0257
(+4.67%)

68.21
(+2.34%)

mBWR32 0.1913
(+3.41%)

1.9877
(+2.71%)

65.51
(−0.36%)

3.3. Axial ORC Turbine with R227ea Working Fluid

An ORC plant working with R227ea was developed at the West Pomeranian University
of Technology in Szczecin as a model installation for geothermal applications. This ORC
unit is supplied by hot water from the district heating network. A general view of the ORC
power plant is presented in Figure 6, whereas its more detailed description is given in the
papers [35,36].
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Figure 6. Picture of the ORC power plant.

The ORC cycle is equipped with an axial single-stage microturbine with a degree of
partial admission equal to 1/9. Turbine blades have low heights: 9.7 mm—stator blade and
11.4 mm—rotor blade. A view on the ORC turbogenerator and turbine flow path is shown
in Figure 7. The small size of the turbine and a high degree of partial admission make its
CFD calculation a non-trivial task.
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CFD investigations of the microturbine flow and comparison of computational results
with the experimental data were carried out for four operational modes. Boundary con-
ditions, including inlet total temperatures and pressures as well as outlet static pressures,
rotational speeds, and isentropic parameters are provided in Table 7. Calculations were
conducted for two equations of state—the Tammann and mBWR32 equations. The Tam-
mann equation constants determined from the total parameters at the inlet and isentropic
parameters at the outlet, together with the isentropic enthalpy difference between the inlet
and outlet of the flow part, are presented in Table 8. The maximum difference for the
isentropic enthalpy drop obtained from the Tammann equation of state is 3% compared to
that found from the REFPROP [10] software.

Table 7. ORC microturbine operational regimes. Inlet/outlet boundary conditions and isentropic quantities.

№ Ω, rpm P*
in, kPa T*

in, K ρ*
in, kg/m3 Pex, kPa Tisex, K ρisex, kg/m3 ∆His, kJ/kg

1 2847 820.8 322.4 64.96 320.8 299.29 24.13 12.28

2 2895 831.8 321.4 66.58 315.8 297.45 23.92 12.56

3 3128 916.8 326 73.42 342.8 301.18 25.75 12.82

4 3264 953.8 326.8 77.07 332.8 300.1 25.04 13.68

Table 8. Constants of the Tammann equation of state and the resultant isentropic enthalpy drop.

№ γ R, J/(kg·K) P0, kPa ∆HisT, kJ/kg |∆HisT−∆His|
∆His

100%

1 1.075 36.465 −57.617 12.05 1.83

2 1.076 36.151 −58.74 12.3 2.05

3 1.076 35.497 −67.68 12.53 2.25

4 1.076 35.166 −68.7 13.32 2.67

Table 9 shows the comparison of calculation results and experimental data. In the
experiment, the power was measured at the generator terminals. Thus, the power and
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efficiency of the microturbine calculated in CFD studies were corrected, taking into account
the generator efficiency whose average value was determined this time at 91%.

Table 9. Comparison of experimental and calculated microturbine flow rate, power and efficiency for
given operational regimes, as defined in Table 7.

Operation Mode Experiment/Computation G, kg/s N, kW η, %

1

Experiment 1.111 8.451 61.94

Tammann 1.166
(+4.99%)

8.41
(−0.49%)

55.821
(−6.12%)

mBWR32 1.142
(+2.79%)

8.264
(−2.21%)

55.059
(−6.88%)

2

Experiment 1.154 8.67 59.819

Tammann 1.19
(+3.14%)

8.809
(+1.60%)

56.216
(−3.60%)

mBWR32 1.161
(+0.62%)

8.637
(−0.38%)

55.432
(−4.39%)

3

Experiment 1.311 10.022 59.63

Tammann 1.309
(−0.16%)

10.210
(+1.87%)

57.61
(−2.02%)

mBWR32 1.275
(−2.77%)

10.034
(+0.12%)

56.912
(−2.72%)

4

Experiment 1.334 10.846 59.434

Tammann 1.373
(+2.95%)

11.506
(+6.08%)

58.009
(−1.43%)

mBWR32 1.330
(−0.28%)

11.348
(+4.63%)

57.637
(−1.80%)

From the presented results, it can be seen that, in contrast to the previous examples,
there is no explicit advantage of using the mBWR32 equation of state. Generally, there is
a satisfactory agreement between the experimental data and calculation results obtained
from both equations of state. According to the authors, this is due to a relatively small drop
in thermodynamic parameters in the considered flow part, which leads to an insignificant
difference in isentropic enthalpy drops obtained during the calculations using the mBWR32
and Tammann equations of state (less than 3%). It can be concluded that for small isentropic
enthalpy drops, the Tammann equation of state satisfactorily describes the thermodynamic
properties of the working fluid.

4. Conclusions

The method of interpolation–analytical reconstruction of the complex IAPWS-95 and
mBWR32 equations of state was presented to take into account the real properties of
working fluids in 3D CFD calculations. The method for determination of the constants of
the modified Benedict–Webb–Rubin equation of state with 32 terms was proposed. The
constants of the mBWR32 equation were calculated for the HFE-7100 and R227ea working
fluids.

The results of the 3D flow calculation in the LPC of a steam turbine and ORC micro-
turbines with the HFE7100 and R227ea working fluids were presented. Calculations were
performed using the Tammann equation and the proposed interpolation–analytical method
of representation of the IAPWS-95 and mBWR32 equations of state. The comparison of the
calculation results with experimental data showed satisfactory agreement in the case of
the IAPWS-95 and mBWR32 equations for a wide range of change of thermodynamic pa-
rameters. It was found that the Tammann equation of state provides acceptable results for
relatively small drops in thermodynamic parameters in the flow part, when the isentropic
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enthalpy drop obtained during the calculations using the Tammann equation differs from
the exact value by not more than 3–4%.

The method is able to improve the quality of flow modelling in thermal turbomachin-
ery, especially in terms of the flow of fluids, the behaviour of which differs significantly
from that of an ideal gas. This functionality was not available in earlier versions of the
in-house IPMFlow software.
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Nomenclature

a [m/s] sonic speed
Cp [J/(kg×K)] isobaric heat capacity
Cv [J/(kg×K)] isochoric heat capacity
f [J/kg] Helmholtz free energy
G [kg/s] mass flow rate
G(i) [ . . . ] † constants of the mBWR32 equation, † constants of the mBWR32 equation

are dimensional; their dimensions depend on particular terms
at which these constants appear

H [J/kg] enthalpy
N [kW] power
P [kPa] pressure
P* [kPa] total pressure
po [kPa] constant of the Tammann equation of state
R [J/(kg×K)] gas constant
S [J/(kg×K)] entropy
T [K] temperature
T* [K] total temperature
u [J/kg] internal energy
γ [–] adiabatic index
η [%] efficiency
ρ [kg/m3] density
ρ* [kg/m3] density in critical point
Ω [rpm] rotational speed

Indexes

in parameters at the inlet
ex parameters at the outlet
is isentropic parameters
isT isentropic parameters obtained using the Tammann equation of state
* stagnant flow parameters
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Appendix A. Determination of the Caloric Equation and Equations Describing
Thermodynamic Functions Corresponding to the Modified Benedict–Webb–Rubin
Thermal Equation of State

To determine the caloric equations of state, differential equations of thermodynam-
ics [29,30], Equation (2), and also the dependence of the Helmholtz free energy f are used.
The connection between the Helmholtz free energy and Equation (2) is established by the
expression:

P = ρ2
(

∂ f
∂ρ

)
T

. (A1)

Equation (A1) allows us to express the Helmholz free energy f in the form of an
arbitrary polynomial with respect to T. In this paper, the expression for the Helmholtz free
energy is taken in the form:

f = fi + fv, (A2)

where

fi = RTln(ρ) + ρ
[

G(1)T + G(2)
√

T + G(3) + G(4)
T + G(5)

T2

]
+ ρ2

2

[
G(6)T + G(7) + G(8)

T + G(9)
T2

]
+ ρ3

3

[
G(10)T + G(11) + G(12)

T

]
+ ρ4

4 G(13) + ρ5

5

[
G(14)

T + G(15)
T2

]
+ ρ6

6
G(16)

T

+ ρ7

7

[
G(17)

T + G(18)
T2

]
+ ρ8

8
G(19)

T2 + G(33)
T + G(34)T + G(35)T2 + G(36)Tln(T) + G(37);

fV = I1

[
G(20)

T2 + G(21)
T3

]
+ I2

[
G(22)

T2 + G(23)
T4

]
+ I3

[
G(24)

T2 + G(25)
T3

]
+ I4

[
G(26)

T2 + G(27)
T4

]
+I5

[
G(28)

T2 + G(29)
T3

]
+ I6

[
G(30)

T2 + G(31)
T3 + G(32)

T4

]
;

I1 =
∫

ρ exp
(
γρ2)dρ = 1

2γ exp
(
γρ2); I2 =

∫
ρ3 exp

(
γρ2)dρ = γρ2−1

2γ2 exp(γρ2);

I3 =
∫

ρ5 exp
(
γρ2)dρ = γ2ρ4−2γρ2+2

2γ3 exp(γρ2);

I4 =
∫

ρ7 exp
(
γρ2)dρ = γ3ρ6−3γ2ρ4+6γρ2−6

2γ4 exp(γρ2);

I5 =
∫

ρ9 exp
(
γρ2)dρ = γ4ρ8−4γ3ρ6+12γ2ρ4−24γρ2+24

2γ5 exp(γρ2);

I6 =
∫

ρ11 exp
(
γρ2)dρ = γ5ρ10−5γ4ρ8+20γ3ρ6−60γ2ρ4+120γρ2−120

2γ6 exp(γρ2).

The function fi is a component of the Helmholtz free energy containing non-exponential
terms, whereas fv contains exponential terms. I1 -I6 are density integrals of the exponential
terms. An additional polynomial consisting of five terms is introduced into Equation (A2),
which leads to an increase in the number of constants G from 32 to 37. The introduction
of additional components increases the accuracy in determination of the Helmholtz free
energy and other thermodynamic functions.

In view of the form of Equations (2) and (A2), the required thermodynamic functions
take the form given below:

Internal energy:

u = f − T
(

∂ f
∂T

)
ρ

,
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where
(

∂ f
∂T

)
ρ
=
(

∂ fi
∂T

)
ρ
+
(

∂ fv
∂T

)
ρ
;

(
∂ fi
∂T

)
ρ
= Rln(ρ) + ρ

[
G(1) + 1

2
G(2)√

T
− G(4)

T2 − 2 G(5)
T3

]
+ ρ2

2

[
G(6)− G(8)

T2 − 2 G(9)
T3

]
+ ρ3

3

[
G(10)− G(12)

T2

]
+ ρ5

5

[
−G(14)

T2 − 2 G(15)
T3

]
− ρ6

6
G(16)

T2 + ρ7

7

[
−G(17)

T2 − 2 G(18)
T3

]
− ρ8

4
G(19)

T3 −
G(33)

T2 + G(34) + 2G(35)T + G(36) + G(36)ln(T);(
∂ fv
∂T

)
ρ
= I1

[
−2 G(20)

T3 − 3 G(21)
T4

]
+ I2

[
−2 G(22)

T3 − 4 G(23)
T5

]
+ I3

[
−2 G(24)

T3 − 3 G(25)
T4

]
+I4

[
−2 G(26)

T3 − 4 G(27)
T5

]
+ I5

[
−2 G(28)

T3 − 3 G(29)
T4

]
+ I6

[
−2 G(30)

T3 − 3 G(31)
T4 − 4 G(32)

T5

]
.

Isochoric heat capacity:

cV =

(
∂u
∂T

)
ρ

=

(
∂ f
∂T

)
ρ

−
(

∂ f
∂T

)
ρ

− T
(

∂2 f
∂T2

)
ρ

= −T
(

∂2 f
∂T2

)
ρ

,

where
(

∂2 f
∂T2

)
ρ
=
(

∂2 fi
∂T2

)
ρ
+
(

∂2 fV
∂T2

)
ρ
;

(
∂2 fi
∂T2

)
ρ
= ρ

[
− 1

4
G(2)

T
3
2

+ 2 G(4)
T3 + 6 G(5)

T4

]
+ ρ2

2

[
2 G(8)

T3 + 6 G(9)
T4

]
+ 2

3 ρ3 G(12)
T3

+ ρ5

5

[
2 G(14)

T3 + 6 G(15)
T4

]
+ ρ6

3
G(16)

T3 + ρ7

7

[
2 G(17)

T3 + 6 G(18)
T4

]
+ 3

4 ρ8 G(19)
T4

+2 G(33)
T3 + 2G(35) + G(36)

T ;(
∂2 fV
∂T2

)
ρ
= I1

[
6 G(20)

T4 + 12 G(21)
T5

]
+ I2

[
6 G(22)

T4 + 20 G(23)
T6

]
+ I3

[
6 G(24)

T4 + 12 G(25)
T5

]
+I4

[
6 G(26)

T4 + 20 G(27)
T6

]
+ I5

[
6 G(28)

T4 + 12 G(29)
T5

]
+ I6

[
6 G(30)

T4 + 12 G(31)
T5 + 20 G(32)

T6

]
.

Isobaric heat capacity:

cP =
(

∂h
∂T

)
P
=
[

∂
∂T

(
u + P

ρ

)]
P
=
(

∂u
∂T

)
P
− P

ρ2

(
∂ρ
∂T

)
P
=
(

∂ f
∂T

)
P
−
(

∂ f
∂T

)
ρ
− T

[
∂
(

∂ f
∂T

)
ρ

∂T

]
P

− P
ρ2

(
∂ρ
∂T

)
P

= −T

[
∂
(

∂ f
∂T

)
ρ

∂T

]
P

= −T
[(

∂2 f
∂T2

)
ρ
+ A

ρ2

(
∂ρ
∂T

)
P

]
= −T

[(
∂2 f
∂T2

)
ρ
− A2

ρ2B

]
= cV + A2T

ρ2B ,

where
B = RT + 2ρ

[
G(1)T + G(2)

√
T + G(3) + G(4)

T + G(5)
T2

]
+ 3ρ2

[
G(6)T + G(7) + G(8)

T + G(9)
T2

]
+4ρ3

[
G(10)T + G(11) + G(12)

T

]
+ 5ρ4[G(13)] + 6ρ5

[
G(14)

T + G(15)
T2

]
+ 7ρ6

[
G(16)

T

]
+8ρ7

[
G(17)

T + G(18)
T2

]
+ 9ρ8

[
G(19)

T

]
+
(
3ρ2 + 2γρ4)[G(20)

T2 + G(21)
T3

]
exp

(
γρ2)

+
(
5ρ4 + 2γρ6)[G(22)

T2 + G(23)
T4

]
exp

(
γρ2)+ (7ρ6 + 2γρ8)[G(24)

T2 + G(25)
T3

]
exp

(
γρ2)

+
(
9ρ8 + 2γρ10)[G(26)

T2 + G(27)
T4

]
exp

(
γρ2)+ (11ρ10 + 2γρ12)[G(28)

T2 + G(29)
T3

]
exp

(
γρ2)

+(13ρ12 + 2γρ14)
[

G(30)
T2 + G(31)

T3 + G(32)
T4

]
exp

(
γρ2).
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B = RT + 2ρ
[

G(1)T + G(2)
√

T + G(3) + G(4)
T + G(5)

T2

]
+ 3ρ2

[
G(6)T + G(7) + G(8)

T + G(9)
T2

]
+4ρ3

[
G(10)T + G(11) + G(12)

T

]
+ 5ρ4[G(13)] + 6ρ5

[
G(14)

T + G(15)
T2

]
+ 7ρ6

[
G(16)

T

]
+8ρ7

[
G(17)

T + G(18)
T2

]
+ 9ρ8

[
G(19)

T

]
+
(
3ρ2 + 2γρ4)[G(20)

T2 + G(21)
T3

]
exp

(
γρ2)

+
(
5ρ4 + 2γρ6)[G(22)

T2 + G(23)
T4

]
exp

(
γρ2)+ (7ρ6 + 2γρ8)[G(24)

T2 + G(25)
T3

]
exp

(
γρ2)

+
(
9ρ8 + 2γρ10)[G(26)

T2 + G(27)
T4

]
exp

(
γρ2)+ (11ρ10 + 2γρ12)[G(28)

T2 + G(29)
T3

]
exp

(
γρ2)

+(13ρ12 + 2γρ14)
[

G(30)
T2 + G(31)

T3 + G(32)
T4

]
exp

(
γρ2).

Entropy:

S = −
(

∂ f
∂T

)
ρ

.

Sonic speed:

a2 =

(
∂P
∂ρ

)
S
=

T
(

∂P
∂T

)
ρ
+ cV

(
∂T
∂ϑ

)
P

ρ2cV

(
∂T
∂P

)
ρ

=
T
(

∂P
∂T

)
ρ
+ cVρ2

(
∂T
∂ρ

)
P

ρ2cV

(
∂T
∂P

)
ρ

= B +
TA2

cVρ2 .

Appendix B. The Values of the Constants of the mBWR32 Equation

Table A1 shows values of the constants of the mBWR32 equation, which were obtained
using the method described in Sections 2.2 and 2.3 and the equations in Appendix A.

Table A1. The values of the constants of the mBWR32 equation.

Header Water HFE7100 R227ea

γ −0.3231043142361733D-05 0.1205572957283814D-04 −0.4070048644587564D-05

R 461.5221 33.2578 48.900286

G(1) 0.1340188952700849D+03 −0.2525969245607927D+01 −0.3822484082371177D+00

G(2) −0.113303814253851D+05 0.1763741711279182D+03 0.3160389924533887D+02

G(3) 0.2749007471054583D+06 −0.3601187752097783D+04 −0.6964326417230550D+03

G(4) −0.5829440628781757D+08 0.5458851793941257D+06 0.1031623062428149D+06

G(5) 0.6411659750384605D+10 −0.5663324176871473D+08 −0.1223225314792705D+08

G(6) 0.4129629566529071D-01 0.9648702918708597D-02 −0.3193811769158057D-02

G(7) −0.3145701008839712D+02 −0.18125682062194D+02 0.5188230632727036D+01

G(8) 0.5901184750968312D+04 0.1286291165389281D+05 −0.3213400289440099D+04

G(9) −0.5661166428856716D+08 −0.6299375060616176D+06 0.1012250688519747D+07

G(10) 0.5132663309662063D-04 −0.8753130222925309D-05 −0.2197301359332797D-06

G(11) −0.2658843752788538D+00 0.9307351571136587D-02 0.7172225363205859D-03

G(12) 0.1651883341198171D+03 −0.2450136776131232D+01 −0.3008513561879612D+00

G(13) 0.2266027017849203D-03 0.2632266072695997D-05 −0.1192023216555466D-06

G(14) −0.2864338390658241D-03 0.1286131777344554D-03 0.1273328787250847D-05

G(15) 0.3051102426759072D+00 −0.4003450054558224D-01 −0.1030080706600882D-02

G(16) −0.1031902385352661D-07 −0.7272480072620692D-06 −0.3742988522718769D-08

G(17) 0.1272432927055814D-09 0.1370553160729363D-08 0.198611771894904D-11
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Table A1. Cont.

Header Water HFE7100 R227ea

G(18) −0.4205928256302565D-06 −0.7311642108133796D-07 0.8602107806419969D-09

G(19) 0.1969386059083182D-09 −0.21916813548160857D-08 −0.3439884131761577D-12

G(20) 0.5251565542126347D+08 −0.339994425757511D+07 −0.1063496697985402D+06

G(21) 0.1592357820321519D+10 0.481540423072116D+09 −0.9608289845410669D+08

G(22) 0.3910795651035839D+02 0.29141961883346D+02 −0.9382279023090581D+00

G(23) −0.242578208092937D+07 −0.6038000612169966D+06 −0.5130819818146024D+05

G(24) −0.2657686496886626D-03 0.9152256834775216D-04 0.2887503456985266D-05

G(25) 0.1103996250508223D-01 −0.1772968331616998D-01 −0.1133636629805082D-02

G(26) −0.1413468432232942D-09 −0.1009669532982529D-08 −0.1517330593686373D-11

G(27) 0.1393914328000583D-04 0.5427714466691425D-04 0.2006200837684165D-06

G(28) 0.4705295923820445D-16 0.1498672827301075D-14 0.39494924918485634D-16

G(29) −0.26690260796323977D-12 0.1907285109535534D-12 −0.1035803258385956D-13

G(30) −0.4396223589757114D-22 −0.364152113015046D-20 −0.3003171762530103D-22

G(31) 0.1675173765276002D-18 0.1700716094002334D-17 0.1053509965613469D-19

G(32) −0.5393086721503225D-17 −0.3340812356980171D-15 −0.4695091535355264D-19

G(33) −0.1144301681378893D+11 −0.3397310131672742D+09 0.1148400077140449D+09

G(34) −0.238993513584905D+06 0.3117370419539324D+04 0.9631857575641608D+04

G(35) −0.1121389642058093D+02 −0.3284940764348829D+00 0.1552792260893027D+00

G(36) 0.310205161600632D+05 −0.5386718572092581D+03 −0.1609342678142145D+04

G(37) 0.4000508032246298D+08 0.4375477883494194D+06 −0.5838965010940802D+06
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