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Animal pose estimation tools based on deep learning have greatly improved animal

behaviour quantification. These tools perform pose estimation on individual video frames,

but do not account for variability of animal body shape in their prediction and evaluation.

Here, we introduce a novel multi-frame animal pose estimation framework, referred

to as OptiFlex. This framework integrates a flexible base model (i.e., FlexibleBaseline),

which accounts for variability in animal body shape, with an OpticalFlow model that

incorporates temporal context from nearby video frames. Pose estimation can be

optimised using multi-view information to leverage all four dimensions (3D space

and time). We evaluate FlexibleBaseline using datasets of four different lab animal

species (mouse, fruit fly, zebrafish, and monkey) and introduce an intuitive evaluation

metric—adjusted percentage of correct key points (aPCK). Our analyses show that

OptiFlex provides prediction accuracy that outperforms current deep learning based

tools, highlighting its potential for studying a wide range of behaviours across different

animal species.

Keywords: behaviour analysis, video analysis, motion trackingmethod,markerless tracking, deep learning, optical

flow

INTRODUCTION

To make meaningful inferences about how the brain controls behaviour, precise quantification is
essential. Whereas, humans can make qualitative inferences on animal behaviour, computational
approaches are required for precise quantification of body positions and movements. A major
challenge is to reliably extract quantitative descriptions of behaviour that can be used for
downstream tasks, such as motion clustering (Wiltschko et al., 2015; Batty et al., 2019),
sensorimotor correlations (Hoogland et al., 2015; Katsov et al., 2017; Streng et al., 2018; Mu et al.,
2019) or 3D shape reconstruction (Biggs et al., 2018). This problem can be addressed by articulated
animal pose estimation, which consistently tracks predetermined key points on a given animal. The
key points can be any identifiable feature on the animal body, usually joints.

Although key point tracking can be done with great accuracy through human labelling on a
frame-by-frame basis, it usually incurs a considerable time and labour cost, limiting the size of
annotated datasets. Consequently, the need for accurate, fast, and scalable animal pose estimation
has driven several efforts to automate animal pose estimation using both marker-based and
markerless tracking.Marker-based tracking of key points usually involves placing reflectivemarkers
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that can be detected with a camera system (Leblond et al.,
2003; Moriuchi et al., 2019). Alternatively, one can use
accelerometers to directly readout movement acceleration
(Venkatraman et al., 2010; Silasi et al., 2013; Pasquet et al.,
2016). Marker-based tracking has the advantage of providing
straightforward processing of object location and animal pose
(Mimica et al., 2018). However, its invasive nature could disrupt
animal behaviour.

Markerless tracking circumvents the stress and workload
associated with marker placement and could be the method
of choice, if it matches the accuracy of marker-based tracking.
Early examples of markerless tracking used Kinect cameras
(Matsumoto et al., 2013) or multi-camera systems (Matsumoto
et al., 2013), setting constraints on the simplicity and versatility
of the experimental setting in which animal behaviour could
be measured. Advances in deep learning based computer
vision techniques, especially convolutional neural networks, have
enabled further development of markerless tracking (Kanazawa
et al., 2019; Kocabas et al., 2019; Pavllo et al., 2019; Sturman et al.,
2020). For example, DeepLabCut (Mathis et al., 2018) is based on
the feature detector from DeeperCut (Insafutdinov et al., 2016),
and StackedDenseNet from DeepPoseKit (Graving et al., 2019)
is a variation on Fully Convolutional DenseNets (Huang et al.,
2017; Jégou et al., 2017) that are stacked in the fashion of Stacked
Hourglass (Newell et al., 2016).

The general functioning of these deep learning based
markerless pose estimationmethods for animals are similar. First,
they all require the user to manually label a number of key points
on selected frames of animal behaviour videos. These video
frames and location labels form the dataset used to train deep
learning models. The dataset is divided into three groups, for
training, validation and testing. Formodel training, a video frame
is fed into the model as input, and the model output will be the
model’s prediction of key point locations. The difference between
model predictions and the user generated labels are measured
using a differentiable loss function, commonly mean squared
error (MSE). After each iteration of input and comparisons,
the model updates its parameters using the backpropagation
algorithm, attempting to minimise future loss. The training is
complete once the loss function value reaches a satisfactory level.
After training, the model’s prediction performance is measured
using an evaluation metric, which is a function that compares
model predictions against human labels and summarises model
prediction accuracy with numerical values.

These approaches have brought meaningful advances to
animal pose estimation (Sturman et al., 2020) by directly
transferring computer vision techniques initially developed for
tracking humans to lab animals, but omit key differences in shape
and size. For pose estimation, the number of key points has
a major impact on the size and complexity of pose estimation
models and variation in key point sizes affects the interpretation
of evaluation results.

Specifically, key points on humans are usually joints of limbs
and the head, which are all roughly 20–50 cm in diameter (within
2x ratio). Since body shape does not vary drastically across
humans, human pose estimation datasets usually contain limited
variations in number or size of key points. Key points on lab

animals, on the other hand, usually vary greatly in size. For
instance, for a fruit fly, the joints on its legs are roughly 0.1–
0.5mm, while the key point on its head is roughly 2–3mm (can
be above 10x ratio). As a consequence, human pose estimation
models capture similar amounts of complexity and evaluation
metrics can use the size of a specific joint as a threshold. For
instance, one common metric in human pose estimation is
that a key point estimation is correct if its distance from the
ground truth is less than half the size of the head (PCKh@0.5)
(Newell et al., 2016; Chen et al., 2017; Yang et al., 2017). Lab
animals, however, vary greatly in shape and size, requiring
models with different complexities and parameter sizes to match
varying animal datasets to prevent overfitting and underfitting.
Moreover, since training datasets for animal pose estimation
often need to be generated by researchers upon completion
of experiments, these caveats are much more likely to emerge
in animal research than in human studies, which usually can
leverage plenty of annotated data sets. For example, COCO
human key point detection task has more than 200,000 labelled
images (Lin et al., 2014, 2018).

To address the aforementioned differences in subject shape
and data availability between animal and human pose estimation,
we present OptiFlex, a new multi-frame animal pose estimation
framework. OptiFlex is comprised of FlexibleBaseline and
OpticalFlow. The base model, FlexibleBaseline, makes initial
single frame predictions. The OpticalFlow model converges
initial predictions on a target frame and its adjacent frames into a
final prediction for the target frame (Figure 1B).

The base model, FlexibleBaseline, is designed to be flexible to
accommodate various animal datasets that could include animals
with different body shapes or varying number of key points.
Compared to previous animal pose estimation models that have
fixed model structure, FlexibleBaseline allows its model structure
to be adjusted by changing its backbone output layer or the
number of filters in its final deconvolution layers.

Most animal pose estimation frameworks to date (Mathis
et al., 2018; Graving et al., 2019; Pereira et al., 2019) focus on
predicting key points using a single video frame. By taking a
single frame approach, these models neglect the sequential nature
of these frames, and thus ignore valuable temporal context. Since
the OptiFlex framework permits the concurrent use of features
from adjacent time points in a video segment, both prediction
accuracy and robustness against temporary obstruction of key
points are improved. Moreover, the framework consists of two
modules to allow swift deployment of the base model of choice.
Rapid advancements in computer vision will result in better
base models for single frame pose estimation in the near future,
yet they can all potentially benefit from the temporal context
provided by optical flow (Pfister et al., 2015).

Finally, to evaluate these models, we use datasets of four
different lab animal species (mouse, fruit fly, monkey, and
zebrafish) and an adaptive, yet intuitive, evaluation metric—
adjusted percentage of correct key points (aPCK). Compared to
the traditionally used root mean square error (RMSE) metric,
aPCK encapsulates human insight of what is “correct” for each
key point by leveraging human generated heatmap labels. In the
end, aPCK reports a percentage of prediction in the “correct”

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2021 | Volume 15 | Article 621252

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Liu et al. OptiFlex: Multi-Frame Animal Pose Estimation

FIGURE 1 | Workflow and model architecture of OptiFlex. (A) Overall data preprocessing and model training pipeline. (B) Given a skip ratio s and frame range f . For a

target frame with index t, we first gather a sequence of 2f + 1 images with index from t− s× f to t+ s× f . The base model makes a prediction on each of the images

to create a sequence of heatmap tensors with index from t− s× f to t+ s× f . The OpticalFlow model takes the entire sequence of heatmap tensors and outputs the

final heatmap prediction for index t. (C) Diagram of a “bottleneck” building block commonly used in ResNet backbone, consisting of 3 convolutional layers and a skip

connexion. (D) Optional intermediate supervision for FlexibleBaseline through an additional loss calculation between the heatmap label and intermediate results from

ResNet backbone after a single transposed convolution as represented by orange trapezoidal blocks. (E) Standard FlexibleBaseline with intermediate supervision after

the Conv3 block. Note that each Conv block consists of multiple (3x, 4x, or 6x) stacked “bottleneck” building blocks (see C).
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region, which is more interpretable than the raw pixel value
of average error distances reported by RMSE. All prediction
performance evaluations in this study are done using aPCK.

RESULTS

Our overall workflow consists of a multi-frame estimation
framework along with a graphical user interface (GUI) for data
annotation and augmentation (Figure 1A, for details refer to
Supplementary Figures 2,3).

General Workflow
The workflow starts after obtaining video recordings of animal
behaviours (Figure 1A). A human annotator first labels a number
of continuous frames, which are then preprocessed (details in
Data Preprocessing section of Methods) and subsequently split
into three datasets: a train set, validation set, and test set. Models
presented in this work are trained with the train set and evaluated
on the validation set. These evaluation results are used not only
to tune the hyperparameters of the models, such as learning rate,
dropout rate, number of filters in convolution layers etc., but also
to determine whether more labelled data should be obtained. The
model with the best performance on the validation set is chosen
as the final model. For OptiFlex, this training process happens
twice, once for the base model, FlexibleBaseline, and once for
the OpticalFlow model. After obtaining satisfactory evaluation
results on the validation set, a final evaluation can be run on the
test set to quantify how the trainedmodel generalises to new data.
All of the test datasets include frames of different animals of the
same type to ensure generalizability of the prediction results. This
marks the end of the training process. Any new videos of animals
in the same experimental configuration can now be used as inputs
into the trained model and the outputs will be the videos labelled
with locations of user defined key points.

FlexibleBaseline Structure of OptiFlex
FlexibleBaseline’s overall structure consists of a ResNet (He et al.,
2016) backbone, 3 transposed convolution layers, and a final
output layer (Figures 1C–E). The ResNet backbone is a section
of the original ResNet that uses weights pre-trained on ImageNet
(Deng et al., 2009) and can output after any of the Conv blocks
from ResNet. It also allows optional intermediate supervision
anywhere between the input layer and the backbone output layer,
usually after a Conv block. The different options for backbone
output and intermediate supervision endow the model with
ample flexibility. The 3 transposed convolution layers all have
filters of size 13 × 13 pixels (i.e., the window for scanning
through the input image or intermediate tensors is 13× 13) with
strides depending on output location of the ResNet backbone and
with a modifiable number of filters in each layer depending on
dataset complexity. The final output layer always has the same
number of filters as the number of prediction key points, each
with filter size 1× 1 and stride 1. This structure is inspired by the
Simple Baselines (Xiao et al., 2018), which attained state-of-the-
art results in many human pose estimation challenges in COCO
2018 (Lin et al., 2014, 2018).

In principle, any imaged-based model that predicts a set
of heatmaps of key point likelihoods can be used as a base
model. Different options of FlexibleBaseline allow for adaptation
to various animal body shapes. For animals with complex
body shape, FlexibleBaseline versions with a large number of
parameters can be deployed to learn the various features. For
animals with simple body shape, FlexibleBaseline versions with
fewer parameters are more suited, as smaller models usually have
faster inference speed. This ability to change model complexity
based on dataset complexity makes FlexibleBaseline less likely to
overfit during training, and thus better at accounting for body
shape variations in animal datasets.

OpticalFlow Structure of OptiFlex
With single frame heatmap predictions from a base model,
the OpticalFlow module morphs heatmap predictions of
neighbouring frames onto the target frame using the Lucas-
Kanade method (Lucas and Kanade, 1981), implemented with
the Farneback algorithm (Farnebäck, 2003) in OpenCV (Bradski,
2000). This morphed information is aggregated by a 3D
convolution layer that essentially takes the weighted sum of
all the morphed heatmaps (Figure 1B). This implies that even
if some key points are not visible in the target frame, the
morphed information from nearby frames still provides sufficient
information about the most likely location of the key points for
the target frame. Themorphed heatmaps from nearby frames can
thus be considered as temporal context.

Adjusted Percentage of Correct Key Points
(aPCK) vs. Root Mean Square Error (RMSE)
We indicate the adjusted percentage of correct key points by
aPCK, which is an evaluationmetric thatmeasures the percentage
of correctly predicted key points based on human generated
heatmap labels. The heatmap generated for each key point follows
a truncated 2D Gaussian distribution with the human labelled
points defining the peak of the distribution. For the current study
we define the prediction as “correct,” if the predicted key point
location lands inside of the ground truth label heatmap. For
details of label preprocessing and heatmap generation process,
see Dataset Preprocessing in Methods.

Predefined notion of PCK (Yang and Ramanan, 2011) in
computer vision usually accepts all points within a fixed distance
of the human labelled ground truth points (Biggs et al., 2018).
While generic PCK is a valid approach for human pose
estimation, where all human key points are similar in size, it
cannot be flexibly applied to datasets of animals with different
body plans, where the large size variation across key points of the
same animal makes it impractical to use a single fixed distance
to determine acceptable regions for every key point. By contrast,
aPCK relies on the human labeller to define the acceptable region
per key point with its heatmap, and allows adjustments of its size
during labelling.More importantly, the universal nature of aPCK,
as it adequately accounts for variability, makes model evaluation
results from datasets with different animal species comparable.
We therefore use aPCK as the default metric for evaluations in
this study.
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FIGURE 2 | Comparison of evaluation methods. The ground truth is defined

through human labelling. Points with a given RMSE forms a circle around the

ground truth. The heatmap label, used by the adjusted percentage of correct

key points (aPCK), can be defined by the human labeller to cover the entire

ROI, whereas the RMSE circle can be too large and include points that fall

outside the target region (in this case the paw) or too small and thereby miss

valid points of the labelled object.

RMSE is currently the default evaluationmetric in recent work
on animal pose estimation (Mathis et al., 2018; Graving et al.,
2019; Pereira et al., 2019). While RMSE can be useful as the loss
function, this metric does not intuitively reflect prediction quality
and can sometimes be misleading.

The preciseness of RMSE can be limited both when comparing
the performance of different models using the same dataset and
when comparing the performance of the same model applied to
different datasets. When comparing two models using the same
dataset, the model with a slightly larger RMSE is not necessarily
worse. This is because some animal key points can be large (many
pixels in size); therefore, predictions that differ by only a few
pixels can both be correct. Moreover, since all points of a given
RMSE from ground truth form a circle around the ground truth
location, whereas an acceptable region for a key point can be
of any shape, points with the same RMSE from ground truth
can both be valid or incorrect predictions. For instance, in the
example in Figure 2, some of the points within the blue circle
representing RMSE threshold fall outside of the target region,
and likewise correct points will be missed when the RMSE circle
is shrunk. When comparing the same model using different
datasets, RMSE fares even worse. Amodel with a given RMSE can
make perfect predictions in a dataset with larger joint sizes, while
being completely inaccurate in another dataset with smaller joint
sizes. This combination of biases may explain why RMSE is often
used as loss function, but not as evaluation method in human
pose estimation (Newell et al., 2016; Chen et al., 2017; Yang et al.,
2017).

OptiFlex Compared to Previous
Frameworks
To demonstrate the potential of temporal context, we compare
OptiFlex to current state-of-art animal pose estimation models:
DeepLabCut (Mathis et al., 2018), LEAP (Pereira et al., 2019),

FIGURE 3 | Comparison of aPCK error rates of various frameworks on the

mouse side-view dataset displayed as a violin plot. The white dots represent

the mean; the dark grey boxes represent the range between 1st quartile and

3rd quartile; and the whiskers represent the variability outside the upper and

lower quartiles. The violin plots are aggregations of key point prediction error

rates of a given model on the mouse side-view test set (1,051 frames from

different videos with 8 labelled key points). Each data point represents the

aPCK error rate of a particular model’s prediction of a specific key point on the

test set of mouse side-view dataset.

and DeepPoseKit (StackedDenseNet) (Graving et al., 2019). The
best dataset for highlighting the effect of temporal context
is the mouse side-view dataset. This dataset is particularly
interesting, because frequent overlap of paws causes many
instances of temporary obstruction of key points, which is
an issue that has plagued previous frameworks. Thus, we
benchmarked the performance of various frameworks on the
mouse side-view dataset (see Figure 3,Table 1). Our results show
that OptiFlex significantly outperforms previous frameworks on
every key point in a dataset with frequent instances of temporary
obstructions, illustrating the importance of temporal context.

Improving Robustness Against Temporary
Obstruction With OpticalFlow
Our finding that OptiFlex benefits from the temporal context
aggregated by the OpticalFlow model raises the question to
what extent the performance of other base models can also be
enhanced by applying the OpticalFlow model. To explore this,
we added the OpticalFlow model also to DeepLabCut, LEAP, and
StackedDenseNet. Even though integrating OpticalFlow model
with FlexibleBaseline (i.e., OptiFlex) produced the best results,
addition of the OpticalFlow model improved performance of
all available base models (Figure 4A, Supplementary Table 5A,
Supplementary Video 1). We compared prediction
performances with and without OpticalFlow using paired
t-tests and reported the significance of all comparisons in
Supplementary Table 5B of the Supplementary Information.
Results of OpticalFlow corrections are most evident through
smoothing of trace curves of the keypoints. Sharp spikes
in the trace curves were model prediction errors, and the
OpticalFlow curve comparisons in Figures 4B,C provide good
examples of where the spikes are smoothed out by OpticalFlow,
indicating error correction. It should be noted that when the
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TABLE 1 | Comparison of OptiFlex with previous frameworks on mouse side-view dataset.

Joint Name OptiFlex DeepLabCut LEAP StackedDenseNet

Front Right Paw 0.070409 0.086584 0.214082 0.264510

Hind Right Paw 0.099905 0.131304 0.169363 0.210276

Front Left Paw 0.114177 0.163654 0.238820 0.198858

Hind Left Paw 0.085633 0.172217 0.171265 0.206470

Snout 0.085633 0.089439 0.125595 0.103711

Tail 01 0.031399 0.055186 0.127498 0.058991

Tail 02 0.213130 0.265461 0.381541 0.242626

Tail 03 0.065652 0.087536 0.080875 0.099905

BEST COUNT 8 0 0 0

MEAN 0.095742 0.131423 0.188630 0.173168

SD 0.053491 0.067803 0.092872 0.075159

Paired t-test p-value N/A 0.00628 0.00143 0.00948

Best results at each joint are marked as GREEN, best statistical results are marked as GREEN_BOLD, all error rates are calculated using aPCK.

Bold values indicates to emphasize these values are showing the statistic significance.

base model makes multiple consecutive erroneous predictions,
the OpticalFlow model does not recognise those predictions as
temporary obstructions, and does not make corrections (see e.g.,
Hind Left Paw in Figure 4C).

Exploration in Multi-View Correction
Instead of using multiple views to construct 3D representation
of joint movements, we explored the idea of using heatmap
predictions obtained from different views to correct each other.
Exploiting multiple views of the same behaviour can improve
the predictions, because certain features are more identifiable
in one view than another and the geometrical configuration of
the different views determines the information shared between
them. To demonstrate the potential of multi-view correction, we
developed a simple algorithm that corrects paw predictions in
the mouse dataset using initial predictions from both the side
and bottom-views.

For the mouse dataset, the two perpendicular views
(side and bottom) must share an axis, i.e., the x-axis, in
3D space. By comparing the single view prediction results
(Supplementary Tables 7A,B), it could be determined that the
bottom-view model better predicted the position of the paws. As
a consequence, the x-value of the paws from the bottom could be
used as a reference to search for alternative prediction locations
for the paws in the side-view. These alternative prediction
locations were generated by finding local maximums in the
prediction heatmap using Gaussian filters in the side-view.
Finally, the optimised locations for the paws in the side-view
corresponded to the locations with the least difference in x-value
from their respective key points in the reference (bottom) view.

Using the multi-view correction algorithm improves
predictions for all base models. OptiFlex, integrating
FlexibleBaseline and OpticalFlow, with multi-view corrections
achieves the overall best results. We compared prediction
performances with and without multi-view correction using
paired t-tests and report the significance of all comparisons in
Supplementary Table 6B. We also demonstrate the effects of

multi-view correction in Figure 5, Supplementary Table 6A,
Supplementary Video 2. Sharp changes in the trace curves in
Figures 5B,C were model prediction errors, and most of these
prediction errors were fixed after applying multi-view correction
as shown in Figure 5D.

Generalizability of FlexibleBaseline to
Different Animals
To demonstrate the generalizability of OptiFlex’s base
model, FlexibleBaseline, to different animals, we compared
FlexibleBaseline to current state-of-the-art animal pose
estimation models (DeepLabCut, LEAP, and DeepPoseKit)
on datasets of four different animals. For all datasets,
FlexibleBaseline achieved the best performance amongst all
of the models in terms of lowest mean prediction error rate
(Figure 6), with an error rate of only 0.0276 for the fruit fly
dataset and 0.0370 for the monkey facial expression dataset.
The largest difference in mean error rate compared to the next
best model, DeepLabCut, was found for the mouse side-view
and zebrafish dataset, with a 21.08% decrease (0.1213 vs.
0.1537) in error rate for the zebrafish dataset and a 20.93%
decrease (0.1039 vs. 0.1314) in error rate for the mouse side-view
dataset. In addition to overall prediction error rates, we also
provide more granular statistics for detailed comparisons. These
include the prediction accuracy rate for each of the key points,
counts of the number of best predicted key points for each
model (Supplementary Tables 7A–E), and paired t-test results
between FlexibleBaseline and all other models to demonstrate
the significance of our results (Supplementary Table 7F).
Most notably, FlexibleBaseline also has the highest number
of best predicted key points across all datasets. The most
significant differences between FlexibleBaseline and DeepLabCut
happens in the mouse side-view dataset (20.93% decrease in
error rate, at p-value of 0.02663) and mouse bottom-view
dataset (8.70% decrease in error rate, at p-value of 0.00622).
More detailed comparisons of model accuracy are provided
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FIGURE 4 | OpticalFlow model of OptiFlex evaluation. (A) Box plot of test set

prediction aPCK error rates of models with and without OpticalFlow grouped

by base model. Box plot specified with minimum, first quartile, median, third

quartile and maximum; the small square in each box represents the mean. The

benefits of the OpticalFlow model appeared universal in that it also improved

the performance of the other base models (LEAP, DeepLabCut, and

StackedDenseNet). The box plots are aggregations of key point prediction

error rates of a given model on the mouse side-view test set (1,051 frames

from different videos with 8 labelled key points). Each data point represents the

aPCK error rate of a particular model’s prediction of a specific key point on the

test set of mouse side-view dataset. (B) X-value traces of FlexibleBaseline key

point predictions for a mouse side-view video without OpticalFlow correction.

(C) X-value traces of OpticalFlow model key

(Continued)

FIGURE 4 | point predictions for the same mouse side-view video (using

FlexibleBaseline). Note that the differences after applying the OpticalFlow

model are most prominently reflected in the smoothing of the trace curves of

the key points. Sharp spikes in the trace curves correspond to prediction

errors detected by OpticalFlow.

in Supplementary Information and a video comparison of
tracking results is shown in Supplementary Videos 3A–D.

The inference speed of FlexibleBaseline was measured as the
time the model takes to predict heatmaps from preprocessed
input tensors of a particular dataset. The measurements were
done on virtual machine instances (VM instances) of identical
configuration on Google Cloud (see Computing Environment).
To account for potential variability, the same prediction process
was run 16 times, and the final results reflect the averages of
these runtimes. For real-time inference with a batch size of 1,
FlexibleBaseline had an average per image inference speed of
35ms for the fruit fly test set, 18ms for the monkey test set, 25ms
for the zebrafish test set, 12ms for the mouse bottom-view test
set, and 14ms for the mouse side-view test set. For larger batch
sizes, inference speed can still increase. For example, with a batch
size of 128, FlexibleBaseline has an average per image inference
speed of 26ms for the fruit fly test set, and with a batch size of
256, FlexibleBaseline has an average per image inference speed
of 16ms for the monkey test set, 24ms for the zebrafish test set,
6ms for the mouse bottom-view test set, and 8ms for the mouse
side-view test set.

Flexibility of FlexibleBaseline in Resource
Constrained Situations
The flexibility of FlexibleBaseline derives from the fact that a
user can select output from any of the 5 Conv blocks from
ResNet50 and specify the number of filters in the last three
transpose convolution layers. Different combinations of output
block and filter numbers can vary greatly in the number of
parameters, and thereby training and inference speed, while
retaining a comparable accuracy across datasets. This flexibility
gives users a very favourable trade-off between speed and
accuracy when necessary.

Resource constrained situations are situations where not
enough labelled data are available or the hardware does not
support a large number of epochs. To simulate these conditions,
we tested FlexibleBaseline with 3 different hyperparameter
settings using a considerably reduced number of training steps
and a minimal amount of annotation on the mouse side-view
(Figure 7A) and fruit fly (Figure 7B) datasets. The number
of parameters in these models decreased from more than
25 million in the standard version to <2 million in the
small version (see Methods for detailed model and training
setup, and Supplementary Table 9, Supplementary Figure 1 for
performance of the 3 versions under the previous non-
constrained training setup).

Recent animal pose estimation models (Graving et al., 2019;
Pereira et al., 2019) suggest that reasonable accuracy can be
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FIGURE 5 | Multiview paw correction algorithm evaluation of OptiFlex. (A) Box

plot of test set prediction aPCK error rates of models with and without

multi-view correction on paws, grouped by base model. Box plot specified

(Continued)

FIGURE 5 | with minimum, first quartile, median, third quartile and maximum;

the small square in each box represents the mean. Refer to Figure 4A caption

for details of the data represented in the box plot. (B) X-value traces of

FlexibleBaseline paw predictions for a mouse side-view video. (C) X-value

traces of FlexibleBaseline paw predictions for a mouse side-view video after

multi-view correction. (D) X-value traces of OptiFlex, which integrates

FlexibleBaseline and OpticalFlow, paw predictions for the same mouse

side-view video (video code: 00000nst_0028_tst) after multi-view correction.

achieved with as few as 100 labelled frames on the fruit fly
dataset. We thus started with only hundreds of frames for
both datasets. Independent from the versions of FlexibleBaseline,
training with 100 frames in the fruit fly dataset already yielded
fairly low prediction error rates: ∼5% mean error rates or ∼95%
mean accuracy (Figure 7B, Supplementary Table 8B). When we
gradually reduced the number of labelled frames, we observed
a natural increase in prediction error rates with all versions.
The standard version of FlexibleBaseline had the lowest error
rate on the vast majority of the tested datasets. In case of the
mouse side-view dataset (Figure 7A, Supplementary Table 8A),
the models had higher prediction error rates with 300 labelled
frames, so we explored training with a geometrically increased
number of labelled frames. Our results indicated that under
resource constrained training setups, small, and reduced versions
outperformed the standard version in all of the tested mouse
side-view datasets, while prediction error rates showed a plateau
beyond 600 labelled frames.

DISCUSSION

This paper introduces a novel multi-frame estimation framework
for animal pose estimation, which we refer to as OptiFlex. We
exploit a new universal metric, adjusted percentage of correct key
points or aPCK, to evaluate performance in the context of animal
pose estimation. We show that our base model, FlexibleBaseline,
achieves the lowest prediction error rates compared to other
commonly used models for animal pose estimation when applied
to behavioural datasets of four different animal species. Our
FlexibleBaseline model can be further enhanced by leveraging the
temporal context information through our OpticalFlow model
(i.e., OptiFlex) to correct for temporarily obstructed key points.
Moreover, we demonstrate that multi-view corrections can be
added to further reduce key point prediction errors. Overall,
the effectiveness and robustness of our OptiFlex framework,
which is available through our open source Github repository
(https://github.com/saptera/OptiFlex), make it a potentially
valuable component in any system that wishes to track animal
behaviour.

Comparison of OptiFlex With Previous
Deep Learning Based Animal Pose
Estimation Frameworks
Compared with previous frameworks, OptiFlex has a more
flexible base model, and considers more contextual information
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FIGURE 6 | Comparison of aPCK error rates and MSE loss curves on different datasets. (A) Test set prediction error rates represented in box plots. Box plot specified

with minimum, first quartile, median, third quartile, and maximum; the small square in each box represents the mean. Note that some monkey results do not show

whiskers (parameters of variability), due to nearly perfect predictions. Refer to Figure 4A caption for details of the data represented in the box plot. The number of

frames in the test set of each animal are specified in Supplementary Table 2, and the number of key points for each animal is indicated on the plot. (B) MSE training

and validation loss; it should be noted that the peak in zebrafish reflects the fact that the optimizer landed in a poor spot early in the training process.

through the OpticalFlow model. Thus, the better performance
of OptiFlex originates from the combination of FlexibleBaseline
and OpticalFlow.

In terms of base models, FlexibleBaseline already achieved
some improvements in mean error rate over other models
(Supplementary Tables 7A–E). This improvement can be

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 621252

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Liu et al. OptiFlex: Multi-Frame Animal Pose Estimation

FIGURE 7 | FlexibleBaseline model size evaluation. (A) Prediction aPCK error

rate on sampled mouse side-view dataset. (B) Prediction aPCK error rate on

sampled fruit fly dataset. To simulate hardware constraints, all mouse

side-view models were trained for 40,000 steps at a batch size of 10, and all

fruit fly models were trained for 8,000 steps at a batch size of 10.

attributed to a better model architecture. DeepLabCut had
comparable performance to FlexibleBaseline because they share
the same ResNet backbone and both use a final deconvolution
layer to generate heatmaps (He et al., 2016; Mathis et al., 2018).
The main difference between DeepLabCut and FlexibleBaseline
is that FlexibleBaseline does not always use the full ResNet
backbone and has a few extra deconvolution layers at the
end. Also, all other frameworks (DeepLabCut, LEAP, and
DeepPoseKit) have one model setting for all animals (Mathis
et al., 2018; Graving et al., 2019; Pereira et al., 2019), while
FlexibleBaseline allows adjustments of model structure based
on dataset complexity. For example, in complex datasets with
large variation in key point features or with a large number of
key points, FlexibleBaseline can be adjusted to include more

pre-trained layers of the ResNet backbone and larger number
of filters in the deconvolution layers. These adjustments will
increase the overall number of trainable parameters in the model
structure, allowing the model to better adapt to a larger variation
in features or larger number of key points.

The other source of improvement is our OpticalFlow model.
The accuracy improvement from this model can be attributed
to the temporal context aggregated from the initial predictions
of adjacent frames. With regards to temporal context, all
other frameworks make predictions based on information from
single frames, while OptiFlex incorporates temporal context
from multiple frames by combining multiple FlexibleBaseline
predictions with the OpticalFlow model. We also showed
that applying OpticalFlow can be beneficial not only for
FlexibleBaseline of OptiFlex, but also in combination with all
other base models that we tested. In all cases, it was particularly
instrumental in correcting for temporary obstruction. The issue
of temporary obstruction has been identified before by others,
and it has been partly circumvented by applying a variety
of strategies (Graving et al., 2019; Nath et al., 2019; Pereira
et al., 2019). For example, some models avoided temporary
obstructions by analysing datasets that had a relatively high
visibility of the key points (Graving et al., 2019; Nath et al., 2019),
while others did this by cutting off the error distances at the 90th
percentile level (Pereira et al., 2019).

Dataset Considerations
The diverse body plans of different species and distinct
experimental setups in the datasets used for assessment of
our model posed unique challenges. The mouse dataset was
obtained on a setup with both side and bottom-views, allowing
the combination of spatial geometric information from both
views. In the mouse side-view dataset, limb alternation during
locomotion was associated with temporary obstruction of paws
making continuously tracking of each paw a challenge. Thus, this
dataset provided an ideal test case for our OpticalFlow approach
in improving model predictions with temporary obstruction of
key points.

The fruit fly dataset on the other hand, which was from the
same dataset as used by LEAP (Pereira et al., 2019), had the largest
number of key points to track, resulting in a higher memory
load for models as compared to the other datasets. At the same
time, the tracking process was simplified by removal of image
backgrounds and high visibility of the key points. The monkey
dataset comprised only facial features, with one of the key points,
the tongue, rarely appearing in the dataset. This feature made
the monkey dataset suitable for testing datasets with highly
imbalanced key point occurrences. The zebrafish dataset, finally,
was the only dataset that required tracking of multiple animals
at the same time. This endeavour was particularly challenging as
individual zebrafish are hard to distinguish, while they frequently
traverse the field of view. At present, OptiFlex can only track
multiple animals when the number of animals is predetermined
and the body shape of each animal is consistent throughout the
dataset. This ability could be generalised to track an arbitrary
number of animals by adding an extra object detection module,
which is a potential direction for future work. Taken together, the
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data of the different species comprised a rich and diverse set of
behavioural measurements that allowed us to test the benefits and
limitations of OptiFlex and other state-of-the art pose estimation
models to their full extent.

Generalisation of Multi-View Correction
Our exploration of multi-view correction only involves two
views, but this approach can be generalised to recordings with
more than one view for most setups. There are existing bootstrap
methods in computer vision that use prior knowledge of camera
setup and triangulation to aggregate positional information of a
given key point from multiple views (Simon et al., 2017). More
specifically, their approach first collects 2D location of each key
point from noisy initial predictions of the key point in multiple
views. Since the camera angles for each view is known, these 2D
locations can be used to triangulate potential key point locations
in 3D space. After using an algorithm to determine the mostly
likely 3D location of each key point, the final 3D location can be
reprojected back to each view as the corrected 2D location for the
key point on each view. This way, even when key points are not
clearly visible in some views, locations of those key points can
be confirmed in other views where they are precisely identified
through 3D triangulation and reprojection.

Spatial, Geometrical, and Temporal
Context
Fundamentally, animal key pointmovements happen in 3D space
over time, making the intrinsic information four dimensional.
If predictions are made on animal key point movements using
only two-dimensional data, such as a single video frame,
then 2 dimensions of available information are forfeited. This,
fundamental flaw will persist despite improvements in models
or training datasets. Here, we show that all 4 dimensions can
be taken into account by using FlexibleBaseline to generate
predictions based on 2D video frames, by combining multi-
view analysis to generate predictions in a 3D geometric context,
and by adding the OpticalFlow model to utilise the fourth
temporal dimension. By integrating all these features into a
single framework, OptiFlex provides the next step forward to
use advanced deep learning tools to analyse animal behaviour
non-invasively at a high spatiotemporal resolution.

METHODS

Formulation
The goal of OptiFlex is to produce a set of heatmaps representing
the model’s confidence of each key point appearing at each
location of the image. We denote the pixel location of the pth key
point as Yp ∈ Z ⊂ R

2, where Z is the set of all (x, y) locations in
an image and p ∈ {1 ... P}.

The base model has N outputs, each considered as a function.
With the ith output denoted by bi(·), where i ∈ {1 ... N}. Usually,
there are 1 to 2 outputs obtained from the base model. Each
output goes through a resizing process (usually deconvolution),
denoted di(·), to produce a set of intermediate heatmaps hi. Thus,
if we let the input frame be denoted as x, we have di(bi(x)) →

{h
p
i }p ∈ {1 ... P} = hi, where h

p
i is the heatmap for the pth key point

from the ith output. The intermediate heatmaps hi are used to
compare against labels for intermediate supervision, and the final
set of heatmaps hN , denoted f, is used as the output heatmap for
the base model.

To use context information from surrounding frames, the base
model was first applied to predict heatmaps for all surrounding
frames. Let {xk}k ∈ {t−s×f ... t ... t+s×f } be a sequence of input
frames, where t is the index of the target frame, s is the skip ratio,
and f is the frame range.We applied the base model to each frame
to get the output heatmaps dN(gN(x

k)) = fk. Next, we computed
optical flow between each of the surrounding frames and target
frame xt , then we applied the computed optical flow vector field
to the predicted heatmap of the surrounding frames. We denote
the optical flow transformation as φ(·, ·), which outputs optical
flow morphed heatmaps of input heatmaps fk with reference to
target frame heatmaps ft : φ(fk, ft) = ok. Note that ft = φ(ft , ft) =
ot . We passed all of the optical flow morphed heatmaps through
a 1 × 1 convolution layer to get the final output heatmaps of the
entire model: y = conv1x1({o

k}k ∈ {t−s×f ... t ... t+s×f }). This 1 × 1
convolution essentially acted as a weighted sum of all the optical
flow morphed heatmaps. Finally, we got the predicted pixel
location of the pth key point, denoted Ŷp, by getting the global

maximum of the pth final output heatmap yp, and calculated

aPCK calculations can be done by comparing Ŷp against Yp.

Datasets
We did not collect new behavioural datasets of animals for
the current study; all animal data were obtained previously for
other studies. Our multi-species datasets cover some commonly
used animal body plans in locomotion experiments: mouse
(Mus musculus), zebrafish (Danio rerio), fruit fly (Drosophila
melanogaster), and monkey (Macaca mulatta). The mouse
dataset was acquired on a LocoMouse setup (Machado et al.,
2015), which contains a straight corridor and a bottom mirror
that permits observation of side and bottom-views of the
mouse with a single camera. The zebrafish dataset was recorded
with a camera mounted above a fish tank to film the activity
of multiple fish. The fruit fly dataset was downloaded from
the Princeton Neuroscience Institute (http://arks.princeton.edu/
ark:/88435/dsp01pz50gz79z) (Pereira et al., 2019), and then
converted to a compatible format. The monkey dataset was
obtained with a camera filming the facial behaviour of a rhesus
monkey, with an installed lick port. The detailed datasets
attributes are in Supplementary Table 1 and dataset examples in
Supplementary Figure 4.

Dataset Preprocessing
The raw dataset was first split into train, validation, and test
sets, with roughly a 3:1:1 ratio (Supplementary Table 2). Best
practise for splitting the dataset should ensure abundance in
the train set, as well as diversity and independence amongst
all three sets, allowing for optimal generalisation on future
data without further training. The diversity and independence
are preferably achieved by having multiple individuals in
the train set, and novel individuals in the validation and
test set.
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The validation and test sets were ready after resizing to the
target dimension, while the train sets required further processing.
Three major steps were performed on the train set of each dataset
before being used for the data generators of the base models
including: augmentation, resizing image and labels, as well as
label conversion.

1. To augment all images and labels within the training
set with random rotation and flipping. Images were kept
without cropping and padded with black background, thus
retaining all image information. For our datasets, the angle
range for random rotation was (−10◦, 10◦). No flipping was
applied to the mouse or fruit fly train sets; the monkey
train set was randomly flipped about the y-axis, and the
zebrafish train set was randomly flipped about all axes
(x-axis, y-axis, xy-axis).

2. To resize all augmented images and labels to the same
size. Images were resampled using pixel area relation, a preferred
method for decimating images (Bradski, 2000). The same
transformations were also applied to the labels.

3. To convert human defined labels to heatmaps. The heatmap
primarily functions to distinguish points closer to the ground
truth, as they have a higher weight than points at greater distance,
even if all points in the heatmap are considered “correct.”
Normalisation to account for the various scales of the animal
and image will happen by default in the human labelling process
as users can specify the label size. Human defined labels were
either pixel coordinates or bounding boxes. For the heatmap
of each key point, a 2D tensor of image size was initialised
with all zeros. The heatmap was of corresponding image size,
so small key points such as mouse paws did not get shrunk
to a single pixel. A 2D Gaussian distribution was generated by
probability density function (PDF) within a user defined area
or the bounding box area on the tensor, with the centre of the
area being the ground truth location for the joint and location of
peak value for the 2D Gaussian distribution. Then, the heatmap
was normalised to make the maximum value 1.0, and any value
on the heatmap smaller than 0.1 was set to 0. The third step
was the most crucial step as it is closely tied to the eventual
evaluation using aPCK, because the area defined by the labeller
for the 2D Gaussian distribution will be the area considered
as accepted or “correct.” Note that all bounding box sizes and
shapes were chosen based on the features of the key points in
the images.
Since the datasets were too large to be directly stored in
memory, train and validation sets were converted to data
generators before feeding them into the model. For each base
model, a single training input consisted of a batch of images
converted to tensors and a batch of multiple copies of label
heatmap tensor, depending on number of stages. The tensors
were multiplied by a user defined peak value to increase
contrast between label region and remaining pixels. From our
training experience, most models cannot be trained without
this process.

To train the OpticalFlow model, we first needed an ordered
sequence of 2n + 1 images to be used as inputs to a pre-trained
base model. The base model produced an ordered sequence of
2n + 1 heatmap tensors as outputs, which were then fed into

the OpticalFlow model. The labels for the OpticalFlow training
process were a single set of heatmap labels in the same format as
the labels for base models.

Base Model Training Setup
To make fair comparisons between various base model designs,
we set the training length at 50 epochs and the batch size at
10 for all base models on all datasets. We also tried to keep
a constant learning rate of 0.0001 across different models and
datasets. However, when using the LEAP model, a learning rate
of 0.0001 led to wrong predictions on one of the key points for the
mouse bottom-view dataset. We therefore used a learning rate of
0.0003 instead in this specific instance. All heatmap labels had
a truncated normal distribution with peak value of 16 located
at the manually labelled key point position. All models were
trained using an ADAM (Kingma and Ba, 2015) optimizer with
beta1 = 0.9, beta2 = 0.999, and no decay. The loss function for
all models was mean squared error (MSE), but all results were
evaluated using aPCK for reasons mentioned before. An overall
MSE value of all frames and key points is automatically reported
for each training iteration to help track training progress. We
are aware of the fact that DeepLabCut did not originally use
MSE as its loss function, but later experiments have shown that
DeepLabCut results do not change very much with MSE as loss
function (Graving et al., 2019). Thus, for fair comparison of the
model structure, with all other factors constant, we decided to use
MSE as the loss function for all models. For comparisons between
models, we used paired t-tests, paired by key points, to confirm
the significance of the differences between models.

Base Model Implementation
To make fair comparisons between base model designs, all
training, data generation and evaluation procedures were
identical. All base models were implemented using Keras
(Chollet, 2015) and are available on Github.

The standard FlexibleBaseline models used in model
comparisons all had the same hyperparameter: ImageNet
pre-trained ResNet50 backbone outputs after Conv4 block
and the filter number for the last 3 transposed convolution
layers are 64, 64, and 2× number of key points respectively.
There was an intermediate supervision after Conv3 block of
ResNet50 backbone.

LEAP models were implemented exactly based on the
specification of the original paper. Since LEAP also produces
heatmaps of original image size, our data generation process
worked perfectly with the model.

DeepLabCut models were also implemented according to the
original paper, except the original hyperparameters produced
prediction heatmaps were smaller than the original images. For
DeepLabCut to train using the same data generation process,
we changed the kernel size and stride of the final transpose
convolution layer to 36× 36 and 32× 32, respectively.

DeepPoseKit was originally implemented using Keras
(Graving et al., 2019), so our StackedDenseNet implementation
was nearly identical to the DeepPoseKit Github implementation,
with some minor refactoring to ensure the model works with the
rest of the code base. Since the original Stacked DenseNet also
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produced prediction heatmaps of a smaller size, an additional
TransitionUp module (from DenseNet) was added before each
output layer to ensure the model produced outputs of original
image size.

Flexibility Comparison Setup
The 3 versions of FlexibleBaseline had hyperparameters specified
in Supplementary Table 3. For fruit fly datasets, all model and
dataset combinations were trained with 8,000 images randomly
sampled with replacement from their respective training set. For
mouse side-view datasets, all model and dataset combinations
were trained with 400,000 images randomly sampled with
replacement from their respective training set.

OpticalFlow Implementation and Setup
Our OpticalFlow model was similar in principle to a component
of Flowing ConvNet (Pfister et al., 2015), but had major
changes in implementation to allow for skip ratio and predefined
frame range. The hyperparameter values for OpticalFlow from
Farneback algorithm are: window size of 27 pixels, pyramid
scale of 0.5 with 5 levels and 8 iteration on each pyramid level;
pixel neighbourhood size was 7 for polynomial expansion, with a
corresponding poly_sigma of 1.5.

In our OpticalFlow models comparisons, all OpticalFlow
models were trained for 30 epochs with a skip ratio of 1. All
OpticalFlow models had a learning rate of 0.0001, except for
StackedDenseNet, which had a learning rate of 0.00015. The
OpticalFlow model for StackedDenseNet used a slightly higher
learning rate, because its validation curve did not plateau with a
learning rate of 0.0001 after 30 epochs. All OpticalFlow models
had a frame range of 4, except for LEAP, which had a frame range
of 2. The LEAP basemodel hadmanymore prediction errors than
other base models, so including more frames often introduced
false information to the target frame. Hyperparameters for the
OpticalFlow models are summarised in Supplementary Table 4.

Computing Environment
All training and inference were done on VM instances from
Computing Engine of Google Cloud with identical configuration.
Each VM instance was a general-purpose N1 series machine with
24 vCPU, 156GB of memory and 2 Nvidia Tesla V100 16GB
VRAMGPU. TheOS image on each instance was “Deep Learning
Image: TensorFlow 1.13.1 m27” with CUDA 10.0 installed.
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