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There is growing evidence for the key role of microglial functional state

in brain pathophysiology. Consequently, there is a need for efficient

automated methods to measure the morphological changes distinctive of

microglia functional states in research settings. Currently, many commonly

used automated methods can be subject to sample representation bias,

time consuming imaging, specific hardware requirements and difficulty

in maintaining an accurate comparison across research environments. To

overcome these issues, we use commercially available deep learning tools

Aiforia R© Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify

microglial morphology and cell counts from histopathological slides of Iba1

stained tissue sections. We provide evidence for the effective application of

this method across a range of independently collected datasets in mouse

models of viral infection and Parkinson’s disease. Additionally, we provide a

comprehensive workflow with training details and annotation strategies by

feature layer that can be used as a guide to generate new models. In addition,

all models described in this work are available within the Aiforia R© platform for

study-specific adaptation and validation.

KEYWORDS

deep learning, microglia, Parkinson’s disease, viral infection, olfactory dysfunction,
synuclein

Abbreviations: Iba1, ionized calcium-binding adaptor protein-1; PFF, oreformed fibrils; αSyn, alpha
synuclein.
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Introduction

Microglia are resident CNS macrophages with a
reactive functional state induced by injury as well as
several proinflammatory conditions and are involved in the
pathogenesis of diverse neurodegenerative conditions. Change
in microglial reactivity, or “microgliosis,” is characterized
by microglia proliferation, as well as transcriptional and
morphological changes (Colton and Wilcock, 2010; Parakalan
et al., 2012; Walker and Lue, 2015; Awogbindin et al., 2020).
Morphological change in particular, which ranges from highly
ramified to an ameboid cell shape, has been widely used
to measure change in microglial functional state and its
involvement in different pathological conditions, including
mouse models of neurodegenerative diseases, traumatic
brain injury and infections, among others (Davis et al., 1994;
Nakajima and Kohsaka, 2001; Zusso et al., 2012).

The study of neurodegenerative diseases and
neuroinflammation often requires accurate and reproducible
image analysis of histological slides. Ionized calcium-binding
adaptor protein-1 (Iba1) is a cytoskeletal protein specific to
microglia and macrophages commonly used in histological
analysis and can be used to quantify microglia phenotype (Ito
et al., 1998; Ohsawa et al., 2000; Shi et al., 2020; Lier et al.,
2021; Schwabenland et al., 2021). Immunolabeling of Iba1
in the cytoskeleton of microglia allows for quantification of
changes in morphology, specifically calculation of a cell’s area
to perimeter ratio, which increases as microglia become more
ameboid (Kongsui et al., 2015; Kolosowska et al., 2020; Johnson
et al., 2021). Currently, quantification of the area/perimeter
ratio is achieved using ImageJ or FIJI software, sometimes
with the Sholl analysis plugin (Ferreira et al., 2014; Clarke
et al., 2021). Other automated and semiautomated methods
often require custom designed software or scripts that can be
challenging to apply across research environments (Heindl
et al., 2018; George et al., 2019; Gober et al., 2022). However,
many of these methods require manual cell imaging at high
magnifications on bright field or confocal microscopes, which
can increase the duration of time needed to complete a full
analysis and potentially introduce a sampling bias. Recently,
some researchers have developed accurate, effective deep
learning tools to overcome these limitations, but implementing
these tools across research environments can be a challenge
to investigators without access to method-specific hardware
and formal computer science training (Kyriazis et al., 2019;
Bascuñana et al., 2020; Leyh et al., 2021). By using commercially
available deep learning tools (Aiforia R©) to develop and validate
a microglia morphology model, we have been able to establish
a workflow for results with fewer limitations in application and
reproducibility.

In this report, we provide an automated model capable of
detecting microglia and change in their reactivity with accuracy

comparable to expert human histopathology. We compare
our area/perimeter results with our previously described
semiautomated MATLAB script and demonstrate that by using
the method described here, this model can be generalized
or adapted to specific datasets across research environments.
Additionally, we present an effective comparison of analysis
results from independently collected datasets, related to viral
infection. Finally, we provide a clear example of how the
accuracy and sampling power of our method could translate
to reduced variability for datasets with lower sample sizes,
in a mouse model of Parkinson’s disease. Taken together,
the work presented here provides a user-friendly option
for quantifying microglia morphology, and more broadly an
exciting advancement in access to flexible machine learning
technology capable of quantifying imaging features.

Materials and methods

To produce a robust generalizable method for quantifying
microglia morphology using commercially available deep
learning tools, we utilized tissue samples from six independent
studies across 3 labs in 2 departments at the Van Andel
Institute (Grand Rapids, MI, United States). While these labs use
many of the same general practices regarding animal treatment,
tissue collection and tissue processing, some of these practices
vary slightly across labs. Subtle methodological variability,
such as a slightly different background signal for Iba1, is
potentially important for demonstrating how generalizable
this method of artificial intelligence (AI) model development
can be across different research environments. Please see
the section “Author contributions” for a description of each
lab/researcher’s involvement.

Animals

We utilized 7- to 8-week-old wild type (WT) C57BL/6J
mice for the model of α-synuclein (αSyn) induced olfactory
dysfunction; 20- to 22-week-old WT C57BL/6N mice for the
model of viral infection; 10- to 12-week-old C57BL/6J and NSG
mice for the adaptive transfer dataset (George et al., 2021); 20-
to 22-week-old wild typeTrim28 heterozygous mice on a FVBN
background (Whitelaw et al., 2010) for the model of striatal
αSyn aggregation. All animals were bred in the vivarium at
Van Andel Institute. Mice were housed at a maximum of 4 per
cage under a 12-hour light-/dark cycle with ad libitum access to
water and food. The housing of the animals and all procedures
were carried out in accordance with the Guide for the Care and
Use of Laboratory Animals (United States National Institutes of
Health) and were approved by Van Andel Institute’s Institutional
Animal Care and Use Committee.
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Viral infection model

C57BL/6N wild-type male mice 20-22 weeks of age
were injected intraperitoneal with 2 × 105 PFU/mouse of
lymphocytic choriomeningitis virus acute (LCMV, Armstrong
strain) produced and titrated as previously described (Battegay
et al., 1991; Welsh and Seedhom, 2008). LCMV has been
previously shown to induce change in microglia reactivity (Zhou
et al., 2008). Seven days after injections, animals were euthanized
and brains were collected.

PFF seeding αSyn aggregation mouse
models

αSyn induced olfactory dysfunction
Mouse αSyn aggregates were produced as previously

described (Volpicelli-Daley et al., 2014) and kindly provided by
Dr. Kelvin Luk (University of Pennsylvania Perelman School
of Medicine, United States). Before surgery, αSyn preformed
fibrils (PFFs) were sonicated in a water-bath cup-horn sonicator
for 4 min (QSonica, Q700 sonicator, 50% power, 120 pulses
at 1s ON, 1s OFF) and maintained at room temperature until
injection. For control injections, αSyn monomeric protein was
maintained on ice until intracerebral injections were performed.
Mice were anesthetized with isoflurane and injected unilaterally
in the right olfactory bulb (OB) (coordinates from bregma: AP:
+5.4 mm; ML: –0.75 mm and DV: –1.0 mm from dura) with
0.8 µL of PFFs or monomeric αSyn (5 µg/µL) for the αSyn
induced olfactory dysfunction model and the monomer model
respectively; and with matching volumes of vehicle phosphate
buffered saline (PBS) as control. Injections were made at a rate of
0.2 µL/min using a glass capillary attached to a 10 µL Hamilton
syringe. After injection, the capillary was left in place for five
min before being slowly removed. Prior to incision, the animals
were injected with local anesthetic into the site of the future
wound margin (0.03 mL of 0.5% Ropivacaine; Henry Schein,
United States). Following surgery mice received 0.5 mL saline
s.c. for hydration, and 0.04 mL Buprenex (Henry Schein) s.c.
for analgesia. Mice injected with αSyn into the olfactory system
were euthanized 8–15 weeks after surgery.

Striatal αSyn aggregation
Stereotactic injections were performed unilaterally into the

dorsal striatum (coordinates from bregma: AP: +0.2 mm; ML:
±2.0 mm and DV: –2.6 mm from dura). Experimental animals
were injected with 1 µL of mouse PFFs (1 µg/µL) and control
animals were injected with 1 µL of vehicle phosphate buffered
saline (PBS) at 20–22 weeks of age. Tissue was collected when
animals reached 36 weeks of age. Mice were anesthetized by
intraperitoneal IP injection with tribromoethanol (Avertin) and
perfused transcardially with 0.9% saline, followed by 4% PFA in
phosphate buffer. Brains were harvested, post-fixed for 24 h in

4% PFA at 4C, and cryoprotected in 30% sucrose in phosphate
buffer for at least 3 days at 4◦C or until taken for sectioning.
The entire brain of each mouse was cut into 40 µm free-
floating coronal sections on a freezing microtome and stored
in a cryoprotectant solution consisting of 30% sucrose and 30%
ethylene glycol in PBS at –20◦C until immunostaining. For
detection of the antibody with DAB, we utilized a peroxidase-
based method (Vectastain ABC kit and DAB kit; Vector
laboratories). Stained sections were mounted onto gelatin-
coated glass slides, dehydrated, and coverslipped with Cytoseal
60 mounting medium (Thermo Fisher Scientific).

Immunohistochemical analysis

Animals were anesthetized with sodium pentobarbital
(130 mg/kg; Sigma Aldrich) for tissue collection at the indicated
time points. Brains were isolated after transcardial perfusion
with saline and fixation with 4% PFA. After dissection, brains
were post fixed overnight with 4% PFA and then stored at 4◦C
in 30% sucrose in PBS until sectioning. Brains were frozen and
coronal sections of 40 µm were cut on a sliding microtome
(Leica, Germany) and collected as serial tissue sections spaced by
240 µm. For DAB immunoprecipitation and antigen detection
we used a standard peroxidase-based method using a series
of free-floating coronal sections (every 6th section). Samples
were blocked with 10% normal goat serum, 0.4% BSA and 0.1%
Triton-X100 in PBS for 2 h after which they were incubated with
primary antibody directed against Iba1 at 1:1,000 (Wako, 019-
19741) at RT overnight. On the following day, samples were
triple washed with 0.1% Triton-X100 in PBS and incubated
with biotinylated anti-rabbit antibody (Vector Laboratories, BA-
1000) for 2 h at room temperature, triple washed again with
the same solution and treated with Vectastain ABC kit (Vector
Laboratories, PK-4000). Antigen detection was performed with
Vector DAB (Vector Laboratories, SK-4100). After mounting
and dehydration, slides were coverslipped with Cytoseal 60
mounting medium (Thermo Fisher Scientific).

Microglia morphology quantifications
using MATLAB

Mouse coronal tissue sections were viewed under an
Eclipse Ni-U microscope (Nikon); images were captured with
a color Retiga Exi digital CCD camera (QImaging) using NIS
Elements AR 4.00.08 software (Nikon). Microglia hydraulic
radius (area/perimeter ratio) was determined as previously
described (George et al., 2019). In short, color (RBG) images
were generated using a 60x oil objective. Following imaging,
a custom segmentation MATLAB (R2019b, The MathWorks,
Natick, MA, United States) script assessed the morphology of
the imaged microglia, using user defined microglia identification
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and a pixel-based quantification of the area and the perimeter.
These values were then converted to micrometers and used to
determine their area/perimeter ratio in MS Excel v16.41.

Microglia morphology quantifications
using Aiforia R©

Image acquisition
Z-stacks of mounted Iba1-stained tissue sections were

captured at 20x magnification using a whole slide scanner (Zeiss,
Axioscan Z1) at a 0.22 µm/pixel resolution. Extended depth
focus (EDF) was used to collapse the z-stacks into 2D images as
they were collected. Tissue thickness was set to 20 µm, z-stacks
were collected at 3 µm intervals and the method setting selected
was Contrast. The images were exported with 85% compression
as.jpeg files. The digitized images were then uploaded Aiforia R©

image processing and management platform (Aiforia Inc,
Cambridge, MA, United States) for analysis with deep learning
convolutional neural networks (CNNs) and supervised learning.

Assessment of microglia morphology using
Aiforia R©

A supervised, multi-layered CNN was trained using scans
of coronal mouse brain tissue sections stained for Iba1, to
recognize Iba1+ microglia in mice. The AI model was trained
on the most diverse and representative images from across
multiple Iba1 datasets and was adapted to each dataset to
create multiple AI models capable of accurately detecting Iba1-
stained microglia collected by multiple investigators. Whole
slide images were loaded to the Aiforia R© cloud for the training
data, and each feature layer was trained using tools in the
Aiforia R© Cloud platform. All analysis results, including the
location of each microglia cell, were determined using the
automated deep learning algorithm developed using Aiforia R©.
However, the analysis regions (i.e., brain regions; striatum,
motor cortex, etc.) were annotated manually.

Training details and annotation strategies by
feature layer

The first feature layer (“tissue”) was annotated using
semantic segmentation to distinguish between Iba1+ tissue
and glass slide background. The training regions for the
“parent” tissue layer can be described using three tissue
training region annotation strategies: positive tissue signal,
background, and positive-signal/background interface (edge of
tissue). Each training image included at minimum 2 positive
tissue signal, 3 background, and 1 positive-signal/background
interface training regions. The tissue layer was trained at
10,000 iterations, CNN complexity set to Very Complex, and
100 µm field of view.

Object detection was used for the “child” feature layer
(“microglia”) to identify Iba1+ microglia and overall cell

diameter. Cell diameters were binned by 10 µm intervals
ranging from 10 to 110 µm. Additionally, segmentation was
used to distinguish each cell from the surrounding background
tissue. On average, 9.5 instance segmentation annotations were
included per training image. The training regions for the
microglia layer can also be described using four microglia
training region annotation strategies: small training regions
annotating 2–4 cells, extended background, cell-background,
and broad area of interest (Table 1).

Small training regions were primarily used in the early
stages of model development, and each image included 1.5
small training regions on average. Cell selection for the
small annotations was pseudo counter-balanced across images
to include examples of microglia from the olfactory bulb,
piriform cortex, anterior olfactory nucleus, dorsal striatum, and
substantia nigra. A preliminary model was trained using 1,500
training iterations, and subsequent analyses were performed
for 10 of the 35 training images to qualitatively assess model
performance. Model performance evaluation was then used
to streamline the inclusion of additional annotations, most
specifically the broad area of interest training regions.

Broad area of interest training regions were annotated
using the Aiforia R© Converter Tool to convert correct AI
model predictions that resulted from the previous AI model
training round into training annotations for the subsequent
round of training. Using this technique, we quickly amplified
the number of annotations across a multitude of ROIs that
captured staining and scanning variability within the datasets.
To maintain a consistent definition for microglia detection,
each object converted from analysis results was reviewed and,
if necessary, manually adjusted for object diameter and position
centering. These annotations made up most of the examples
needed for robust microglia identification by supplying 30–800
microglia training examples per training region and, on average,
0.8 broad area of interest training regions were included per
training image.

Extended background training region annotations typically
included 2–4 cells and extracellular background that extended
or “branched” across most of the tissue section in 2–3 directions
without including cell bodies or processes. Each branch ranged
from 1 to 4 mm, approximately. The aim of the “branching”
annotations was to reduce the occurrence of false positives by
providing adequate examples of background tissue. On average,
3.6 extended background training regions were included per
training image. Finally, to eliminate the occurrence of false
positives that result from the incorrect identification of a single
microglia as two or more objects, training regions were carefully
drawn/edited to exclude any overlapping portions of the object
annotations (see Table 1 example images). The final version of
this microglia layer completed after 11,789 training iterations,
with pre-training instance segmentation network complexity set
to ultra complex, and post-training object detection gain and
Level of detail adjusted to optimize model performance (object
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TABLE 1 Annotation strategies.

Small (2-4 cells) Extended background Broad area of interest

Instance
segmentation

Model # of object
annotations

Small
(2-4 cells)

Broad area of
interest

Extended
background

Instance
segmentation

cell
background

α Syn induced olfactory dysfunction 4187 51 27 126 334 0

Viral infection 745 635 0 3 136 278

Striatal α Syn aggregation 997 0 18 0 18 0

Model specific annotations used to produce validated deep learning models. (Example images) Solid black lines designate the training regions, red circles (object annotations) used to
identify microglia, and red outline surrounding microglia (insert) designates instance segmentation annotation. Annotation strategies: Small (2–4 cells), Extended background, and Broad
area of interest (as described in section “Details of model adaptation across independently collected Iba1+ datasets”) (Model) identifies which of the microglia models the table details
pertain to: αSyn induced olfactory dysfunction, Viral infection, Striatal αSyn aggregation. (Remaining columns: # of object annotations – cell background) Each column represents one
annotation strategy and the number of annotations for each annotation strategy.

detection gain 2.1, instance segmentation gain 4, and level of
detail “High”) (Supplementary Figure 1A).

Comparison of microglia morphology
assessment methods across brain regions

Previous studies have demonstrated the area/perimeter ratio
of microglia as a reliable means for identifying microglia
phenotype and the quantification of the area/perimeter ratio
using semi-automated methods (George et al., 2019, 2021).
Hence, the area/perimeter ratio was included for the comparison
of morphology assessment methods, MATLAB and Aiforia R©.
First, tissue sections were selected from 4 mice from the αSyn
induced olfactory dysfunction mouse model in each of the
following brain regions: the inner plexiform layer of the OB,
anterior piriform cortex, and dorsal striatum. For each brain
region, 3 sections of tissue were selected for inclusion in the
comparison dataset and were analyzed by the semi-automated
MATLAB script as well as the Aiforia R© Iba1-microglia detection
model.

Using Aiforia R©, analysis regions were defined for each serial
tissue section to include the entirety of each brain region, as
opposed to the three fields of view used for MATLAB (Paxinos
and Franklin, 1998), and were then analyzed using the combined
tissue plus Iba1-microglia AI model (Figure 1A). Analysis
using the semi-automated MATLAB script was performed as
previously described (Heindl et al., 2018). In brief, microglia
were sampled from each brain region in each mouse using three
fields of view per serial tissue section with a total of ∼5–8 cells
per field of view.

To determine if there are differences in how each method
calculates the area/perimeter ratio, a subset of 5 cells from the
OB of each mouse was used for a cell-to-cell paired comparison
between assessment methods. Finally, to evaluate the relative
efficiency of each method, the timestamps related to dataset
acquisition were reviewed and quantified in hours and minutes.

Details of model adaptation across
independently collected Iba1+ datasets

To evaluate how well the microglia detection model can
be adapted to additional datasets, images and layer-specific
annotations were added to the original training dataset to
generate additional microglia detection models. From the
original αSyn induced olfactory dysfunction (i.e., “parent”)
model, 2 additional detection models were adapted: striatal αSyn
aggregation and viral infection. To adapt the model to the new
datasets, 3–5 analysis regions were annotated per image for 16
images specific to the viral infection model. Compared to the
other datasets, the striatal αSyn aggregation dataset had some
variability in background staining and thus 57 analysis regions
were annotated across 12 images. Following annotations, a
preliminary version of each model was trained using 1,500
training iterations and results were visually reviewed to estimate
model performance in tissue detection, microglia detection and
microglia segmentation. For the viral infection dataset, there
were no errors in tissue detection, and thus no tissue layer
annotations were needed. However, to ensure accurate detection
of the tissue layer for the striatal αSyn aggregation model,
each training image included 3.3 positive tissue signal, 3.9
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FIGURE 1

Comparison of MATLAB and Aiforia R© in the quantification of microglia morphology. (A) Brain region specific comparison of area/perimeter ratio
values between methods, suggesting similar levels of accuracy. N’s represent the number of cells quantified in each method. Legend includes
the duration of researcher time needed to acquire, process and analyze the complete dataset. n = 5 mice, using 3 serial tissue sections per brain
region. With AIforia an entire brain region per tissue section was quantified, compared with 5–7 user manually identified cells from 3
representative 60x bright field images per tissue section in MATLAB. (B) A cell specific comparison of area/perimeter values between methods,
suggesting that the significant (p < 0.0001) difference in output values is not a product of sampling biases. Connecting lines indicate differences
in values for a single cell between methods. Example images showing how each analysis method segments individual cells to determine the
area/perimeter values, and the duration of researcher time need to acquire, process and analyze the complete dataset. (C) Comparison of the
AIforia microglia model performance against five researchers experienced in microglia histopathology (80 validations regions; 14 images) with
no significant differences, suggesting that the AI is performing to the same standard as human researchers. F-measure group labels apply to all
histograms by color code.

background and 1 positive-signal/background interface training
regions, on average.

To adapt the microglia detection layers, analysis regions
were reviewed, and undetected microglia were annotated
following the “small training region” strategy, annotating 2–
4 microglia per region. To help eliminate the occurrence of

false positives, cell-background training regions were annotated
to include additional examples of background extracellular
space. On average across training images for the viral infection
model, 17 cell-background and 40 small training regions
were annotated along with 46 microglia, 9 of which were
annotated for microglia instance segmentation. To control
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for differences in background staining throughout the striatal
αSyn aggregation dataset, only broad area of interest training
regions were used across 7 training images. Finally, for the
striatal αSyn aggregation model, 2.6 broad area of interest
training regions were annotated across a range of brain regions,
with 143 annotated microglia, 3 of which were annotated for
microglia instance segmentation, on average across training
images. Importantly, to eliminate the occurrence of false
positives that result from the incorrect identification of a single
microglia as two or more objects, training regions were carefully
drawn/edited to exclude any overlapping portions of the object
annotations (see Table 1 example training region images).

For the final versions of each model, post-training object
detection gain settings, as well as instance segmentation gain
and level of detail settings, were adjusted to optimize model
performance. The final version of the viral infection model
completed after 60,000 training iterations using ultra complex
instance segmentation network complexity, post-training object
detection gain set to 1.4496, and instance segmentation gain
set to 4 with High level of detail. The final version of the
striatal αSyn aggregation model completed after 20,000 training
iterations using ultra complex instance segmentation network
complexity, post-training object detection gain set to 1.25,
instance segmentation gain set to 3.75 with High level of detail
(Supplementary Figure 1B).

Validating adapted models across independent
Iba1+ datasets using Aiforia R©

To validate the accuracy of our “parent” microglia detection
model (αSyn induced olfactory dysfunction) we compared
microglia detection by the AI model with manual annotations
of microglia in 80 validation areas across images containing
4-10 microglia from 14 animals excluded from the training
data. Validation annotations were manually entered by 4–5
researchers experienced in identifying microglia across a range
of functional states. These annotations were then compared to
the model’s analysis results (AIforia vs. human), as well as the
annotations of each individual researcher (human vs. human),
to determine if the model’s performance matched that of human
researchers. The features quantified for this comparison include
non-microglia detected as microglia (false positive), undetected
microglia (false negative), space-dependent overlap of analysis
results with human annotations (precision), space-independent
overlap of analysis results with annotations (sensitivity), and
F-measure (the harmonic mean of precision and sensitivity)
(Penttinen et al., 2018; Mäkelä et al., 2021). The AI model
was considered valid when the AI vs human results performed
equal to or better than human vs human (interobservability)
results on average. Next, to demonstrate the limitations of
generalizability and the importance of training data in adapting
the microglia detection model, each adapted model was
validated against manual annotations from researchers, as in
the method described above. For validating across independent

Iba1+ datasets, the number of validation regions was increased
to 330 across 25 images equally representing each of the datasets,
as well as 2 additional datasets that were not part of the training
data for any of the models.

Handling of generated data
Data outputs from Aiforia R© were post-processed in Rstudio

(ver.1.4.1106) primarily to calculate the area/perimeter ratios
as well as the mean object diameter for each analysis region.
However, due to background staining variability in the striatal
αSyn aggregation dataset, regions with fewer than 100 cells
were filtered from the analysis (a total of 4 ROIs removed).
Additionally, post-processing was performed to calculate the
means of all morphology measures within a single animal
for each brain region. Finally, Rstudio Notebook/markdown
versions of these scripts are also available to help streamline
processing of future analyses (see supporting documents).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 9.
Cell-to-cell results were analyzed using a Wilcoxon matched-
pair signed rank test. Validation results were analyzed using
an unpaired t-test. For the cell data from the striatal αSyn
aggregation model the data (n = 120,801 PBS; n = 130,906 PFF)
was standardized using default settings in GraphPad Prism 9,
and analyzed using a principal component analysis 1,000 seeds
and 10 variables. The type of analysis with post hoc correction
for multiple testing is indicated in the legend of each figure.

Results

Comparison of microglia morphology
assessment methods across brain
regions

To evaluate how well our new microglia detection
model quantifies change in microglia reactivity we compared
area/perimeter ratios between our model and a custom
semi-automated object-segmentation MATLAB script that had
been previously published (George et al., 2019, 2021). Using
histological slides from the αSyn induced olfactory dysfunction
model, we analyzed 3 brain regions across 4 mice and compared
the values of all cells. These results suggest that the compared
methods perform similarly on identical datasets, but that the
greater number of cells quantified using the Aiforia R© microglia
detection model may provide a more complete description of
microglia reactivity in each brain region (Figure 1A). It is also
important to note that the dataset acquisition and quantification
duration for the MATLAB script was four times longer than
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the AI model, which could be an important consideration when
analyzing large datasets.

While the range of area/perimeter values between compared
methods does not differ greatly, even a brief visual inspection
of the data suggests a clear increase in area/perimeter
values using the microglia detection model (Figure 1A).
A known limitation of the semi-automated MATLAB script, and
other fully automated commercially available cell morphology
quantification methods, is a failure to quantify overlapping
microglia as separate cells. This limitation results in a bias
toward the quantification of only microglia that do not overlap,
which is of special importance when studying microglia under
conditions that can trigger microgliosis or increase in cell
numbers and density (Schwabenland et al., 2021). To determine
if this limitation could explain the difference in area/perimeter
quantification between methods, we selected a subset of cells
from the olfactory bulb for a paired cell-to-cell comparison
between methods. The paired cell comparison results suggest
that the microglia detection model values are higher as a
function of the analysis and not a result of selection bias in
the MATLAB script (Figure 1B). This is not surprising, as the
branching function included to detect microglia processes in the
MATLAB script can result in a bias toward higher perimeter
values, resulting in lower area/perimeter values (Supplementary
Figure 2), while the probabilistic object segmentation of
microglia in the AI model can bias toward lower perimeter
values (higher area/perimeter values).

Taken together these results suggest that both models
are effective in quantifying the morphological parameters of
individual microglia cells, and that the area/perimeter ratio for
the microglia included in the comparison dataset are likely
within the overlapping results of these methods. Additionally,
the volume of data acquired using the AI model and the
duration of time needed for data collection (Supplementary
Table 1) make it a superior method for analyzing microglia
morphology within a given brain region, especially for larger
datasets common in translational and pre-clinical studies.

Validation of microglia morphology
using Aiforia R©

To determine if the microglia detection model performed
as well as human annotators, validation regions were annotated
by researchers experienced in microglia histopathology. The
harmonic mean of the precision and sensitivity scores (F1 or
F-measure) were used to compare each method. The F-measure
values for the microglia detection model were not significantly
different from the F-measure values for the human annotators
(p = 0.02 Mann–Whitney U) (Figure 1C). It is important to
note that there is some error in both human annotations (false
positive: 1.1%, false negative: 1.3%) and the microglia detection
mode (false positive: 0.77%, false negative: 1.1%), but while there

is a relatively even split in the error of human annotations
between false positive and negative, the microglia detection
model’s error is mostly due to false negatives, making it the
more conservative method. Taken together, these results validate
the use of this new microglia detection model as a method for
quantifying the number of microglia present in each region, and
those results generated using this method are more conservative
than human annotations.

Validation of model adaptation across
Iba1+ datasets

To evaluate how well the microglia detection model can
be adapted to additional datasets, images and layer-specific
annotations were added to the original training dataset to
generate study specific models for the quantification of Iba1+
histopathological slides from the mouse model of striatal
αSyn aggregation and the mouse model of viral infection. In
addition to the original αSyn induced olfactory dysfunction
(i.e., “parent”) model, models for striatal αSyn aggregation and
viral infection were developed. To demonstrate the limitations
of generalizability and the importance of training data in
adapting the microglia detection model, each of the 3 models
was then validated across all datasets as well as 2 additional
datasets of Iba1 + histopathological slides that were not part
of the training datasets for any of the 3 models: adaptive
transfer, and αSyn monomer. Our results suggest that there is
no significant difference between microglia detection models
and human performance when the adapted model includes
layer-specific annotations from the new dataset (Figures 2A,B;
absolute mean difference in F-measure αSyn induced olfactory
dysfunction 0.32 p = 0.413, striatal αSyn aggregation 1.40
p = 0.588, viral infection 0.25 p = 0.66). As predicted, models
generally performed better on datasets that were included
in the layer specific example training data for that model.
However, the striatal αSyn aggregation model performed
better on the αSyn induced olfactory dysfunction dataset,
which is not surprising as this model was adapted from the
αSyn induced olfactory dysfunction model and includes more
training examples that span a wider range of background
staining variability (Figure 2B; absolute mean difference in
F-measure 0.09 p = 0.899). Interestingly, the αSyn induced
olfactory dysfunction model was able to generalize to the
adaptive transfer dataset, which did not contribute to the
example training data for that model (Figure 2B; absolute mean
difference in F-measure 0.19 p = 0.888). Overall, these results
reinforce the importance of incorporating layer-specific training
examples when adapting the microglia detection model to a
new study. Additionally, the performance of the αSyn induced
olfactory dysfunction model on the adaptive transfer dataset
suggests that in some instances a model can be robust enough to
accurately quantify datasets in the absence of additional training
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FIGURE 2

Adaptation and validation of the microglia model across independently collected datasets. (A) Comparison of the original (αSyn induced
olfactory dysfunction) and adapted (striatal αSyn aggregation and viral infection) Aiforia R© microglia models’ performances (F-measure) against
researchers experienced in microglia histopathology with no significant differences, suggesting that the AI is performing to the same standard
as human researchers (αSyn induced olfactory dysfunction: 80 validations regions across 14 images, striatal αSyn aggregation 42 validations
regions, 25 images, and viral infection: 50 validation regions across 5 images). (B) Two-dimensional histogram using the difference in mean
F-measure between each model’s output performance and 4–5 researchers experienced in microglia histopathology across five independently
collected datasets, to emphasize the importance of adapting the microglia model to a new dataset. P-values associated with the difference in
F-measure between AI models and human annotations included at the intersections of Iba1 + microglia immunohistochemistry (IHC) staining
datasets, and microglia detection models. P-values using color coded specific highlights indicate the performance of a dataset specific model
adaptation and are represented as “ns” in “A”.
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data, as the adaptive transfer dataset was not a part of the
training data for any of the models.

Quantifying viral infection induced
change in microglia reactivity

To determine if validating the microglia detection models
to a similar standard would allow for the comparison of
fully independent datasets, we compared the results of the
viral infection dataset with PBS sham injected animals in the
αSyn induced olfactory dysfunction dataset. Viral infections
are known to cause inflammation and change in microglia
reactivity in the CNS (Zhou et al., 2008; Erny et al., 2015;
Rua et al., 2019), while the intracranial injections of PBS in
the olfactory bulb do not (Rey et al., 2016; Johnson et al.,
2020). As predicted, the analysis results in each of these datasets
fall within a similar range across all measures, with a clear
separation of values between the two datasets that suggests a
change in microglia reactivity as a result of viral infection but not
from the PBS sham injections (Figure 3A). When normalizing
counts of Iba1+ microglia to striatum tissue area, there is a
clear increase in counts in virus infected mice compared to
the PBS sham mice (Figure 3A). Additionally, when comparing
the area/perimeter values and the cell diameters, the results of
the viral infection analysis suggest higher area/perimeter values
and lower cell diameters when compared to the PBS sham
group (Figure 3B). Finally, when comparing area/perimeter, cell
diameters and counts separated by treatment groups, these data
clearly fall into a similar range of values and remain consistent
with the prediction that the viral infection will result in more
change in microglia reactivity when compared to the PBS sham
injection (Figure 3B, inset histograms). These results suggest
that it is possible to compare independently collected datasets
by adapting the microglia detection model to each dataset and
validating these models to a similar standard.

Quantifying microglia morphology in a
mouse model of striatal αSyn injection

To determine if the microglia detection model can be
effectively adapted to quantify microglial functional state across
labs, histopathological slides from a different mouse model
of αSyn aggregation were used. This model, based on the
intrastriatal injection of αSyn PFFs, is characterized by changes
in microglia morphology with minimal effects on the total
number of cells, a finding that is consistent with mouse
models using intrastriatal injections of AAVs to produce αSyn
aggregation (George et al., 2019, 2021).

First, the “parental” microglia model was adapted to the new
images and validated against human annotators experienced in
identifying microglia. The validation results for the striatal αSyn

FIGURE 3

Quantifying microglia activation in a viral infection model.
(A) Bubble plot suggesting microglia activation in LCMV treated
mice, each marker represents the mean of 1 region of interest
(see example image inserts). Microglia counts are plotted against
striatum area. Marker size represents mean cell diameter, and
opacity represents the area/perimeter ratio. Regions of interest
with the most activated microglia are represented as smaller,
more opaque markers closer to the y-axis maxima. Image
sub-panels show relevant measures of microglia morphology.
(B) Scatter plot suggesting reduced object diameter, and
increased area/perimeter ratio as a product of viral infection.
Data plot inserts present this data with a direct comparison
between groups. Example images showing the differences in
diameter measures between regions of interest with similar
area/perimeter values. (n = 16 mice/treatment group; regions of
interest per group PBS n = 248; viral infection n = 116).

aggregation model suggest that there is no significant difference
between AI performance and human annotations (Figure 4A).
Next, 6 brain regions were analyzed, including: striatum, motor
cortex, hippocampus, cingulate cortex, paraventricular nucleus
of the hypothalamus (PVN), and the piriform cortex. Some of
these regions are known to be affected in this mouse model,
specifically the striatum and the motor cortex (Earls et al., 2019;
Dutta et al., 2021). From this analysis, the mean cell values
from each region of interest were plotted irrespective of brain
region to visualize any differences between PBS and PFF groups
as a whole. As predicted, these results suggest that there are
increases in the area/perimeter ratio in the microglia of animals
injected with PFFs as compared to animals injected with PBS,
and that there is no clear difference in the number of microglia
(Figure 4B). To determine if there are region specific effects of
treatment, a more conventional presentation of the data was
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FIGURE 4

Quantifying microglia activation in a model of striatal αSyn aggregation. (A) Comparison of striatal αSyn aggregation microglia adapted model
performance against researchers experienced in microglia histopathology (42 validations regions, 25 images), with no significant differences.
(B) PFFs are related to changes in microglia morphology (scatter plot 1), but not the number of cells (scatter plot 2). The number of regions of
interest were selected to sample evenly across mice within each brain region. Each marker represents 1 region of interest: cingulate cortex
(n = 82), hippocampus (n = 77), motor cortex (n = 75), paraventricular nucleus (PVN) (n = 30), piriform cortex (n = 35), striatum (n = 120). (n = 5
mice/treatment group; regions of interest per group PBS n = 204; PFF n = 220). (C) Comparison of microglia morphology measures across
brain regions, suggesting an effect of treatment on microglia morphology but no effect on the number of microglia. Each marker represents
one animal, error bars represent within group standard mean errors (n = 5 mice/treatment group). (D) Principal component analysis biplot
confirming a treatment specific data separation, with respect to each measure of microglia morphology; area:perimeter, area, perimeter,
diameter, color channel values (Red, Green, Blue), length, average width, and median width (PBS n = 120,801; PFF n = 130,906).
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utilized, reducing the data to a single value for each animal in
each brain region (Figure 4C). The brain region specific results
are consistent again with previous findings that intrastriatal
injections of PFFs are linked to an increase in area/perimeter
ratio of microglia but not cell diameter or the total number of
microglia, across all regions (George et al., 2019, 2021).

Finally, to further explore how the measured dimensions of
morphology contribute to variability across treatment groups,
a principle component analysis was performed using the raw
cell-data (n = 120,801 PBS; n = 130,906 PFF) (Figure 4D).
These results confirm that the area/perimeter ratio and the
cell diameter are defining features of microglia functional state.
They also suggest that the cell length and width measurements,
quantified by default in the Aiforia R© platform, may provide
similarly effective characterization of microglia phenotype.

Discussion

Here we describe the use of commercially available deep
learning tools to quantify microglia counts and morphology
from histopathological tissue sections stained for Iba1. We
provide the application of this method across a range of
independently collected datasets and compare results from our
previously published method with this new machine learning
approach. Using an automated multi-measure approach to
rapidly quantify nearly all change in microglia reactivity for a
given region using only a single immunohistochemistry staining
label can be appealing for a variety of reasons (Figure 5).
The sampling capacity can enable a more complete and
reliable description of treatment effects, and the number of
morphological measures quantified increases the dimensionality
of data, permitting researchers to explore new questions while
streamlining existing projects. However, there are additional
considerations that are essential for the efficiency of any
study. Limitations intrinsic to methods that are dependent
on dedicated workstations include: user access, obsolescing
dependencies, specialized hardware, and in some instances
extensive training. These limitations can be a strong incentive
to apply flexible, cloud-based, user-friendly platforms (Kagadis
et al., 2013; Herculano-Houzel et al., 2015). These platforms also
provide the most efficient means of transparent reproducible
analyses as well as options for collaboration. The work presented
here details a platform-dependent workflow for quantifying
microglia morphology that performs to the standard of human
observation and can be applied across independently collected
datasets.

The cloud-based platform Aiforia R© enabled us to develop
a robust microglia detection model that we could generalize
across 2 additional datasets, each with its own model. Dataset
specific generalization optimizes model performance in each
of the adapted datasets (Figure 2B). We then validated these
models at or above human performance. Validating a model

to a specific standard can allow for the direct comparison of
results from independent sources (Plis et al., 2014; Liu et al.,
2019). Using human observations as the standard could make
results more reproducible by reducing variability related to
analysis specific parameters that may not generalize across
independently collected datasets. Finally, using these models
we found that it was possible to quantify changes in microglia
morphology that are consistent with previous observations in
mouse models of viral infection (Erny et al., 2015), and αSyn
aggregation (Kagadis et al., 2013; Herculano-Houzel et al., 2015).
Furthermore, the increased sampling capacity of these microglia
models relative to previously published methods (George et al.,
2019) expanded the quantification of Iba1+ microglia to a scale
more commonly applied in other areas of bioinformatics such
as proteomics (Boekweg et al., 2021). While there are other
automated methods of microglia morphology quantification
(York et al., 2018; Clarke et al., 2021; Gober et al., 2022)
and potentially more sophisticated study-specific AI models
(Kyriazis et al., 2019; Bascuñana et al., 2020; Leyh et al., 2021;
Möhle et al., 2021), the methods we now describe offer a
streamlined workflow for meaningful results and an accessibility
to flexible deep learning tools that could be appealing to
researchers without formal computer science training.

One challenge of developing this model using commercially
available tools is that there is no option for user customization
of the platform. Where many study-specific AI models include
elements of conventional programming to derive features
related to the number of processes and their branching index
(Garcia-Segura and Perez-Marquez, 2014; Fernández-Arjona
et al., 2017), those options are not currently user accessible
in Aiforia R©. That said, it is possible that these features
are intentionally excluded to streamline the platform as the
tools included in Aiforia R© should be sufficient to quantify
these morphological features. However, doing so is currently
outside the scope of this study. Additionally, while microglia
identification, quantification of total microglia and microglia
morphology were fully automated, the analysis regions were
manually annotated. Currently there is no measure of control
for the variability introduced by the inconsistencies inherent to
manual sampling of specific brain regions, but it is likely that
this will also be automated in future models.

Finally, the models developed for this study did not establish
categories of different ramification microglia types (Garcia-
Segura and Perez-Marquez, 2014). While these classifications
can be helpful, the goal of this microglia model was to create
a reliable quantification of the microglia area/perimeter ratio
that could be easily applied across independent datasets. It
is important to note that a model using 6 categories of
different ramification types was validated prior to the models
presented here, and the 6-category model is also available
in the Aiforia R© platform. While the models discussed here
effectively quantify Iba1+ microglia they are unlikely to quantify
microglia morphology using immunofluorescent markers or
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FIGURE 5

Schematic of a side-by-side comparison between the workflows for the quantification of microglial morphology using MATLAB or the Aiforia R©

platform. While the MATLAB methodology requires investigators to spend relatively long hours using a common brightfield microscope, the use
of a slide scanner in the Aiforia R© methodology requires only the amount of time that it takes to load the slides and set up the scanning
parameters. During the sampling phase the MATLAB methodology can be prone to some sample bias, using 3 high magnification images (60×)
per section and 3 sections per brain region per animal. During the data acquisition phase, the MATLAB script requires some dedicated hardware
and the software license, while the Aiforia R© platform requires a subscription and Internet connection. Finally, data analysis in Aiforia R© is a faster
method particularly when using large datasets and quantifies more morphology parameters (created with BioRender.com).

immunohistochemical makers other than Iba1 (e.g., P2RY12,
CX3CR1, CD11b). However, using the methods described
here it would be possible for a researcher to develop their
own microglia models with any combination of techniques
commonly used to image microglia, as well as the use of
additional stains to include astrocytes or neurons. Creating
a new model only requires an Aiforia R© subscription, internet
connection, and high-quality images.

Conclusion

Using commercially available deep learning tools, we
developed a method for quantifying Iba1+ microglia
morphology, which we validated at or above human

performance, and adapted to analyze microglia functional
state in mouse models for viral infections and αSyn aggregation.
By all quantified measures of microglia morphology, the
analysis results presented here are consistent with those
previously published. Furthermore, by validating each deep
learning model to the same standard we were able to potentially
reduce the variability intrinsic to independently collected
datasets. In addition, timestamped activity logs suggest the
dataset acquisition duration is conservatively four times faster
than our previously published MATLAB method, and the total
number of microglia quantified shows a percent increase of
577–2627%. While the deep learning tools used for the method
discussed here are commercially available on a cloud-based
platform, developing generalizable deep learning models can
be labor intensive. Here, we provide 4 robust models for
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quantifying microglia morphology that are available in the
Aiforia R© platform, for study-specific adaptation.
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SUPPLEMENTARY FIGURE 1

Workflows for the development and adaptation of deep learning
assisted models for microglial morphology assessment using Aiforia R©.
(A) Workflow for the development of microglial morphology
assessment model. The “parental” model was developed with a subset
of 35 IHC anti-Iba1 slides from a mouse model of αSyn induced
olfactory dysfunction used for training input data (see Table 1). Details
for the final round of iterations and the CNN settings by feature layer are
included (network complexity, field of view, post training gains, etc.).
After training, a new subset of slides (not used during the training phase)
was used for validation, and cell examples were used to compare the
model performance against 4–5 researchers experienced in microglial
histology. (B) Workflow for the adaptation of the “parental” model to

independently acquired datasets. Project-specific AIs were adapted by
including additional IHC training data from mouse models of (1) viral
infection and (2) striatal αSyn aggregation, to the “parental” model
training data. Pre-training parameters were the same as in the “parental”
model, and post-training parameters were optimized for object
detection and instance segmentation as shown for each of the adapted
models. New slides (not included in the training data) were used during
validation against researchers experienced in microglial histology.
Validated models were released and used for the quantification of
microglial morphology from the Iba1 stain slides from all three mouse
models. By validating each model to the same standard, analysis results
were comparable (created with BioRender.com).

SUPPLEMENTARY FIGURE 2

Comparison of area and perimeter values between MATLAB and
Aiforia R©. Olfactory bulb Iba1 + microglia area/perimeter ratio, area, and
perimeter values across 4 mice between methods, suggesting
differences in area/perimeter ratio values are possibly the result of
differences in perimeter value quantifications. Each histogram includes
data from 1 mouse, each marker represents the values for one cell. Data
collected using MATLAB represented in white bars, data collected using
Aiforia R© in gray.
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