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Abstract: Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them
through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the
edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase
activity that invade host cells and massively increase the cellular concentrations of a key second
messenger molecule, 3’,5’-cyclic adenosine monophosphate (cAMP). However, the two toxins differ
in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the
cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of
ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the
endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly
inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis.
By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient
poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in
spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect
the opsonophagocytic signaling in myeloid phagocytes.

Keywords: 3′,5′-cyclic adenosine monophosphate (cAMP); adenylate cyclase toxin; edema toxin;
opsonophagocytosis; phagocytes; Syk; Vav; Pyk2; signaling pathway

Key Contribution: This study demonstrates that differences in cellular cAMP concentration gradients
produced by two bacterial adenylyl cyclase enzyme toxins result in different inhibitory effects on the
signaling pathways that drive opsonophagocytosis in human phagocytes.

1. Introduction

Phagocytosis is a central event in the innate immune response and is defined as the mechanism for
recognition and internalization of particles larger than 0.5 µm in diameter [1,2]. It is an evolutionarily
conserved immune mechanism that is crucial for the first line of defense against pathogenic microbes
and orchestrates adaptive immunity through antigen presentation. Professional phagocytes arrive at
sites of infection, ingest invading pathogens, and mediate the clearance of the microbial infection [1,2].

Monocytes, macrophages, neutrophils, and dendritic cells express a variety of receptors that
mediate (opsono)phagocytosis. Type I phagocytosis occurs through the Fcγ receptor (FcγR) that
binds particles opsonized by antibodies. This triggers signal transduction through small guanosine
triphosphatases (GTPases) of the Rho family, Cdc42, and Rac, leading to engulfment of the opsonized
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particle through protruding lamellopodia [3–5]. Type II phagocytosis is mediated by the complement
receptor 3 (CR3; CD11b/CD18, αMβ2, Mac-1), which recognizes particles coated with the opsonizing
proteins of the complement system and triggers signal transduction through RhoA, leading to the
sinking of the opsonized particle into the cell [3–5]. CR3 and other cellular receptors, such as the
mannose receptor, dectin-1, Toll-like receptors, scavenger receptors, or CD14, recognize various
microbial ligands and mediate non-opsonic phagocytosis of infecting microbes [6,7]. Phagocytosis
involves activation of signaling mediators, such as the spleen tyrosine kinase (Syk) [8,9], the proline-rich
tyrosine kinase 2 (Pyk2) [10,11], and the Rho family guanine nucleotide exchange factor Vav [12–14],
which transduce the signal from the phagocytic receptors, provoking the uptake and subsequent
phagocytic killing of invading pathogens.

Many bacterial pathogens secrete exotoxins that inhibit the bactericidal activity of phagocytes
by specifically targeting the signaling pathways involved in the uptake of invading pathogens.
A prominent class of such virulence factors are the toxins with adenylyl cyclase (AC) enzyme
activity [15–18]. These toxins target and invade cells to elevate the cytosolic concentration of a
key second messenger molecule, 3’,5’-cyclic adenosine monophosphate (cAMP), thereby provoking
suppression of immune functions [16,19–24]. cAMP levels are then sensed by the protein kinase A
(PKA), the exchange protein directly activated by cAMP (Epac) and by the cyclic nucleotide-gated ion
channels, thereby modulating the activity of downstream signal transduction pathways and regulating
cellular responses [25].

The gram-negative respiratory pathogen Bordetella pertussis secretes an adenylate cyclase toxin
(CyaA) [18], which is a multifunctional RTX (repeats in toxin) toxin with a cell-invasive AC domain
linked to a hemolysin moiety [26]. CyaA binds the integrin CR3 on myeloid phagocytes and
translocates its catalytic domain directly across the plasma membrane of cells in a two-step process that
is accompanied by influx of extracellular calcium ions into cells [27]. The half-time of AC translocation is
about 30 s from cell contact [28] and inside the cytosol the AC enzyme domain is activated by calmodulin
to catalyze unregulated conversion of cellular ATP into cAMP [26,29]. In parallel, the hemolysin
moiety of CyaA forms oligomeric pores in the plasma membrane of cells and mediates K+ efflux from
cells [29,30].

A structurally homologous AC enzyme is produced by the Gram-positive zoonotic pathogen
Bacillus anthracis that secretes an A-B type edema toxin (ET) consisting of protective antigen (PA) and
edema factor (EF) [15]. PA uses the tumor endothelial marker 8 (TEM8, ANTXR1) and the capillary
morphogenesis gene 2 protein (CMG2, ANTXR2) as receptors [31]. Upon cell binding, PA is processed
by furin-like proteases and oligomerizes on the cell surface to form heptamers or octamers. EF,
the enzymatic subunit, binds PA oligomers and the formed EF-PA complex is internalized into early
endosomes via lipid raft-mediated clathrin-dependent endocytosis [32]. Within 30 min of cell contact,
the EF translocates across the endosomal membrane, through a channel formed by PA (triggered by low
pH due to acidification) and reaches cell cytosol, where it is activated by calcium-loaded calmodulin
and catalyzes conversion of ATP into cAMP [15,31].

The kinetics and mode of entry of CyaA and ET into target cells differ, thus yielding cAMP
production in different zones of the cell cytosol [33]. CyaA delivers its AC domain directly into the
submembranous zone of cell cytoplasm, without the need for endocytosis and thus rapidly starts to
intoxicate the cells. This results in a membrane proximal pool of cAMP that forms a gradient that
decreases from the membrane towards the perinuclear region of the cell. In contrast, ET has to be
endocytosed with the receptor and its catalytic subunit translocates across the endosomal membrane
to its cytosolic side, where the AC enzyme (EF) remains attached and catalyzes production of cAMP.
This results in a substantial time lag before a cAMP concentration gradient starts to form, decreasing
from the perinuclear area towards the submembranous zone of the cytosol [33].

It was previously shown that CyaA-mediated cAMP signaling swiftly inhibits the bactericidal
activity of phagocytes by modulating the activity of key components of the signaling cascades
involved, such as Syk, RhoA, and SHP-1 [26,29,34–36]. Here we show that differences in cellular cAMP
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concentration gradients produced by CyaA and ET result in different inhibitory effects on the signaling
cascades that drive opsonophagocytosis in human myeloid phagocytes.

2. Results

2.1. CyaA and ET Differ in the Temporal Characteristics of cAMP Intoxication of Human Monocytes

We first compared the time course of cAMP production in THP-1 cells exposed to CyaA or ET,
in order to define a time point at which comparable overall levels of cellular cAMP were reached.
Towards this aim, the toxins were incubated with human THP-1 monocytes that express the cellular
receptors for both toxins [26,37,38]. As shown in Figure 1A, CyaA (150 ng/ml; 0.85 nM) rapidly elevated
cellular cAMP levels in THP-1 monocytes and cAMP accumulation was already detectable at five
minutes after addition of the toxin, reaching a plateau at 30 min of incubation.
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Figure 1. Adenylate cyclase toxin (CyaA)- but not edema toxin (ET)-provoked 3’,5’-cyclic
adenosine monophosphate (cAMP) elevation leads to inhibition of uptake of fluorescently labelled
serum-opsonized zymosan (SOZ) particles. (A and B) THP-1 human monocytes were incubated with
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CyaA (A) or ET (B) for the indicated times. Cellular cAMP levels were determined using competitive
ELISA and normalized to cellular protein concentration. (C and D) 2× 105 THP-1 cells were preincubated
with buffer (blue), CyaA for 30 min (red), or ET for 6 h (green) as mentioned in the Materials and
Methods section. The cells were washed and incubated with fluorescently labelled SOZ particles for 30
min, before binding and internalization of fluorescent particles were analyzed using flow cytometry.
Representative histogram from one experiment (C) and the calculated phagocytic index (D) are shown.
Data represent mean with SEM (N = 3). P values were determined by paired one-way ANOVA; *,
p < 0.05 for the results compared with buffer-treated cells; #, p < 0.05 for results comparing CyaA-
and ET-treated cells. (E and F) Bacterial toxin and fluorescently labelled SOZ particles were added
simultaneously to the cells and processed as mentioned in the legend to panels C and D. Representative
histogram from one experiment (E) and the calculated phagocytic index (F) are shown. The phagocytic
index was calculated by data extracted out of flow cytometry experiments as outlined in detail in the
Materials and Methods section. Data represent mean with SEM (N = 4). p values were determined
using paired one-way ANOVA; *, p < 0.05 for the results compared with buffer-treated cells; ##, p <

0.005 for results comparing CyaA and ET-treated cells.

In contrast, even at a higher molar concentration, ET (625 ng/ml; 7.04 nM EF + 2500 ng/ml;
30.24 nM PA) triggered a delayed and relatively slow rise of cAMP levels over the initial four hours,
followed by a rapid increase of cAMP level (Figure 1B). This corresponded to the time taken for
internalization of the ET-receptor complex and subsequent translocation of EF across the membrane of
acidified endosomes [31,33]. Similar cAMP intoxication trends were previously reported for T-cells [39].
Thus, in all further experiments, THP-1 monocytes were treated with CyaA (150 ng/ml; 0.85 nM) for
30 min or ET (625 ng/ml; 7.04 nM EF + 2500 ng/ml; 30.24 nM PA) for 6 h, in order to obtain cells
intoxicated with similar overall levels of cellular cAMP.

2.2. Toxin-Provoked cAMP Signaling Inhibits Phagocytosis of Opsonized Targets

CyaA- and ET-provoked cAMP elevation hijacks signal transduction pathways and interferes with
the opsonophagocytosis and bactericidal activities of phagocytes [16,20,22,34–36,40]. We thus used
flow cytometry to compare the effects of CyaA and ET action (at similar overall cellular cAMP levels)
on binding and internalization of serum-opsonized zymosan (SOZ) particles by THP-1 monocytes. As
shown in Figure 1, incubation of THP-1 cells with CyaA for 30 min yielded ~5000 pmol of cAMP per
mg of total cell protein (Figure 1A) and resulted in strong inhibition of phagocytic uptake of fluorescent
SOZ particles by the cells (Figure 1C), which is reflected by the calculated phagocytic index (Figure 1D).
In contrast, incubation of THP-1 cells with ET for 6 h, which also yielded ~5000 pmol of cAMP per
mg of total cell protein (Figure 1B), had no significant effect on the phagocytic capacity of the cells
(Figure 1C), which is reflected in the calculated phagocytic index (Figure 1D). Furthermore, when CyaA
and SOZ particles were added simultaneously to THP-1 cells, the CyaA toxin was able to significantly
inhibit the binding and uptake of fluorescently labeled SOZ particles (Figure 1E,F). In contrast, ET
had no effect when added simultaneously with SOZ (Figure 1E,F). These results show that cAMP
intoxication of THP-1 cells by CyaA occurs rapidly and efficiently inhibits opsonophagocytosis, while
ET-provoked cAMP intoxication occurs gradually and is inefficient at inhibiting the binding and uptake
of opsonized targets.

2.3. Toxin-Provoked cAMP Signaling Interferes with Signaling Downstream of Opsonin Receptor

To trigger the opsonin receptor-activated signaling pathways involved in opsonophagocytosis [8,36],
THP-1 cells were incubated with SOZ particles and non-opsonized zymosan particles were used as a
control. Figure 2A shows that SOZ particles induced phosphorylation of tyrosine residues of several
cellular proteins, indicating the recruitment of non-receptor protein tyrosine kinases or a change in
protein tyrosine phosphatase activity [41]. While preincubation with ET had little effect, preincubation
of cells with CyaA led to much stronger inhibition of SOZ-induced tyrosine phosphorylation of
the proteins. Hence, at similar cellular cAMP levels, the previously observed differences in CyaA
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and ET-produced spatial gradients of cAMP within the cell cytoplasm [33] differentially affected
cAMP signaling-mediated inhibition of the signaling cascades that drive the opsonophagocytic uptake
of particles.
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Figure 2. Toxin-provoked cAMP accumulation inhibits opsonin-induced tyrosine phosphorylation
of cellular proteins Syk, Pyk2, and Vav. 3 × 106 THP-1 human monocytes were preincubated with
ET for 6 h (green), CyaA for 30 min (red), or buffer (blue) and subsequently incubated with SOZ
particles (30 min) at 37 ◦C to induce tyrosine phosphorylation of crucial signaling proteins leading to
opsonophagocytosis. THP-1 cells preincubated with buffer and then treated with unopsonized zymosan
were taken as negative control (black). Cell lysates were analyzed by immunoblotting. (A) Modulated
SOZ-induced tyrosine phosphorylation of proteins was detected in cellular lysates from toxin/buffer
pretreated cells (red arrows); tubulin was used as loading control. Tyrosine phosphorylation of Syk (B),
Pyk2 (C), and Vav (D) was detected using phospho-specific antibodies. Immunoblots developed with
anti-Syk, anti-Pyk2, and anti-Vav antibodies served as loading controls. Data represent mean with SEM
(N = 3). p values were determined using one-way ANOVA; **, p < 0.005; *** p < 0.001; **** p < 0.0001;
ns, not significant, for results compared with buffer-treated cells incubated with SOZ particles.
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2.4. CyaA-Provoked cAMP Signaling Inhibits Opsonin-Triggered Phosphorylation of Syk, Pyk2, and Vav

Intracellular signaling mediators Syk, Pyk2, and Vav are crucial for signal transduction during
phagocytosis of opsonized targets [1,2]. Given that CyaA hampered opsonophagocytosis, we examined
the inhibitory effects of toxin-provoked cAMP elevation on the phosphorylation of tyrosine residues of
Syk (Y525/Y526), Pyk2 (Y402), and Vav (Y174) proteins.

The non-receptor tyrosine kinase Syk is recruited by the immunoreceptor tyrosine-based activation
motifs (ITAMs) and is phosphorylated (activated) in the course of opsonophagocytosis, forming a
multi-molecular signaling complex in which Syk-mediated phosphorylation of several adaptor proteins
promotes activation of key signal transduction pathways [8,9,11]. As shown in Figure 2B, incubation
of THP-1 cells with SOZ particles triggered tyrosine phosphorylation of Syk, indicating the activation
of signaling pathways involved in opsonophagocytosis. Preincubation of cells with CyaA inhibited
the phosphorylation and activation of Syk kinase (Figure 2B), while preincubation of cells with ET,
at similar cellular cAMP levels, resulted only in partial inhibition (~ 50%) of Syk phosphorylation.

To corroborate this observation, we next examined the activation of the cytoplasmic non-receptor
tyrosine kinase Pyk2, which is activated by signaling through phagocytic receptors or upon increase of
cytosolic calcium concentration. Pyk2 activation is downstream to activation of the Syk and Src kinases
and regulates the Rho/WASP pathway of actin-polymerization [10,11,42,43]. In line with the trend
observed for Syk, preincubation of THP-1 cells with CyaA led to near complete inhibition of Pyk2
phosphorylation in cells incubated with SOZ particles (Figure 2C), whereas preincubation of cells with
ET yielded only a modest inhibition of Pyk2 phosphorylation, which was not statistically significant.

Finally, we corroborated the above observations by examining activation of the Rho family
guanine nucleotide exchange factor Vav, which plays a crucial role in the transmission of signals from
the phagocytic receptors to Rho GTPases during phagocytosis. Syk physically interacts with Vav
downstream of ITAMs and phosphorylates Vav on tyrosine-174 [8,12,14,44]. We therefore analyzed
the effects of toxin-triggered cAMP signaling on tyrosine phosphorylation of Vav. Indeed, THP-1
cell incubation with SOZ particles induced tyrosine phosphorylation of Vav, and this was completely
inhibited in cells that were preincubated with CyaA (Figure 2D). In contrast, preincubation of cells
with ET led to only partial inhibition (~50%) of Vav phosphorylation.

Hence, CyaA-produced membrane-proximal cAMP intoxication [33] in monocytes led to signaling
events that completely inhibited tyrosine phosphorylation of crucial signaling proteins Syk, Pyk2,
and Vav involved in phagocytosis. In contrast, at equal overall cAMP concentrations in the cells,
ET-produced cAMP intoxication in the perinuclear region affected the tyrosine phosphorylation of
these crucial signaling proteins only mildly.

2.5. A Pharmacological Inhibitor of AC Enzyme Activity Reverses CyaA-Mediated Inhibition of
Tyrosine Phosphorylation

Adefovir diphosphate, a cellular metabolite of the clinically approved pro-drug adefovir dipivoxil,
was shown to competitively and selectively inhibit the AC enzyme activities of EF (Ki = 27 nM)
and of CyaA (Ki = 25 nM) [45]. Therefore, we pretreated THP-1 monocytes with adefovir dipivoxil,
prior to addition of the bacterial AC toxins, and SOZ particles were subsequently added to induce
signaling through the pathways that govern the uptake of opsonized particles. Pretreatment of cells
with adefovir dipivoxil reversed CyaA-mediated inhibition of uptake of fluorescently labeled SOZ
particles (Figure 3A; cf Figure 1C) and yielded a calculated phagocytic index similar to cells treated
with buffer or ET (Figure 3B).
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Figure 3. Cell permeable pharmacological inhibitor of AC enzyme activity reverses toxin-mediated
inhibition of uptake of opsonized particles and associated signal transduction pathways. THP-1 human
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monocytes were preincubated with adefovir dipivoxil (10 µM) for 6 h, followed by incubation with
ET for 6 h (green), CyaA for 30 min (red), or buffer (blue) as mentioned in the Materials and Methods
section. (A and B) 2 × 105 THP-1 cells were incubated with fluorescently labelled SOZ particles for
30 min, and binding and internalization of fluorescent particles were analyzed by flow cytometry.
Representative histogram from one experiment (A) and the calculated phagocytic index (B) are shown.
Data represent mean with SEM (N = 4). p values were determined by paired one-way ANOVA; ns,
not significant for results compared with adefovir-treated cells incubated with SOZ particles. (C to
E) 3 × 106 THP-1 cells were incubated with SOZ particles to induce tyrosine phosphorylation of
crucial signaling proteins involved in opsonophagocytosis. The cells were lysed, and the lysates were
used for immunoblotting. Tyrosine phosphorylation of Syk (C), Pyk2 (D), and Vav (E) were detected
using phospho-specific antibodies. Immunoblots developed using anti-Syk, anti-Pyk2, and anti-Vav
antibodies served as loading controls. THP-1 cells preincubated without (black) or with (grey) adefovir
and then treated with unopsonized zymosan were used as negative controls. Data represent mean
with SEM (N = 3). p values were determined using one-way ANOVA; *, p < 0.05; **, p < 0.005; ns, not
significant, for results compared with adefovir-treated cells incubated with SOZ particles.

At the same time, adefovir dipivoxil itself did not trigger any changes in tyrosine phosphorylation
of Syk, Pyk2, and Vav (Figure 3C–E) or influence the SOZ-triggered tyrosine phosphorylation of these
signaling proteins (Figure A1). Furthermore, adefovir pretreatment also rescued the SOZ-induced
phosphorylation of Syk (Figure 3C), Pyk2 (Figure 3D), and Vav (Figure 3E) in toxin-treated cells.
These results suggest that the inhibition of AC enzyme activity reversed CyaA toxin-mediated inhibition
of SOZ-induced phosphorylation of crucial signaling proteins. Furthermore, it also suggests that in the
absence of AC enzyme activity, other CyaA toxin associated activities, such as Ca2+ influx, K+ efflux,
and pore formation in the cellular membrane, do not affect the SOZ-induced tyrosine phosphorylation
of Syk, Pyk2, and Vav.

2.6. CyaA- and ET-Provoked cAMP Signaling Differentially Affects Actin Cytoskeleton Remodeling
in Phagocytes

Engagement of phagocytic receptors triggers downstream signaling and tyrosine phosphorylation
of crucial signaling proteins, provoking actin cytoskeleton rearrangement and uptake of opsonized
targets [4,8,10,12,13]. To examine the effects of toxin-provoked cAMP intoxication on opsonophagocytic
signaling-mediated actin cytoskeleton remodeling and on changes in cell shape/morphology,
we pretreated THP-1 cells with buffer, CyaA, or ET and subsequently added SOZ particles. THP-1 cells
incubated with unopsonized zymosan particles were taken as negative control. The cells were then fixed,
permeabilized, and stained for F-actin with phalloidin, followed by microscopy. As shown in Figure 4A,
THP-1 monocytes treated with unopsonized zymosan particles showed no cell spreading, and actin
cytoskeleton was observed as a uniform ring along the periphery of the cell. In contrast, incubation
of cells with SOZ promoted cell spreading and formation of characteristic actin-rich membrane
protrusions called filopodia (Figure 4B). However, SOZ-induced actin cytoskeleton rearrangement and
formation of filopodia was inhibited upon preincubation of phagocytes with CyaA (Figure 4C), but not
with ET (Figure 4D). Furthermore, similar trends were observed when the area occupied by the cells
was measured from the microscopy images (Figure 4E) representing the differential effects of toxin
provoked cAMP signaling on SOZ-induced cell spreading and filopodia formation.
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Figure 4. CyaA- and ET-provoked cAMP signaling differentially affects actin cytoskeleton remodeling
in THP-1 monocytes. 3 × 106 THP-1 cells were seeded on glass cover slips and incubated with
unopsonized zymosan particles (A), or after preincubation with buffer (B), CyaA for 30 min (C), or ET
for 6 h (D) with SOZ particles (30 min, 37 ◦C). After fixation, permeabilization, and staining for F-actin
with TRITC-conjugated phalloidin (green) and for nucleic acid with DAPI (blue), the cells were imaged
using confocal microscopy. All the images were processed using ImageJ software and are representative
of two independent experiments. (E) The area occupied by the cells was measured from the microscopy
images and plotted as relative cell area. Data represents mean with SEM, derived from six images
analyzed for each experimental group from two independent experiments, where at least 3 cells were
measured in each image (N ≥ 18). p values were determined using one-way ANOVA; *, p < 0.05; ns,
not significant, for results compared with buffer-treated cells incubated with SOZ particles.
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3. Discussion

Phagocytosis is a multistep process that involves receptor-mediated interaction and recognition
of phagocytic targets, actin cytoskeleton remodeling facilitating uptake, phagosomal membrane
remodeling, phagosome maturation, and finally, the clearance of the ingested particles. A variety of
signal transduction pathways contribute to each step of the carefully orchestrated and tightly controlled
cellular phagocytic process [1,2]. Particle uptake and clearance are known to be reduced or inhibited in
phagocytic cells where one or more of the crucial signaling proteins are missing/mutated [8,10,13,14].
These signaling proteins/mediators exist in a hierarchical sequence in a particular signaling cascade and
their activities are influenced by crosstalk, making them part of a larger dynamic signaling network
that controls the bactericidal action of phagocytes. The activity of many of these signaling mediators
is controlled by phosphorylation/dephosphorylation, spatial localization, and (re)distribution in the
cytoplasm in the course of uptake and clearance of opsonized targets. At different stages of phagocytosis,
Syk, Pyk2, and Vav are localized to the phagosomes and drive the signaling events that lead to actin
remodeling, which plays a crucial role in particle uptake [8,10,14]. Furthermore, a well-regulated,
cellular adenylate cyclase-driven accumulation of cAMP at the nascent phagosome has been observed
during phagosome formation, having a direct effect on actin cytoskeleton rearrangement during
phagocytosis [46–48]. However, the direct link between the cellular adenylate cyclase driven regulated
cAMP accumulation and the initiation of tyrosine kinase cascades by Src family kinases in the context
of myeloid phagocytes is currently unknown. In contrast, bacterial toxin-provoked accumulation of
cellular cAMP at supraphysiological levels in phagocytes inhibits bactericidal activities and phagocyte
functions [16,19,34–36,49].

In this study, we demonstrated that CyaA-mediated cAMP elevation, but not ET-mediated
cAMP elevation to comparable overall levels, triggers signaling events that inhibit the uptake of
opsonized targets (Figure 1). CyaA-triggered cAMP signaling completely inhibited opsonin-induced
phosphorylation of crucial signaling mediators Syk, Vav, and Pyk2 downstream of the phagocytic
receptors. In contrast, ET-triggered cAMP signaling partially inhibited Syk and Vav phosphorylation
and had no significant effect on Pyk2 phosphorylation (Figure 2). Indeed, CyaA toxin action instantly
leads to the formation of a cAMP pool in the submembranous region of the cytoplasm, which
may directly modulate the signaling cascades in the local/specific target region on the cytosolic
side of the membrane [50,51]. Further indirect evidence is provided by microscopy experiments
where Syk [8], Pyk2 [10], and Vav [13,14] have been shown to be recruited/accumulated in the
submembranous region at sites of active uptake of opsonized particles, which is the cytoplasmic
subdomain where membrane proximal CyaA-mediated cAMP accumulation occurs. For example, the
activity of the L-type Ca2+ channel Cav1.2 is influenced by intrinsic AC activity through cAMP-mediated
activation of PKA, which is counterbalanced by the activity of the phosphatase PP2A, and all of these
enzymes assemble into a membrane-proximal multi-molecular signaling complex [52]. It was recently
shown that CyaA-mediated cAMP signaling activates Src homology domain 2 containing protein
tyrosine phosphatase (SHP-1), thus suppressing the expression of inducible nitric oxide synthase
(iNOS) in macrophages [34]. SHP-1 activation also contributes to suppression of oxidative burst in
neutrophils [53] and enables suppression of bactericidal activities of phagocytes [26,29]. However, the
causality between dephosphorylation of Syk, Vav, and Pyk2 and CyaA-mediated SHP-1 activation
remains to be established. Indeed, the postulated biological function of ET is to slow down the
progression of lethal toxin-provoked apoptosis in infected macrophages. This would strike a critical
balance between cell death and survival, thereby facilitating dissemination of B. anthracis to the lymph
nodes, from where the replicating bacteria can disseminate systemically [31]. Importantly, during
infection the ET acts in synergy with the lethal toxin to inhibit macrophage activation and functions.

cAMP signaling can be highly compartmentalized. It is heavily influenced by the cell specific
expression of PKA isozymes, the expression and specific subcellular localization of A-kinase anchoring
proteins (AKAPs; anchoring PKA close to specific targets), the distribution and localization of
Epac, and the localization and regulation of phosphodiesterases (regulating local amounts of cyclic
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nucleotides) [47,51,54–57]. Indeed, localized compartmentalization of cAMP signaling has been
described in cardiac myocytes [51,55], T-cells [50], and neurons [52], but remains to be fully elucidated
in myeloid phagocytes. In macrophages, the cAMP-mediated effects exhibit differential involvement of
Epac and PKA in suppression of various phagocyte functions [19]. Recently, it was shown that CyaA
toxin action, but not the action of ET, lead to compartmentalized accumulation of cAMP in T-cells,
thus inhibiting the accumulation of critical regulatory proteins and directly affecting the formation of
immune synapse [50], whereas ET has been shown to induce the phosphorylation of the cAMP response
element-binding protein (CREB) and activation of gene transcription in T-cells [39]. We can speculate
that the localized accumulation of cAMP in phagocytes is able to efficiently elicit cAMP signaling
in that specific cytoplasmic subdomain, thus efficiently influencing the tyrosine phosphorylation of
signaling mediators.

ET-mediated cAMP accumulation, with a gradient radiating from the perinuclear region,
was shown to provoke IL-6 secretion and inhibit LPS-induced TNF-α secretion in bone marrow
derived-macrophages [45], paralyze essential natural killer cell functions [58], and impair type-IIA
secreted phospholipase A2 synthesis in alveolar macrophages [40]. Some of these effects can be
reversed by the pretreatment of cells with adefovir, an inhibitor of AC activity [40,45]. These studies
show that ET-mediated cAMP accumulation has direct effects on various leukocyte functions other than
uptake and clearance of opsonized targets in human monocytic cells. Furthermore, ET-mediated cAMP
elevation has been reported to reduce the uptake of non-opsonized targets (B. anthracis Ames spores
and fluorescent E. coli particles) in differentiated human macrophages [20]. However, the receptors
involved, the phagocytic machinery employed, and the associated signaling cascades activated in
opsonic- and non-opsonic phagocytosis are different. These differences are further influenced by the
molecular characteristics of the targets involved, the cellular receptors engaged, and the types of
phagocytes involved [2,7,59].

4. Conclusions

Taken together, this study shows that the spatial distribution of toxin-provoked cAMP intoxication
in phagocytes governs the inhibition of particle uptake and phosphorylation/activation of important
signaling proteins. This reveals that mere accumulation of supraphysiological amounts of cAMP in
the cytoplasm is not sufficient for effective modulation of some of the signaling pathways involved in
opsonophagocytic particle uptake and that appropriate spatial distribution of cAMP is key to effective
inhibition of opsonophagocytic uptake by the adenylyl cyclase enzyme toxins.

5. Materials and Methods

5.1. Reagents and Antibodies

RPMI 1640 and DMEM were obtained from Sigma-Aldrich, St. Louis, MO. Antibodies against p-PYK2
(sc-293142), p-Vav (sc-16408-R), and Vav (sc-17831) were obtained from Santa Cruz Biotechnology Inc.,
Dallas, TX. Anti-phosphotyrosine (11-263-C100) and anti-Syk (11-376-C100) antibodies were purchased
from Exbio, Vestec, Czech Republic. Anti-Pyk2 antibody (P3902) was purchased from Sigma-Aldrich,
St. Louis, MO. Antibody against p-Syk (MAB6459) was purchased from R&D systems, Minneapolis,
MN. Rabbit polyclonal anti-cAMP antibody for competitive ELISA was obtained from GenScript,
Piscataway, NJ. Horseradish peroxidase (HRP)-conjugated anti-mouse and anti-rabbit IgG antibodies
were purchased from GE Healthcare, Piscataway, NJ. HBSS buffer (10 mM HEPES, pH 7.4, 140 mM
NaCl, 5 mM KCl) complemented with 2 mM CaCl2, 2 mM MgCl2, 1% (w/v) glucose, and 1% (v/v) fetal
calf serum (FCS)) was prepared for flow cytometry experiments. Zymosan A was purchased from
Sigma-Aldrich, St. Louis, MO. For labeling, zymosan at 10 mg/ml was incubated with 50 ug/ml of
fluorescein isothiocyanate (FITC; Sigma-Aldrich, St. Louis, MO) in 300 mM sodium bicarbonate buffer
(pH 9.2) with overnight rotation at 4 ◦C. Unbound FITC was removed by extensive washing with
HBSS buffer, and FITC labeled zymosan (FITC-zymosan) was stored at −20 ◦C.
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5.2. Toxins

CyaA was produced in the presence of activating acyltransferase CyaC in E. coli strain
XL1-Blue (Stratgene, La Jolla, CA). The protein was chromatographically purified by ion exchange
chromatography on DEAE-Sepharose and hydrophobic chromatography on Phenyl-Sepharose,
from which endotoxin was removed by repeated washing of the toxin-bound resin with 60%
isopropanol [26,60]. The toxin preparation contained less than 0.1 EU/µg of protein as determined by
Limulus Amebocyte Lysate assay (QCL-1000, Lonza, Walkersville, MD) and was stored in 50 mM Tris
(pH 8.0), 8 M urea, and 2 mM CaCl2 buffer at -20 ◦C. Recombinant EF and PA from Bacillus anthracis
were purchased from List Biological Laboratories, Inc., Campbell, CA.

5.3. Cell Culture

THP-1 human monocytic cells (ATCC TIB-202) were obtained from the American Type Culture
Collection (ATCC, Manassas, VA) and tested for the absence of mycoplasma contamination. The cells
were cultured in RPMI 1640 supplemented with 10% fetal calf serum and antibiotic antimycotic solution.
The cells were transferred to DMEM with 10% FCS, without antibiotic antimycotic solution for toxin
treatment, inhibitor treatment, and signal transduction experiments.

5.4. cAMP Assay

6 × 105 THP-1 cells were incubated with CyaA (150 ng/ml; 0.85 nM) or ET (625 ng/ml; 7.04 nM
EF + 2500 ng/ml; 30.24 nM PA) for different time durations in 200 µl of DMEM with 10% FCS and
no antibiotics at 37 ◦C. The reaction was stopped by lysing the pellet by addition of 0.2% Tween-20
in 50 mM HCl. The lysates were boiled for 10 min at 100 ◦C, neutralized by addition of 150 mM
unbuffered imidazole, and cellular cAMP levels were measured using competitive ELISA, as described
elsewhere [61]. cAMP concentrations were normalized to the total protein content, which was
determined using a micro-BCA protein assay kit (Bio-Rad, Rockford, IL).

5.5. Signal Transduction Experiments

Zymosan particles were opsonized by incubating the particles with 50% human serum for 30 min
at 37 ◦C. The particles were then washed and dissolved in DMEM with FCS before use for treatment
of cells (100 µg of zymosan particles per 106 cells). To investigate the effects of toxin-provoked
cAMP intoxication on opsonophagocytic signaling, 3 × 106 THP-1 cells were preincubated with CyaA
(150 ng/ml; 0.85 nM) for 30 min or ET (625 ng/ml; 7.04 nM EF + 2500 ng/ml; 30.24 nM PA) for 6
h, respectively (based on cAMP ELISA experiments to have similar cAMP intoxication levels, cf.
Figure 1A,B). The cells were then treated with 300 µg of serum opsonized or unopsonized zymosan as
positive and negative controls for 30 min, respectively.

Cells were preincubated for 6 h with an AC inhibitor (adefovir dipivoxil) [45] at a final concentration
of 10 µM in DMEM with 10% FCS and no antibiotics at 37 ◦C. The experiments were then continued as
mentioned above in the constant presence of the inhibitory drug.

5.6. Immunoblotting

Cellular lysates were analyzed by immunoblotting as previously described [26]. Briefly, experiments
were stopped at respective time points by lysing the cells with Triton X lysis buffer (50 mM Tris-HCl (pH
7.4), 150 mM NaCl, 1 mM Na3VO4, 10 mM NaF, 0.3% SDS, 1% Triton X 100, and EDTA-free protease
inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany)). The proteins were separated
using SDS-PAGE and transferred onto polyvinylidene difluoride membranes. The blots were probed
with indicated primary antibodies, followed by incubation with horseradish peroxidase-conjugated
secondary antibody and developed using SuperSignal West Femto maximum sensitivity substrate
(Thermo Scientific, Rockford, IL, USA). The chemiluminescent signal was recorded using a G:
Box Chemi gel documentation system (Syngene, Frederick, MD, USA). The immunoblots were
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analyzed using AIDA Image Analysis software (Raytest, Straubenhardt, Germany), and an AIDA
2D Densitometry module was used to evaluate the intensity of the chemiluminescent signal.
The background-subtracted density of the bands was measured for each individual band from
immunoblots probed by phospho-specific antibodies and normalized by the corresponding density of
bands from immunoblots probed by antibodies recognizing the total form of the signaling protein
concerned. The values obtained from the positive controls (Buffer + SOZ or Adefovir + SOZ) were set
at 100%.

5.7. Flow Cytometry

2 × 105 THP-1 cells were incubated with CyaA or ET as mentioned above, washed with HBSS
buffer and treated with serum opsonized FITC-zymosan particles (10 µg of zymosan particles per
105 cells) for 30 min at 37 ◦C or 4 ◦C in HBSS buffer. Toxin and opsonized FITC-zymosan particles
were simultaneously added to the cells in some experiments. THP-1 cells were preincubated with
adefovir dipivoxil for 6 h prior to treatment with toxin and subsequent incubation with opsonized
FITC-zymosan in some experiments. The reaction was stopped by addition of 3 volumes of chilled
HBSS buffer, the cells were centrifuged and resuspended in 100 µl of chilled HBSS buffer. Live THP-1
cells were selected by performing the flow cytometric analysis in the presence of Hoechst 33258
(1 µg/ml), and the cells were further selected (and FITC-zymosan particles excluded) using gating on a
bi-dimensional cytogram based on signals from forward scatter and side scatter. Data were analyzed
using FlowJo software (Tree Star, Ashland, OR). The number of cells that incorporated fluorescent
zymosan particles was determined on a fluorescence histogram. Phagocytic activity was expressed as
phagocytic index (PhI) [62], calculated using the formula:

PhI =
%PhT
%PhT0

(1)

where PhT represents FITC positive cells after 30 min of incubation at 37 ◦C (fluorescence contributed
by both bound and internalized zymosan particles), and PhT0 represents the FITC positive cells in the
corresponding control incubated at 4 ◦C (fluorescence contributed by bound particles alone).

5.8. Immunofluorescence and Confocal Microscopy

To visualize the actin cytoskeleton and the cell morphology, 3 × 106 THP-1 cells were seeded on
cover slips (2 h) in DMEM with 10% FCS and no antibiotics. The cells were then treated at 37 ◦C with
CyaA (150 ng/ml; 0.85 nM) for 30 min or ET (625 ng/ml EF; 7.04 nM + 2500 ng/ml; 30.24 nM PA) for
6 h to obtain similar overall levels of cAMP intoxication. The toxin treated or untreated cells were
incubated with serum opsonized zymosan or unopsonized zymosan particles (100 µg of zymosan per
106 cells) for 30 min at 37 ◦C. The cells were washed twice with warm PBS (37 ◦C), fixed by incubation
with 3.7% paraformaldehyde for 15 min, and permeabilized by 0.1% Triton in PBS. The cover slips
were blocked with 5% BSA in PBS for 1 h and stained with TRITC conjugated phalloidin dissolved
in 2% BSA (1:50) in the presence of 1 µg/ml of DAPI. Finally, the coverslips were washed three times
with PBS for five minutes each, rinsed once with distilled water, and mounted in the inverted position
on a microscopic slide in Vectashield mounting medium. Immunofluorescent images were obtained
using an Olympus FV-1000 confocal microscope (Olympus Corporation, Tokyo, Japan). Reconstructed
z stack projections (average intensity) of the images were used for measuring the cell area. The cell
periphery was traced using freehand selection tools in ImageJ, the area enclosed was measured using
the measure function and plotted as relative cell area, where the area of Zymosan treated cells was set
as 1.0 (negative control).

5.9. Statistical Analysis

One-way analysis of variance (ANOVA) was used to perform statistical analysis followed by
Tukey’s test or Dunnett’s test for post hoc analysis. A p value less than 0.05 was considered statistically
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significant. All statistical analyses were performed with Prism (version 6) software (GraphPad, La Jolla,
CA). The axis was split in some graphs to facilitate the accurate representation of the trends.
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Figure A1. Preincubation of THP-1 cells with adefovir dipivoxil does not affect the opsonin induced
tyrosine phosphorylation of Syk, Pyk2, and Vav. The experiment was carried out as mentioned in the
legend for Figure 3. Data represent mean with SEM (N = 3). p values were determined by one-way
ANOVA; *** p < 0.001; **** p < 0.0001; ns, not significant, for results compared with buffer-treated cells
incubated with SOZ particles.
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