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Abstract: Cancer subtype classification helps us to understand the pathogenesis of cancer and develop
new cancer drugs, treatment from which patients would benefit most. Most previous studies detect
cancer subtypes by extracting features from individual samples, ignoring their associations with
others. We believe that the interactions of cancer samples can help identify cancer subtypes. This work
proposes a cancer subtype classification method based on a residual graph convolutional network and
a sample similarity network. First, we constructed a sample similarity network regarding cancer gene
co-expression patterns. Then, the gene expression profiles of cancer samples as initial features and the
sample similarity network were passed into a two-layer graph convolutional network (GCN) model.
We introduced the initial features to the GCN model to avoid over-smoothing during the training
process. Finally, the classification of cancer subtypes was obtained through a softmax activation
function. Our model was applied to breast invasive carcinoma (BRCA), glioblastoma multiforme
(GBM) and lung cancer (LUNG) datasets. The accuracy values of our model reached 82.58%, 85.13%
and 79.18% for BRCA, GBM and LUNG, respectively, which outperformed the existing methods.
The survival analysis of our results proves the significant clinical features of the cancer subtypes
identified by our model. Moreover, we can leverage our model to detect the essential genes enriched
in gene ontology (GO) terms and the biological pathways related to a cancer subtype.

Keywords: residual graph convolutional network; cancer subtype classification; deep learning;
sample interaction

1. Introduction

Cancer is a heterogeneous disease initiated by random somatic mutations and driven
by multiple genomic alterations [1–3]. Cancer patients are usually divided into subtypes
according to their molecular profiles for effective cancer treatment [4–6]. Different subtypes
of cancer patients have different clinical phenotypes, tumor morphologies, therapeutic
schedules and prognoses [7]. For example, breast cancer is divided into four subtypes:
Luminal A, Luminal B, Basal and HER2. Each subtype has different forms and different
reactions to drugs [8–11]. Accurate cancer subtyping can help understand the pathogenesis
of cancer, boost clinical treatment, improve patients’ survival rate and advance research on
cancer genomics and precision medicine [12]. In the past decade, some large-scale cancer
genomics projects have published genomic, epigenomic, transcriptomic, and proteomic
data from thousands of cancer patients [13]. These projects include the cancer genome
atlas (TCGA) [14], the International Cancer Genome Consortium (ICGC) [15], and the
Pan-Cancer Analysis of Whole Genomes (PCAWG) [16]. These cancer genomic data have
extensively promoted the development of computational methods for cancer subtype
classification by integrating multi-omic data. Previous studies [17] showed that the gene
expression data perform best in detecting the cancer subtypes compared with other omics
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data. Hence, considering the availability of the gene expression data for most patients, we
focused on designing a novel computational method for cancer subtype classification based
on gene expression data.

Recently, different computational methods have been proposed to detect cancer sub-
types [18–20]. These methods usually build on feature engineering to cluster or classify
patients into several groups. Due to the high dimension and small sample size of biological
data, early approaches reduced the sample’s features to a reasonable extent and used those
features to cluster cancer subtypes. iCluster [21] reduces the dimensionality of datasets to
learn features while simultaneously incorporating the flexibility of the associations between
different data types and the variance-covariance structure within data types. SparseK [22]
leverages a lasso-type penalty to select features adaptively. Non-negative matrix factor-
ization [23,24] methods usually decompose the sample feature matrix into two low-rank
matrices, where one denotes the feature representation in a low dimension space, and the
other indicates the potential clusters. One study [25] comprehensively reviewed recent
methods for clustering cancer subtypes.

With the development of deep learning techniques, some deep learning methods,
such as convolutional neural networks (CNNs) [26–28], generative adversarial models
(GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), convolu-
tional autoencoders (CAE), stacked autoencoders (SAE) [29], variational autoencoders
(VAE) [30], recurrent neural networks (RNNs), long short-term memory (LTSM), multi-
scale convolutional neural networks (M-CNN), and multi-instance learning convolutional
neural networks (MIL-CNN) have been applied to the cancer research field [31,32]. The
classifying-based methods usually train a model on some cancer samples with known
subtype labels and then employ the model to predict subtypes for new cancer samples.
According to the feature extraction and classification differences, the classification-based
methods fall into two categories, two-stage methods and end-to-end methods [33]. The
two-stage processes take two separate steps to learn the sample features and to make pre-
dictions. Fakoor et al. [34] used PCA to address the very high dimensionality of the initial
raw feature space, followed by sparse feature learning techniques (sparse autoencoders) to
construct the discriminative and sparse features for the final classification step. Stacked
Autoencoders (SAE) [29] and Variational Autoencoders (VAE) [30] have been applied to
extract sample features and then to input these features into a classifier to obtain cancer
subtypes. Subtype-GAN [17] is a deep adversarial learning approach that uses a neural
network to model complex omics data accurately. With the latent variables extracted from
the neural network, Subtype-GAN uses consensus clustering and the Gaussian Mixture
model to identify cancer samples’ molecular subtypes. Those models can automatically
capture the data structure and achieve good prediction performance. However, the major
issue with two-stage methods is that there is no guarantee that the features retrieved at
the first stage can support the cancer subtype classification. The end-to-end approaches
learn and classify samples simultaneously. DeepType [35] inputs cancer sample data into
a multi-layer neural network to reduce the data dimension. Meanwhile, it joins super-
vised classification with unsupervised clustering to determine the cancer-relevant data
representation with the cluster structure.

The methods mentioned above only used the cancer sample data to input into models
for feature learning, and they did not consider the relationship between cancer samples.
We believe that the rich information between samples can promote the classification of
cancer subtypes. The Graph Convolutional Network (GCN) model is an efficient method
to mine valuable information from the network, which converts the nodes in the network
to low dimension vectors while maximally preserving the original features and the local
network structure. Recently, the GCN model has been wildly applied in bioinformatics,
such as driver gene identification [13] and drug sensitivity prediction [36]. Lee et al. [37]
implemented a graph convolution operation on multiple pathway-gene networks to learn
gene features, and then leveraged a multi-attention based ensemble model to combine
these features in several hundreds of pathways to identify cancer sample subtypes. In this
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work, we designed an end-to-end deep learning method, namely ERGCN, which uses a
cancer sample similarity network and a Residual Graph Convolutional Network to classify
cancer subtypes based on gene expression profiles. Our model utilizes the gene expression
profiles as sample features and constructs a sample similarity network regarding their gene
co-expression patterns. Then, the sample features and sample similarity network are put
into a residual graph convolutional network model to learn the feature representation of
samples and to predict subtypes in an end-to-end way. We applied our model to predict
subtypes for breast, GBM and lung cancer samples. The results show that our method
achieves relatively better performance than the state-of-the-art models in terms of both
internal and external evaluation metrics. Moreover, by analyzing the prediction results for
breast cancer, we found some key genes that may cause the occurrence of breast cancer
subtypes, demonstrating the practicality of ERGCN.

2. Materials and Methods

Broadly, ERGCN takes two steps to identify cancer subtypes of cancer patients based
on their gene expression data and the residual graph convolutional network. Firstly, it
calculates the similarity between cancer patients and constructs a network where nodes are
cancer patients and edges connect two nodes if their similarities are above a predefined
threshold. Next, a residual graph convolutional neural network algorithm is adopted
to diffuse the node feature information through the network and to learn the feature
representation for every node in an end-to-end pattern. At this step, ERGCN predicts the
cancer subtypes of patients according to their feature representations. Figure 1 shows an
overview of ERGCN for identifying cancer subtypes.
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Figure 1. Framework of the ERGCN. (a) Calculate sample similarity matrix according to the Pearson
correlation coefficient of their gene expression data and construct the sample adjacency matrix.
(b) Input the sample features and the sample adjacency matrix into the residual graph convolution
model to obtain category prediction.

2.1. Datasets

We tested our model on three different cancer types from TCGA. These three can-
cer types included breast invasive carcinoma (BRCA), with 102 samples, glioblastoma
multiforme (GBM), with 213 samples, and lung cancer (LUNG), with 85 samples. We
downloaded the gene expression data and survival information for the three cancer types
in supplementary files of Wang [38]. The cancer subtype information was retrieved from
TCGA using the R package TCGAbiolinks [39]. By matching the sample ID of the gene
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expression data, we joined the sample gene expression data with their cancer subtypes.
Hence, there were four cancer subtypes for the 102 breast cancer patients (e.g., Basal, LumA,
LumB, Her2), four cancer subtypes for the 213 GBM cancer patients (e.g., LGr1, LGr2,
LGr3, LGr4) and four cancer subtypes for the 85 lung cancer patients(e.g., Basal, Classical,
Secretory, Primitive).

2.2. Network Construction

We constructed a patient network based on the similarity of patients. The similarity
of patients was calculated by the Pearson correlation coefficient (PCC) [40] of their gene
expression profiles (see Equation (1)).

r =
∑n

i
(
Xi − X

)(
Yi − Y

)√
∑n

i
(
Xi − X

)2
√

∑n
i
(
Yi − Y

)2
(1)

where n is the number of genes, Xi and Yi are the expression values of gene i for patients
X and Y and X and Y are the average gene expression values of X and Y. The Pearson
correlation coefficient (r) measures the degree of linear correlation between two patients,
ranging from −1 to 1. When the absolute value of r nears 1, two patients are positively
or negatively correlated. Otherwise, the value nears 0. Hence, we consider that an edge
connects two patients and thus set the corresponding values in the adjacency matrix to 1
if the absolute value of the Pearson coefficient between the two samples was greater than
the threshold (θ). Otherwise, no edges connected two patients, and the corresponding
adjacency matrix values were zeros. In this work, θ was set to 0.42 for BRCA, 0.41 for
LUNG and 0.8 for GBM.

2.3. Residual Graph Convolutional Neural Network

After constructing the patient network, we adopted a graph convolutional network
(GCN) to learn the feature representations of the network nodes by considering the network
structure and node attributes. A GCN model requires two inputs, an adjacent matrix storing
the node connections and a node initial attribute matrix. Let G = (V, E) be a patient network,
where V (|V| = n) and E are sets of nodes and edges, respectively. The relationship between
each node forms an n × n adjacency matrix A. We assume that every node connects to itself.
Hence, the diagonal elements of A are set to 1. D is the degree matrix of A, X is an n × d
initial attribute matrix of network nodes, and d is the length of the node’s attributes. We
regard the patient’s gene expression data as the initial node attributes. The GCN model
gathers features for a node from itself and local neighbors, then propagates information
among nodes and the network. Mathematically, a single GCN layer is defined as follows.

H(l+1) = p
(

D−
1
2 AD−

1
2 H(l)W(l)

)
(2)

where H(l+1) represents node features learned by the (l + 1)th GCN layer, W ∈ Rn∗h is a
weight parameter matrix of the neural network, h is the hidden layer dimension, H(l) comes
from the output feature embedding of the previous GCN layer, H(0) is initialized with X for
the first GCN layer, and p is the nonlinear activation function.

To avoid the over-smoothing issue of the GCN model and to emphasize the original
node features, we learned from the concept of ResNet [41] and added a layer of residual
data to the GCN. To ensure the consistency between the dimension of the input feature and
the node feature dimension of a layer GCN, we passed the initial input feature through
an independent linear layer and directly connected it to the output of the GCN layer.
Mathematically, the skip connection operation can be written as follows.

H(p) = H(1) + relu (linear(X)) (3)
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where H(1) represents the node features learned by the first GCN layer, and linear(X)
denotes passing the initial input feature matrix into a linear layer.

The ERGCN model consists of two GCN layers. The activation function of the first
GCN layer is Relu. We took the gene expression profiles of the samples as initial attributes
and input them into the first GCN layer. Before feeding the output of the first GCN layer
into the second GCN layer, we added the previous output with the initial node attributes
that underwent a linear change to overcome over-smoothing (see Equation (3)). The second
GCN layer adopted the softmax activation function, whose outputs are the probabilities of
a patient belonging to every cancer subtype. We used the cross-entropy loss functions to
quantify the cancer subtype prediction loss.

L = − ∑
d∈yT

F

∑
f=1

YdflnZdf (4)

Given a patient d in the training set T, Ydf is a sign function (0 or 1), Ydf equals one if
the real class label of the patient d is one, otherwise, Ydf equals zero, Zdf is the predicted
probability that cancer patient d is in the category f, which is the output of the second GCN
layer. Support existed for a number F of cancer subtypes. The outputting dimension of the
second GCN layer was F. We minimized the cancer subtype prediction loss to optimize the
parameters in the ERGCN model.

In summary, Algorithm 1 illustrates the pseudocode of ERGCN.

Algorithm 1 ERGCN

Input: Gene expression matrix X ∈ Rm×n with m number of samples whose vector length is n,
corresponding true labels Y ∈ Rm, number of epochs e, learning rate η, dropout rate d.
Output: Predicted labels Y.

1.Use Equation (1) to calculate the correlation between samples based on gene expression data
to get the correlation matrix A (m * m).

2.Given a threshold θ, set the value of the matrix A greater than θ to 1, and set other values to 0
to obtain the adjacency matrix A (m * m).

3.For i = 1 to epochs do:
H(1) =ReLU( GCN1(X, A)
H(p) = H(1) + ReLU(linear(X))
H(2) = GCN2(H(p), A)
out = Softmax(H(2))
Calculate the Loss by Equation (4).
Update the weights of ERGCN by gradient descent and back propagation.

end for
4.H(1) =ReLU( GCN1(X, A)
5.H(p) = H(1) + ReLU(linear(X))
6.H(2) = GCN2(H(p), A)
7.out = Softmax(H(2))
8.Labels = out.max(dim = 1)
9.Return labels

2.4. Experimental Parameters

For ERGCN, we set the dimension of the first layer of the graph convolution to 64 and
the dimension of the second layer of the graph convolution to the number of categories.
We use the Adam optimizer function. The learning rate is set to 0.001. We performed
5-fold cross-validation ten times and compared the average results. The network structure
of SAE was the input layer—500-200-50, the pre-training epochs of each layer were 20,
and the final fine-tuning epochs were 40. The network structure of VAE was the input
layer—512-512-128, with epochs of 300.
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2.5. Assessing the Performance
2.5.1. External Evaluation Metrics

The external evaluation index evaluates the effectiveness of the algorithm by compar-
ing the predicted classification results with the real ones. We use the adjusted Rand index
(ARI) to evaluate the distribution match between the classification results and the known
benchmark subtypes. In addition to this, we also used the Accuracy, Precision, Recall, F1
Score, MCC indicators for comparison. The formulas of these indicators are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 Score =
2PR

P + R
=

2TP
2TP + FP + FN

(8)

MCC =
TP∗TN− FP∗FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

ARI =
RI− E(RI)

max(RI)− E(RI)
, RI =

TP + TN
TP + TN + FP + FN

, E(RI) =
(TP + TN)(TP + FP)
TP + TN + FP + FN

, max(RI) =
(TP + TN) + (TP + FP)

2
(10)

where TP refers to positive samples predicted by the model as positive, TN refers to negative
samples predicted by the model as negative, FP refers to negative samples predicted by the
model as positive, and FN refers to positive samples predicted by the model as negative.

2.5.2. Internal Evaluation Metrics

We used two internal evaluation metrics, Silhouette width and the Davies–Boulding
Index(DBI), to assess the clustering quality without knowing the classification labels. The
Silhouette width was calculated using Formula (11):

Silhouette width =
b(i)− a(i)

max(a(i), b(i))
(11)

where a(i) is the average distance between sample i and other samples of the same type,
and b(i) is the average distance between sample i and all samples of different types. The
value of the Silhouette width is in (−1,1). The larger the Silhouette width value, the higher
the similarity of nodes within the same class, and the lower similarity of nodes between
classes. The DaviesπBoulding Index formula was defined by Formula (12):

DBI =
1
N

N

∑
i=1

max
i 6=j

(
avg(Ci) + avg

(
Cj
)

dis
(
Ci, Cj

) )
(12)

where N is the number of clusters, avg(Ci) is the average distance between sample i and its
cluster centroid, dis(Ci, Cj) represents the distance between the center of class Ci and the
center of class Cj. The lower limit of the DBI is 0, and the smaller the DBI value, the better
the clustering.

3. Results

To verify the effectiveness of ERGCN, we compared its cancer subtype prediction
performance with some state-of-the-art methods in terms of internal and external evalu-
ation indicators. The existing methods include stack autoencoder (SAE) [29], variational
autoencoder (VAE) [30], Deeptype [35], GCN+PPI, support vector machine (SVM), Random
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Forest and GcForest [42]. VAE and SAE reduce the dimension of cancer gene expression
data and learn the feature representation of cancer patients. Then, cancer patients are
classified according to their learned feature representation through the classifiers SVM
and GcForest [42]. Deeptype is the latest end-to-end method that combines supervised
classification and unsupervised clustering to learn cluster structure representations for
cancer-related data and identify cancer subtypes. GCN+PPI conducts a graph convolution
operation on the PPI network to learn sample features and predict cancer subtypes [43]. We
also investigated the effect of the correlation coefficient threshold on our model and experi-
mented with new sample discrimination to verify the stability of our model. Finally, we
performed difference analysis and functional enrichment analysis of cancer subtype-related
genes on BRCA to explore potential cancer treatment targets.

3.1. Determination of Correlation Coefficient Threshold

The first step of our model was to construct a patient network by calculating the PCC
between patients. The parameter θ controls whether or not there is an edge connecting two
patients. To test the effect of parameter θ, we compared the predictive performance of our
model by setting θ to various values ranging from 0.1 to 0.9. We observed from Figure 2
that the performance of our model rose quickly with the increase of θ at the beginning.
After that, it was relatively steady with different θ values. Our model performed best
on the BRCA data set when θ was 0.42, where the ACC, MCC, F1 Score, Precision and
Silhouette width reached 0.825, 0.743, 0.771, 0.790, and 0.792, respectively. Our model
worked best on the GBM data set when θ was 0.8. Its ACC, MCC, F1 Score, Precision and
Silhouette width achieved 0.851, 0.801, 0.841, 0.851, 0.763, respectively. On the LUNG data
set, the performance of our model was relatively good when θ was 0.41. The ACC, MCC, F1
Score, Precision and Silhouette width were 0.792, 0.716, 0.722, 0.754, and 0.726, respectively.
Hence, the parameter θ of our model was set to 0.42 in the BRCA data set, 0.8 in the GBM
data set and 0.41 in the LUNG data set when we compared it with other methods.
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3.2. Results of External Evaluation Metrics

We construct a sample similarity network using all samples. Then we divided all
samples into five parts. Four parts were selected as the training set, and the remaining part
was the test set. We took the average result of ten iterations of the 5-fold cross-validation
test set as the evaluation metric. Tables 1–3 show the performance comparison between
our model and other models regarding Accuracy, Recall, F1 Score, ACC, MCC, and ARI on
the BRCA, GBM, and LUNG data sets. We observed the significant outperformance of our
model compared with other models. On the BRCA data set, our Accuracy rate, F1 Score
and MCC values were 2.94%, 14.48% and 5.03% higher than that of Gcforest, which has the
best performance among the existing methods. Similar results were observed on the GBM
and LUNG data sets. Our model’s Accuracy, F1 Score and MCC values ere 1.47%, 1.88%
and 5.05% higher on the GBM dataset and 2.35%, 8.13%, 1.88% higher on the LUNG dataset
compared to Gcforest, which works best among the existing methods on the two datasets.
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Table 1. The external evaluation metrics of every model on BRCA dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.46688 0.47171 0.41178 0.568 0.23869 0.36318
SAE+Gcforest 0.47257 0.47837 0.43852 0.64067 0.30144 0.43627

Deeptype 0.60228 0.62621 0.59160 0.753 0.57466 0.64430
VAE+SVM 0.66438 0.65065 0.63436 0.74114 0.48724 0.60771

VAE+Gcforest 0.64519 0.64151 0.61159 0.77448 0.54275 0.65777
SVM 0.42288 0.51925 0.45485 0.72076 0.43940 0.57969

Gcforest 0.64539 0.65442 0.62575 0.79638 0.57676 0.69289
Random Forest 0.66267 0.66451 0.63839 0.78952 0.57012 0.68508

GCN+PPI 0.64554 0.62277 0.61171 0.75005 0.49454 0.62303
ERGCN 0.78953 0.79844 0.77055 0.82576 0.62873 0.74322

Table 2. The external evaluation metrics of every model on GBM dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.79338 0.79440 0.78250 0.79355 0.52781 0.72323
SAE+Gcforest 0.79924 0.78409 0.77825 0.78831 0.51550 0.71606

Deeptype 0.78081 0.75975 0.74804 0.77300 0.50885 0.79063
VAE+SVM 0.80097 0.78549 0.78055 0.79761 0.52952 0.72786

VAE+Gcforest 0.77588 0.76140 0.75264 0.77575 0.51302 0.70079
SVM 0.83716 0.81796 0.81292 0.82083 0.56993 0.76267

Gcforest 0.85667 0.82310 0.82187 0.83661 0.61136 0.78249
Random Forest 0.85179 0.81486 0.81643 0.83511 0.61546 0.78059

GCN+PPI 0.81717 0.79781 0.79759 0.80755 0.55226 0.74441
ERGCN 0.85109 0.84795 0.84065 0.85131 0.64321 0.80066

Table 3. The external evaluation metrics of every model on LUNG dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.62703 0.64589 0.60029 0.70706 0.40495 0.59873
SAE+Gcforest 0.50461 0.53870 0.48131 0.63412 0.30443 0.49150

Deeptype 0.65217 0.66711 0.62727 0.736 0.53235 0.64140
VAE+SVM 0.71101 0.68801 0.67435 0.75177 0.48261 0.65223

VAE+Gcforest 0.70152 0.67114 0.64492 0.74588 0.49020 0.65056
SVM 0.46486 0.53482 0.46342 0.67176 0.44398 0.55509

Gcforest 0.68092 0.68020 0.64116 0.76823 0.58791 0.69718
Random Forest 0.66950 0.68130 0.63430 0.76235 0.56768 0.68308

GCN+PPI 0.59129 0.568 0.55040 0.65412 0.30853 0.51357
ERGCN 0.75400 0.74699 0.72242 0.79176 0.57377 0.71602

3.3. Results of Internal Evaluation Metrics

We repeated the five-fold cross verification ten times. Table 4 reports the average
Silhouette width and DBI of our model and other models for the test samples on the
three data sets. The smaller the DBI index, the larger the Silhouette width and the more
reasonable the classification result. It can be seen from Table 4 that our model keeps
excellent performance in terms of compactness and separation. The Silhouette width of
ERGCN reached 0.795, 0.763 and 0.727 on the BRCA, GBM and LUNG data sets, respectively,
which was 17.24%, 34.32% and 24.49% higher than DeepType, which has the best internal
evaluation values among the existing methods. Moreover, ERGCN resulted in 10.24%,
40.24% and 24.65% lower DBI values than DeepType on the BRCA, GBM and LUNG data
sets, respectively. We use the t-SNE tool to visualize the initial features of the cancer
samples in the test set and on their latent features learned by the ERGCN model. Figure 3
illustrates that the cancer samples can be separated into several subgroups well when using
the features learned by our ERGCN model. These results prove the effectiveness of our
model on cancer subtype classification.
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Table 4. The internal evaluation metrics of every model.

Methods
BRCA GBM LUNG

DBI Silhouette
Width DBI Silhouette

Width DBI Silhouette
Width

SAE+SVM 2.0001 −0.0056 2.5358 0.0402 1.9491 −0.0005
SAE+Gcforest 1.8179 0.0335 2.4135 0.0465 2.0028 0.0222

DeepType 0.39641 0.62221 0.75048 0.42000 0.57735 0.48204
VAE+SVM 2.1105 −0.0132 2.9650 −0.0376 1.8451 −0.0270

VAE+Gcforest 1.9178 0.0444 2.8630 −0.0455 1.7715 −0.0147
SVM 2.15145 0.11750 2.77210 −0.00830 2.66726 0.00047

Gcforest 1.96480 0.06851 2.80126 0.00025 2.30813 −0.00803
Random Forest 1.98764 0.05645 2.81110 -0.00069 2.28595 −0.00269

GCN+PPI 2.02747 0.03644 2.91481 0.00961 2.25382 −0.0148
ERGCN 0.29402 0.79463 0.34806 0.76318 0.33086 0.72691
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Figure 3. Visualization results of t-SNE. (a) The visualization result of BRCA. The first picture is the
result of the original feature, and the second picture is the result of the latent features learned by
ERGCN. (b) The visualization result of the GBM. The first picture is the result of the original feature.
The second is the result of latent features learned by ERGCN. (c) The visualization result of LUNG,
the first picture is the result of the original feature, and the second is the result of the latent feature
learned by ERGCN.
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3.4. Experiments with New Samples

ERGCN classifies cancer subtypes based on the sample similarity network, which
calculates Pearson correlations between all pairs of samples ahead of time. To probe the
performance of ERGCN on a new sample, which is a popular application in a clinical
context of determining a person’s cancer subtype, we selected a single sample as the test
set and regarded the remaining samples as the training set. We trained the model on the
network built by the training samples. After that, we augmented the network by calculating
the correlation between a new sample and other samples when testing the model. We
collected the results of all single samples. Other methods only need to select a single sample
as a test set and input the rest of the samples into the model as a training set. Tables 5–7
reports the average external evaluation indicators of our method and other methods across
all individual samples. We noticed that ERGCN had good performance compared to other
methods, with Accuracy values reaching 0.804, 0.850 and 0.824 on the BRCA, GBM and
LUNG data sets, respectively.

Table 5. The experiment results for a new sample on BRCA dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.75693 0.54044 0.52594 0.72549 0.44104 0.57753
SAE+Gcforest 0.62501 0.55515 0.53656 0.73529 0.48863 0.59049

VAE+SVM 0.70438 0.68683 0.69412 0.75490 0.49052 0.62384
VAE+Gcforest 0.66973 0.65040 0.65643 0.76471 0.57447 0.63682

SVM 0.63776 0.51471 0.46261 0.72549 0.44240 0.59148
Gcforest 0.84364 0.64338 0.64064 0.79411 0.56589 0.68464

Random Forest 0.82441 0.62868 0.62397 0.78431 0.56030 0.66815
GCN+PPI 0.76280 0.68873 0.70813 0.79808 0.57397 0.69049
ERGCN 0.74755 0.73884 0.73962 0.80392 0.62150 0.71075

Table 6. The experiment results for a new sample on GBM dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.81642 0.81625 0.81538 0.81221 0.55023 0.74629
SAE+Gcforest 0.82595 0.82933 0.82708 0.82629 0.58206 0.76532

VAE+SVM 0.78944 0.78534 0.78682 0.79343 0.52562 0.72020
VAE+Gcforest 0.76416 0.75092 0.75601 0.76526 0.47159 0.68126

SVM 0.83590 0.82663 0.82985 0.83098 0.59225 0.77148
Gcforest 0.85550 0.80886 0.82051 0.83568 0.61514 0.77803

Random Forest 0.83445 0.80664 0.81572 0.82629 0.59218 0.76426
GCN+PPI 0.81691 0.81481 0.81547 0.82160 0.57898 0.75841
ERGCN 0.84325 0.84021 0.84090 0.84977 0.64856 0.79738

Table 7. The experiment results for a new sample on LUNG dataset.

Methods Precision Recall F1 Score Accuracy ARI MCC

SAE+SVM 0.53594 0.53283 0.49398 0.68235 0.41481 0.55207
SAE+Gcforest 0.65871 0.53268 0.52984 0.65882 0.34749 0.50912

VAE+SVM 0.78690 0.74056 0.75152 0.81176 0.63649 0.73533
VAE+Gcforest 0.63186 0.61147 0.60847 0.71764 0.52313 0.59664

SVM 0.58994 0.55804 0.52567 0.70588 0.46454 0.59018
Gcforest 0.84865 0.65167 0.63457 0.77647 0.58815 0.69397

Random Forest 0.58994 0.68130 0.63430 0.76235 0.56768 0.68308
GCN+PPI 0.61656 0.54185 0.55348 0.61176 0.23225 0.43827
ERGCN 0.79367 0.78810 0.78903 0.82353 0.64861 0.75297

3.5. Survival Analysis

To further explore the relationship of identified subtypes, we conducted a survival
analysis on the ERGCN results. Theoretically, different cancer subtypes should exhibit
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different survival curves. Figure 4 illustrates our model’s Kaplan–Meier survival curves
on the BRCA, GBM and LUNG datasets, whose abscissa represents time, and the ordinate
represents the observed survival rate. We also plotted the median survival time on the
curve and calculated the p-value of the log-rank test on the survival curves of different
subtypes. On the BRCA data set, the median survival time of the first group was 1699;
the second group was 3418 days; the third group was 611 days; the fourth group was
NA days. NA means that most patients in the fourth group cannot survive the median
survival time. The distance between each category was very long. For GBM, the difference
between the subgroups was not very obvious. The median survival time of the first group
was 668 days; the second group was NA days; the third group was 327 days. The fourth
group was 271 days. On the LUNG data set, the median survival time of cluster 1 was
2082 days; for cluster 2 it was 1415 days; for cluster 3 it was 1088 days, and for cluster 4 it
was 306 days. The distance between each category was long. Hence, there was a significant
difference in the survival curves of the cancer subtypes identified by our model on the
three cancer datasets.
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analysis on the ERGCN results. Theoretically, different cancer subtypes should exhibit 
different survival curves. Figure 4 illustrates our model’s Kaplan–Meier survival curves 
on the BRCA, GBM and LUNG datasets, whose abscissa represents time, and the ordinate 
represents the observed survival rate. We also plotted the median survival time on the 
curve and calculated the p-value of the log-rank test on the survival curves of different 
subtypes. On the BRCA data set, the median survival time of the first group was 1699; the 
second group was 3418 days; the third group was 611 days; the fourth group was NA 
days. NA means that most patients in the fourth group cannot survive the median 
survival time. The distance between each category was very long. For GBM, the difference 
between the subgroups was not very obvious. The median survival time of the first group 
was 668 days; the second group was NA days; the third group was 327 days. The fourth 
group was 271 days. On the LUNG data set, the median survival time of cluster 1 was 
2082 days; for cluster 2 it was 1415 days; for cluster 3 it was 1088 days, and for cluster 4 it 
was 306 days. The distance between each category was long. Hence, there was a significant 
difference in the survival curves of the cancer subtypes identified by our model on the 
three cancer datasets. 
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3.6. Ablation Study

ERGCN combines the GCN model and residual architecture to classify cancer samples.
To investigate which parts contributed to ERGCN model’s excellent performance, we con-
ducted an ablation study on the BRCA, GBM and LUNG datasets. MLP and GCN are two
variations of our model. MLP reduces the dimensionality of cancer gene expression data
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through a two-layer neural network and then directly makes a classification through the
softmax activation function. GCN leverages the same framework as ERGCN without using
the residual architecture. The parameter settings of MLP and GCN were the same as those
of ERGCN. Table 8 lists the comparison of their external evaluation metrics on the three
datasets. On the BRCA dataset, compared with MPL and GCN, ERGCN yielded a 2.48%
and 1.67% improvement to Accuracy values, 4.54% and 3.38% improvement to F1 Score
values, and a 3.64% and 2.53% improvement to MCC values. Similar results were observed
on the GBM and LUNG data sets. ERGCN also produced higher Accuracy, F1 Score and
MCC values than its variations, MPL and GCN, on the two data sets, except a 0.4% lower
F1 Score than MPL on the LUNG dataset. The observed improvement in the performance
of ERGCN suggests that ERGCN successfully improves cancer subtype classification by
conducting a residual graph convolutional operation on the sample similarity network.

Table 8. The experiment results for the ablation study.

BRCA GBM LUNG

MLP GCN ERGCN MLP GCN ERGCN MLP GCN ERGCN

Precision 0.74126 0.76061 0.78953 0.84129 0.84435 0.85109 0.76058 0.74748 0.754
Recall 0.75557 0.7641 0.79844 0.84113 0.84397 0.84795 0.74867 0.73711 0.74699

F1 Score 0.72517 0.73677 0.77055 0.83316 0.83556 0.84065 0.72696 0.71772 0.72242
Accuracy 0.80095 0.80904 0.82576 0.84285 0.84525 0.85131 0.78941 0.78941 0.79176

ARI 0.60001 0.60768 0.62873 0.62204 0.6292 0.64321 0.55106 0.56351 0.57377
MCC 0.70687 0.71806 0.74322 0.78966 0.79278 0.80066 0.70979 0.70839 0.71602

3.7. Analyzing Key Genes of Breast Cancer Subtypes

In this part, we further probed the key genes that may cause the occurrence of breast
cancer subtypes. According to Yang’s [16] approach, we leveraged ERGCN and the Random
Forest model to determine the key genes of breast cancer subtypes. First, we ran the ERGCN
model to predict a cancer subtype label for every sample in the BRCA dataset. Then we
regarded the gene expression profile as the features of a sample and fitted a Radom Forest
model with the sample features and their labels predicted by ERGCN. The Gini index
measured the feature importance. We obtained 50 key genes with the highest Gini index
scores which are essential in breast cancer subtype classification. To further investigate the
function of these 50 key genes, we compared them with differentially expressed genes and
found 37 key genes were differentially expressed. The differentially expressed genes were
obtained using the R function TCGAanalyze-DEA, which compares tumor samples and
normal solid tissue samples with the parameters dr.cut = 0.01 and logFC.cut = 1. Next, we
employed the R package clusterProfiler [44] to perform GO and KEGG enrichment analysis
for these 50 key genes (see Figure 5). GO enrichment studies the selected genes from three
aspects: biological process (BP), cell composition (CC) and molecular function (MF).

In breast cancer, as for biological process, most of the selected genes were enriched
in the regulation of gland development, epithelial cell development, gonad development,
mammary gland epithelium development and primary sexual characteristics. For cellular
components, the selected genes were mainly concentrated on the chromosomal region,
cytoplasmic region and kinetochorer. For molecular function, the chosen genes were mostly
located in DNA-binding transcription activator activity, RNA polymerase ll-specific, steroid
binding and transcription coregulatori binding. The KEGG pathway analysis illustrated
that most of the selected genes were enriched in the progesterone-mediated oocyte matura-
tiorl, oocyte meiosis, chemical carcinogenesis receptor activator and cellular senescence.
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4. Discussion

This study designed a novel deep learning model, ERGCN, to classify cancer subtypes.
Our contributions mainly lie in two aspects. One is that we considered the interactions
between samples to make predictions. The other is that we introduced residuals to the
end-to-end GCN model to avoid over-smoothing and to strengthen the original samples’
features. The observed improvement in the performance of ERGCN compared with other
existing methods without using sample interactions suggests that interactions between
samples contain rich and valuable information for cancer sample classification. Moreover,
ERGCN performs best with a fair number of sample interactions (see the determination
of correlation coefficient threshold). Our model also performed better than the GCN+PPI
model by considering gene associations for cancer subtype classification. ERGCN out-
performed two variations of our model, MLP and GCN, which proves that conducting
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a residual graph convolutional operation on the sample similarity network contributes
to the prediction task. We also noticed that the models based on the autoencoder plus
classifiers showed relatively lower performance. The two-stage method may not effectively
learn features for cancer subtype identification compared with the end-to-end methods.
In practice, we want to know which subtype a cancer sample belongs to, and to probe
the subtype-related genes. We can combine ERGCN and the Random Forest model to
determine the essential genes of a cancer subtype.

5. Conclusions

This work developed a cancer subtype identification method based on the residual
graph convolutional network model. Firstly, we regarded gene expression profiles as
sample features and constructed a sample similarity network according to their gene co-
expression pattern. Next, we put the network and sample features into a residual graph
convolutional network model to obtain the cancer subtype classification. Our method
was applied to the three data sets of BRCA, GBM, and LUNG. The results show that our
method was significantly better than other existing methods in terms of the internal and
external evaluation indicators. We can see the stability of our model through the results
of the new sample experiment. The survival of subtypes detected by our model differs
considerably. The ablation study showed that the ERGCN combining the GCN model
and residual architecture leads to higher performance than all its variants. Moreover, by
analyzing the prediction results of breast cancer, we find some key genes that may cause
the occurrence of breast cancer subtypes, demonstrating the practicality of ERGCN.

However, our model still has some limitations. On the one hand, our model relies
on a predefined threshold to construct the sample similarity network. Too high or too
low threshold values may affect the performance of our model. However, it is hard to set
proper threshold automatically. On the other hand, we only used gene expression profiles
to classify samples. Other omics data may provide complementary information for cancer
subtype classification [45]. Hence, our future work will design a more practical approach
to stratify cancer subtypes by integrating multi-omics data.
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