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Abstract: Most human actions are composed of two fundamental movement types, discrete and
rhythmic movements. These movement types, or primitives, are analogous to the two elemental
behaviors of nonlinear dynamical systems, namely, fixed-point and limit cycle behavior, respectively.
Furthermore, there is now a growing body of research demonstrating how various human actions
and behaviors can be effectively modeled and understood using a small set of low-dimensional,
fixed-point and limit cycle dynamical systems (differential equations). Here, we provide an overview
of these dynamical motor primitives and detail recent research demonstrating how these dynamical
primitives can be used to model the task dynamics of complex multiagent behavior. More specifically,
we review how a task-dynamic model of multiagent shepherding behavior, composed of rudimentary
fixed-point and limit cycle dynamical primitives, can not only effectively model the behavior of
cooperating human co-actors, but also reveals how the discovery and intentional use of optimal
behavioral coordination during task learning is marked by a spontaneous, self-organized transition
between fixed-point and limit cycle dynamics (i.e., via a Hopf bifurcation).

Keywords: multiagent coordination; Hopf-bifurcation; dynamical motor primitives; behavioral
dynamics; task dynamics; shepherding dynamics; synergies

1. Introduction

A differentiating factor between novice and expert teams is the development of robust patterns
of behavior that enable teams to behave in a responsive and effective manner. The development of
such patterns, or coordinative structures [1], within multiagent settings reflects the formation of an
interpersonal or multiagent synergy [2]. Typically, the term synergy is used to refer to a collection
of motor elements (e.g., muscles, joints, limbs, bodies) that are coupled together to act as a single
functional unit [3,4]. It is important to appreciate, however, that the formation of synergistic behavior
entails two levels of constraints [2–5]. As illustrated in Figure 1, the first level is structural, whereby
neural and biomechanical constraints couple component DoF together into a functional intra- or
inter[multi]-person motor synergies. The second level of constraint is defined during the enactment
of a behavioral goal, whereby the specific physical and informational properties of a task and task
environment further couple task relevant DoF together to produce an even lower-dimensional pattern
of synergistic perceptual-motor behavior [2,4,6–8].

The perceptual-motor behavior that emerges from the second level of synergistic constraint reflects
the task or behavioral dynamics [8,9] that define a given solo and multi-agent activity [8–11]. Of key
significance here is that a growing body of research has revealed that such synergistic perceptual-motor
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behavior is essentially composed of just two fundamental movement types [12,13]. First, discrete
movements which are movements that have an unambiguously identifiable start and stop or are bounded
by distinct postures, such as when one reaches for an object or target location, taps a key, or throws a ball
or a dart [14]—second, rhythmic movements, which are movements that are periodic in nature, with the
movement pattern recurring at approximately regular time intervals, such as when one waves a hand,
pounds a nail in with a hammer, or simply walks. As we detail below, the corresponding implication
is that these perceptual-motor behaviors reflect the two elemental behaviors of nonlinear dynamical
systems, namely, fixed-point (discrete) and limit cycle (rhythmic) behaviors. In turn, not only can the task
dynamics of complex human perceptual-motor behavior be modelled using these dynamical primitives,
but by doing so can provide deep insights about the self-organized realization and development of
robust and effective behavioral actions.
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Our aim here is to detail recent research investigating the task dynamics of multiagent shepherding
behavior (two human agents corralling and containing a set of autonomous target “sheep” agents) that
provides particularly strong support for the latter claim (e.g., [10,15,16]). Accordingly, we review this
recent research, as well as detail how task-dynamic models generated from fixed-point and limit cycle
dynamical primitives are not only able to capture the behavioral modes observed in robust individual
and multiagent behavior, but also reveal how the discovery and intentional enactment of effective,
synergistic oscillator behavior can be spontaneously realized by a nonlinear transition process known
as a Hopf bifurcation [17]. Before we do so, however, we first provide an introduction to the formal
aspects of the dynamical primitives that form the foundation to modelling and understanding the
task dynamics of synergistic human and multiagent perceptual-motor behavior, as well as the Hopf
bifurcation process that is entailed within a subset of these dynamical primitives (i.e., limit cycle or
self-sustained oscillator systems).



Brain Sci. 2020, 10, 536 3 of 18

2. Dynamical Primitives of Task Actions

As noted above, research on task/behavioral dynamics of goal directed synergistic perceptual-motor
behavior has revealed that the majority of human actions are essentially composed of two fundamental
movement types, or motor primitives, discrete actions (e.g., pressing a button, reaching for a cup) and
rhythmic actions (e.g., walking, talking), both of which can be integrated together to produce more
complex behavioral patterns and sequences (e.g., cursive writing [18], playing a piano [19]).

Historically, research on discrete and rhythmic behaviors has typically been conducted separately.
This was simply due, in part, to researchers’ preferential study of one behavioral mode over the
other [20]. An unfortunate consequence of this separation of focus, however, is that the functional
relationship between discrete and rhythmic movements became a long-standing topic of debate within
the motor control literature [13,21]. Whether both types of movements are generated by the same
or different fundamental planning mechanisms and how these potential differences affect how these
movement types might be mathematically modelled has been of focal interest in this debate [9].
However, despite the debate about the fundamental importance of discrete and rhythmic movements,
research has clearly demonstrated that the enactment of discrete and rhythmic motor primitives reflects
the behavioral patterns associated with the two fundamental attractors of nonlinear dynamical systems,
namely fixed-point (discrete) and limit cycle (rhythmic) attractors, respectively [9,22–24]. Moreover,
both simple and complex discrete and rhythmic actions and action sequences can be modelled from
these simple dynamical primitives.

Regarding the specifics of the dynamical (differential) equations or functions that can capture these
dynamical primitives, several related formulations have been proposed [8,9,20,22,23,25–27]. Although
the intended application of the different formulations [8,9,22] has resulted in task-specific variations,
it is important to note that they all essentially capture discrete (fixed-point attractive) movements using
some form of point-goal directed, damped-mass spring system, and rhythmic (limit cycle) movements
using either forced (driven) damped-mass spring system or a nonlinear self-sustained oscillator (e.g.,
Rayleigh, van der Pol, or hybrid oscillators). Accordingly, before reviewing how these dynamical
functions can be employed to capture human actions and, in particular, multiagent shepherding
behavior, we first briefly introduce the basic formulation and properties of these dynamical primitives.

2.1. Fixed-Point Attractor (Damped Mass–Spring) Systems

The simplest example of the kind of damped mass–spring that can be employed to capture the
dynamics of discrete movements takes the rudimentary form

m
..
x = −b

.
x − kx, (1a)

where x represents the position of an object, a body (e.g., an individual’s center of-mass), or an
end-effector (e.g., an individual’s hand),

.
x represents the rate of change of x or the first derivative of x,

which in this case corresponds to the velocity of x over time, and
..
x represents the second derivative of

x or the rate of change of the rate of change of x and corresponds to the acceleration of x over time.
Finally, m is the mass of the object, b is the damping (friction) parameter (see Figure 2) that “resists”
motion (for b > 0) and k is a restoring (“spring”) force or stiffness that induces motion (for k > 0) when
the system is not at equilibrium (i.e., when x is not at the preferred stable or fixed-point state).

This mass–spring system (also termed a simple harmonic oscillator when b = 0) is perhaps one of
the most well-known and widely used equations in dynamical systems. Certainly, any student who
has ever taken a class on differential equations or dynamical systems will be intimately familiar with
this equation. To understand the behavior of this system, let us first set m = 1 and, thus, simplify
Equation (1a) to

..
x = −b

.
x − kx (1b)
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Given that the change of x over time is a function of both its current position, x, and its current
velocity,

.
x , we can also expand Equation (1b) by substituting x1 = x and x2 =

.
x to create a system of

two equations, namely
.
x1 = x2

.
x2 = −bx2–kx1

(1c)

where the first equation captures how the position, x = x1, changes over time and the second equation
captures how the velocity,

.
x = x2, changes over time. From Equation (1c), it becomes clear that this

mass spring system is a two-dimensional system, in that the behavior of two state variables is being
determined to describe the behavior of the system. Illustrating how this system behaves over time
therefore requires a 2D plane to graphically represent the systems state at any given time, with one
axis corresponding to x1 = x and the other axis corresponding to x2 =

.
x (see Figure 2). In dynamical

systems terms, this 2D space is the system’s state or phase space and defines the set of all possible states
that the system could adopt.

Three examples of how the behavior of Equation (1b) can evolve over time for different parameter
settings are displayed in Figure 2 using both state space trajectories and time-series graphs. For these
examples, k = 1, x0 = ( x1, x2 ) = ( x,

.
x ) were set to arbitrary initial conditions and the damping

parameter, b, was set to 0.5, 0, and −0.5 from left to right, respectively. The behavior exhibited in the
bottom left of Figure 2 corresponds to the terrestrial scenario in which the position of the system being
modelled (i.e., object, body, or end-effector) is pulled away from its resting position at x = 0, and then
oscillates back and forth at a smaller and smaller amplitude until it eventually returns to x = 0 and
comes to a stop. In this case, the parameter b acts like a friction force, damping out the potential energy
that results from extending or compressing the spring or stiffness force, with the state x* = (x,

.
x ) = (0, 0)

corresponding to a stable fixed-point attractor. The opposite behavior is observed in the bottom right
of Figure 2, where b = −0.5. Here, the negative value of b results in a kind of a negative-friction force,
with the system oscillating away from x* = (x,

.
x ) = (0, 0). Hence, the state x* corresponds to an unstable

fixed-point repeller. Finally, when b = 0 (bottom middle of Figure 2), the system simply oscillates
harmonically at an amplitude equal to the initial position of the mass when released (i.e., the value of
x0). In this case, x* is neither stable nor unstable and is therefore considered to be neutrally stable.
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Brain Sci. 2020, 10, 536 5 of 18

To fully appreciate how this simple mass–spring system can be employed to capture discrete
motor actions, let us expand Equation (1b) to the form

..
x = −b

.
x − k(x− xdes) (2)

where the new term xdes specifies the preferred position or goal state for the system. Moreover, let the
system be critically damped (or overdamped) such that, when x is moved away from xdes, the system
returns to xdes without any oscillation. This is illustrated in Figure 3 (for k = 1, x0 = ( x1, x2 ) = ( x,

.
x ) )

set to an arbitrary initial condition, xdes set to an arbitrary desired value and the damping parameter, b,
set to 1.8), such that we can use this simple goal-directed mass–spring systems (i.e., Equation (2)) to
model human end-effector trajectories, including, for example, the movement trajectories exhibited by
human agents during route navigation tasks [28], as well as during reaching and object movement
tasks (e.g., [9,29]).
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2.2. Limit Cycle Systems

A limit cycle is a closed orbit in state space that a system’s trajectory converges towards over time
such that, after a time, the system’s behavior is fixed along that orbit (i.e., it is limited to cycle about
that orbit). This kind of attractor is characteristic of periodic or oscillatory behaviors that exhibit a
stable spatial-temporal pattern over time (e.g., cycle with a stable frequency and amplitude over time)
and, moreover, return to that stable spatial-temporal pattern when perturbed.

There are several differential systems that are characterized by limit cycle attractors. The most
well-known are self-sustained oscillator systems and the most well-known of these is the van der Pol
oscillator, which can take the form

..
x = −b

.
x− cx2 .

x− kx (3a)

where x,
.
x, and

..
x correspond to the position, velocity, and acceleration of a point mass object (with

mass = 1), respectively. As in Equations (1a)–(1c), k is a stiffness parameter and b the linear damping
parameter. The function cx2 .

x is the van der Pol term which corresponds to a nonlinear dissipative
function. As was the case with Equation (1b), we can substitute x1 = x and x2 =

.
x to split Equation (3a)

into a system of two equations:
.
x1 = x2

.
x2 = −bx2 − cx2

1
.
x2 − kx1,

(3b)

such that the behavior of this system is also best visualized in a 2D state space. Example state space
trajectories are displayed in Figure 4, using a range of different initial conditions when b and k = 1,
and c = 0.5 and 1. As can be discerned from Figure 4, for any initial state, the system’s trajectories
always converge towards and moves around a specific closed orbit, the limit cycle attractor. That is,
if the system’s initial state lies inside the orbit of the limit cycle, the state of the system gradually spirals
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out towards the stable limit cycle trajectory. Similarly, if the system’s initial state lies outside the orbit
of the limit cycle, the system spirals in towards the stable limit cycle trajectory.Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 17 

 

 
Figure 4. Example limit cycle trajectories of the van der Pol oscillator, with parameters settings of b 
and k = 1, and c = 0.5 (left) and c = 1 (right). The three trajectories shown in each graph correspond to 
initial conditions (−2.5, −2.5), (0.1, 0.1) and (2.5, 2.5). See text for more details. 

A more complex dynamical system that exhibits limit cycle dynamics and one that has been 
widely used to model human rhythmic limb movements is 𝑥ሷ = −𝑏𝑥ሶ − 𝑤𝑥ሶ ଷ − 𝑐𝑥ଶ𝑥ሶ − 𝑘𝑥, (4) 

 

where 𝑏, 𝑐, and 𝑘 are the same damping and stiffness parameters in Equation (3a) and [𝑤𝑥ሶ ଷ] is a 
second nonlinear Rayleigh escapement term. The nonlinear oscillator in Equation (4) is called the 
hybrid oscillator (Kay et al., 1987) because it contains nonlinear damping terms from both the van 
der Pol [𝑐𝑥ଶ𝑥ሶ] [30] and Rayleigh [𝑤𝑥ሶ ଷ] [31] oscillators. This system played a key role in the early 
development of the coordination dynamics approach to rhythmic motor behavior and coordination 
[32,33] as it better captured key features of human rhythmic limb movements compared to the van 
der Pol and Rayleigh oscillators alone. Specifically, the Hybrid oscillator is able to replicate the 
amplitude–frequency relationships observed in human oscillatory movement [32]. 

2.3. Hopf Bifurcation: From Discrete to Rhythmic Behavior 

It is important to appreciate that nonlinear self-sustained oscillations (e.g., Equations (3a) and 
(4)) can exhibit both fixed-point and limit cycle behavior depending on the value of b, the linear 
damping coefficient, with b = 0 corresponding to the critical point at which this behavioral transition 
occurs. That is, when 𝑏 > 0 , Equations (3a) and (4) exhibit fixed-point dynamics, with the systems 
returning to their equilibrium state (x = 0) when perturbed. However, when b < 0, the equilibrium 
point (x = 0) becomes unstable and the system begins to exhibit limit cycle behavior. This bifurcation 
or transition from a fixed-point to limit cycle behavior is called a Hopf bifurcation [17].  

As an illustration of a Hopf bifurcation, let us again consider the van der Pol oscillator similar 
to that from Equation (3a) where the damping terms are combined (i.e., 𝜇 = c = -b): 𝑥ሷ = −𝜇(𝑥ଶ − 1)𝑥ሶ −k𝑥 (5) 

such that, when 𝜇 ൏ 0, the system is positively damped and, thus, exhibits fixed-point dynamics akin 
to that illustrated in Figures 2 and 3. When 𝜇 > 0, however, the system exhibits limit cycle behavior, 
akin to that in Figure 4. Thus, as illustrated in the bifurcation diagram in Figure 5, when the value 𝜇 
is scaled up or down, Equation (5) spontaneous transitions between fixed-point and limit cycle 
behavior. In short, a Hopf Bifurcation occurs.  

Figure 4. Example limit cycle trajectories of the van der Pol oscillator, with parameters settings of b and
k = 1, and c = 0.5 (left) and c = 1 (right). The three trajectories shown in each graph correspond to initial
conditions (−2.5, −2.5), (0.1, 0.1) and (2.5, 2.5). See text for more details.

A more complex dynamical system that exhibits limit cycle dynamics and one that has been
widely used to model human rhythmic limb movements is

..
x = −b

.
x−w

.
x3
− cx2 .

x− kx, (4)

where b, c, and k are the same damping and stiffness parameters in Equation (3a) and [w
.
x3] is a second

nonlinear Rayleigh escapement term. The nonlinear oscillator in Equation (4) is called the hybrid
oscillator (Kay et al., 1987) because it contains nonlinear damping terms from both the van der Pol
[cx2 .

x] [30] and Rayleigh [w
.
x3] [31] oscillators. This system played a key role in the early development

of the coordination dynamics approach to rhythmic motor behavior and coordination [32,33] as it better
captured key features of human rhythmic limb movements compared to the van der Pol and Rayleigh
oscillators alone. Specifically, the Hybrid oscillator is able to replicate the amplitude–frequency
relationships observed in human oscillatory movement [32].

2.3. Hopf Bifurcation: From Discrete to Rhythmic Behavior

It is important to appreciate that nonlinear self-sustained oscillations (e.g., Equations (3a) and (4))
can exhibit both fixed-point and limit cycle behavior depending on the value of b, the linear damping
coefficient, with b = 0 corresponding to the critical point at which this behavioral transition occurs.
That is, when b > 0 , Equations (3a) and (4) exhibit fixed-point dynamics, with the systems returning to
their equilibrium state (x = 0) when perturbed. However, when b < 0, the equilibrium point (x = 0)
becomes unstable and the system begins to exhibit limit cycle behavior. This bifurcation or transition
from a fixed-point to limit cycle behavior is called a Hopf bifurcation [17].

As an illustration of a Hopf bifurcation, let us again consider the van der Pol oscillator similar to
that from Equation (3a) where the damping terms are combined (i.e., µ = c = −b):

..
x = −µ

(
x2
− 1

) .
x−kx (5)

such that, when µ < 0, the system is positively damped and, thus, exhibits fixed-point dynamics akin
to that illustrated in Figures 2 and 3. When µ > 0, however, the system exhibits limit cycle behavior,
akin to that in Figure 4. Thus, as illustrated in the bifurcation diagram in Figure 5, when the value µ is
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scaled up or down, Equation (5) spontaneous transitions between fixed-point and limit cycle behavior.
In short, a Hopf Bifurcation occurs.Brain Sci. 2020, 10, x FOR PEER REVIEW 7 of 17 
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Hopf bifurcations are ubiquitous in nature and reflect the general dynamical principle by which
rhythmic activity emerges in physical and biological systems [34–36]. With regard to Hopf bifurcations
in human behavior more specifically, transitions between discrete and rhythmic behavior have been
explored in rhythmic aiming tasks which require the movement of the hand between two different
targets [37–39]. Within this task paradigm, spontaneous transitions from fixed-point to limit cycle
behavior can emerge to facilitate the ability of individuals to adhere to short timing requirements [27].
Alternatively, rhythmic control can break down to discrete actions when accuracy is paramount [39],
or if the movement is slow [40]. In limb coordination tasks, Hopf bifurcations and the spontaneous
emergence of limit cycle behavior are known to occur to maintain unstable coordination patterns [35]
and ensure the stable coordination of limb movements with visual stimuli moving in orthogonal
directions [41]. These transitions can also occur between trials of a given task, such as the formation of
a rhythmical pattern of task initiation onsets during a repetitive object throwing task [21].

2.4. Dynamical Perceptual-Motor Primitives in Individual Behavior

Appreciating the importance of fixed-point and limit cycle functions for modelling human motor
behavior, Schaal and Ijspeert and colleagues [9,23], have referred to these dynamical processes as
dynamical motor primitives. However, it is worth pointing out that, because the above mentioned
dynamical primitives can only ever be functionally defined and modulated to capture goal-directed task
behavior when perceptually coupled or tuned to task relevant physical and informational properties of
the environment (e.g., object goal locations, stimulus rhythms, other agents), as in Equation (2) for
example, the phrase dynamical perceptual-motor primitive (DPMP) is perhaps more appropriate, and will
be employed here.

The importance of DPMPs is that they provide a highly generative set of dynamical functions for
developing low-dimensional models of synergistic human perceptual-motor behavior. Indeed, the
general DPMP hypothesis is that given the right generative formulation, the spatiotemporal patterning
of all human end-effector or joint-limb perceptual-motor behavior can be modelled using a DPMP. With
regard to the pragmatics of modelling perceptual-motor behavior, relying on DPMPs also significantly
reduces the complicated, trial-and-error system identification problem to that of identifying and
parametrizing task relevant forcing and coupling functions.
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Motivated by this understanding, a wide range of research over the last 30 years has effectively
modeled human perceptual-motor behaviors using DPMPs. For instance, Ref. [9] demonstrated how
simple reaching, rhythmic wiping, and cranking tasks can all be modelled using simple task-specific
systems of fixed-point attractors and limit cycle attractors acting on corresponding end-effectors (e.g.,
hands for reaching) linked to an object/task-oriented reference frame [42]. Furthermore, Sternad and
colleagues have demonstrated that stable oscillations can be modelled by limit cycle dynamics and
directly attributed to the oscillatory nature of the signals in the CNS [24–26,43]. In particular, Ref. [25]
laid the groundwork for combining multiple dynamic primitives, which can interact with each other in
order to generate complex observable motion. More recently, Ijspeert and colleagues [23] provided a
generic modeling framework for multidimensional systems by modeling each dimension of action or
movement as a combination of separate DPMPs.

At this point, it is worth reiterating that, because human movements and actions are enacted in
the pursuit of some task goal, DPMPs must be coupled to task-relevant properties of the environment
to effectively model human perceptual-motor behavior. As referenced throughout this paper so far,
this is perhaps best detailed in Saltzman and Kelso’s [9] Task Dynamics approach, and more recently
in Warren’s [8] Behavioral Dynamics approach, with the latter approach also emphasizing how a
modelling task directed perceptual-motor behavior involves identifying control laws that minimize
some task quantity of the agent–environment system. For example, reaching for an object involves the
minimization of one’s hand to the target location [9], or the deceleration of a vehicle to avoid collision
involves maintaining the control variable tau under a specific value [44,45]. Accordingly, modelling the
behavioral dynamics of individuals has been particularly successful with regard to easily quantifiable
task objectives, such as reaching and catching [46], walking through a cluttered environment [47],
and juggling [48]. However, the same DPMP based task/behavioral dynamics approach can also
be extended to model the dynamics that unfold during complex (multi)agent-environment task
contexts, such as when two or more individuals are sorting and passing objects [29], intentionally or
unintentionally synchronizing their limb or body movements (e.g., [49–51]); avoid colliding into each
other [52], or are moving or navigating together within a crowd [53].

3. Hopf Bifurcation in Multiagent Activity: A Cooperative Shepherding Example

The recent work of Nalepka and colleagues [15,16,54,55] on multiagent shepherding provides
an excellent example of how a DPMP based task/behavioral dynamics approach can provide a
rich understating of individual and multiagent perceptual-motor behavior. In these experiments,
the researchers investigated the emergence of coordinated perceptual-motor strategies in a complex
task environment that required two human-actors to corral and contain a set (herd) of evasive target
agents. The shepherding task, derived from the natural phenomenon of herding of sheep by dogs [56],
is presented to participants as a video game. Participants stand on either side of a game field and
control ‘herding agents’ (HAs) using handheld motion sensors or touch screen pens. The task of the
participants is to control the HAs to successfully corral and contain the set of ‘target agents’ (TAs),
typically ranging from 3 to 7 targets, within a red containment region located on the game field. When
left unperturbed, TAs exhibit Brownian motion, and thus naturally disperse if left alone. Importantly,
however, the TAs are repelled away from the participant controlled HAs, such that, when an HA is
within a critical distance from a TA, the TA flees in the opposite direction. Thus, active actions by both
participants are required to corral and contain the TAs within the containment region. Task trials are
typically between 1 to 2 min, with a trial deemed successful if a participant dyad is able to contain
the TAs within the containment area for a specified period or percentage of trial time (e.g., 70% of a
1-min trial).

Dyads quickly learned that, to prevent the TAs from escaping the game field, or dispersing too far
from the containment region, they need to select and recover the TA that is farthest from the containment
region. Additionally, due to the placement of participants on either side of a table, participants typically
subdivided the task space so that only TAs on the participant’s side of the game field are most often



Brain Sci. 2020, 10, 536 9 of 18

pursued. This behavioral strategy was referred to as search and recover (S&R) behavior and was a
viable strategy to contain the TA herd within the containment region—especially when the number of
TAs is low (i.e., <4) (see Figure 6). However, when the task required the containment of larger herds (i.e.,
4 to 7), S&R behavior is difficult to maintain and does not lead to successful task performance. Indeed,
as TA herd size increases, many dyads fail to find a solution to the shepherding task within a standard
45 to 75-min experimental session. For dyads who succeeded, however, a qualitatively distinct mode
of behavior emerges. Instead of selecting and pursuing individual TAs that move away from the
containment region, or from the rest of the herd, successful dyads in more difficult task conditions
discovered a more effective solution involving oscillatory movements that encircled the entire herd.
In this way, repulsive forces become equally distributed amongst all TAs that led to the formation of
a centrally fixed “clump” (see Figure 6). Given the dyadic nature of the task, this solution is most
effectively actualized when both participants perform these oscillatory movements on their respective
sides of the field. Moreover, consistent with research on intra- and inter-personal rhythmic coordination
(e.g., [33,49,57,58]), dyads also tend to be attracted towards performing oscillatory movements in
an in-phase (0◦) or anti-phase (180◦) manner. Accordingly, this behavioral mode was referred to as
coupled oscillatory containment (COC).
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An important thing to note about COC behavior is that it is only employed when the herd is
corralled sufficiently close to or within the containment area. That is, dyads that discover and employ
COC behavior to contain a TA herd still employ S&R behavior to first corral the TAs when widely
dispersed. Therefore, dyads who discovered COC behavior also learn when it was appropriate to
transition between S&R and COC behaviors.

Another feature of dyads who discovered COC behavior is understanding that encirclement
behaviors in general can be used to keep the TA herd contained. Although in the original research this
was actualized by both participants producing semi-circular movements around the herd, encircling
by just one of the participants is a readily perceptible and is often actualizable by expert herders [55].
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For instance, participants readily transition from COC behavior to one participant performing circling
movements around the entire TA herd when their partner must pursue a newly introduced TA or
when a TA is perturbed outside a contained herd [55].

Perhaps the most interesting aspect of COC emergence, however, is that both its discovery and
actualization occur suddenly. Anecdotally, participants who discovered COC behavior describe this
discovery as a moment of cognitive insight—a ‘eureka!’ moment. In the learning sciences, such moments
of cognitive insight can be understood as a cognitive reorganization of the problem itself, which has
been operationalized as a nonlinear cognitive phase transition or bifurcation [59]. This also seems to
be the case in the shepherding task, in that both the discovery and subsequent initialization of COC
behavior reflects a nonlinear, behavioral mode bifurcation.

3.1. The Task-Dynamic Model for Multiagent Shepherding

The behavioral modes adopted by dyads can be elucidated by creating a DPMP based
task/behavioral dynamic model of the shepherding problem. As with task/behavioral dynamics
models in general [8,9], this model defines the dynamics in terms of the task-relevant state variables
necessary for task completion. For example, the successful capture of a fleeing TA requires the
minimization of the difference between the HA and TA’s positions, embodied by the participant via
the movements of the relevant effector (i.e., the hand holding the motion controller).

For the multiagent shepherding task, the containment region is defined as the task’s goal location
for which all TAs must be corralled towards. Thus, the goal for participants is to minimize the distance
of the TAs from the containment region. For modeling convenience, the containment region can be
defined as the origin (0,0) in the task’s coordinate space. Using a polar coordinate system, the task is
then considered completed when the radial position of all TAs is within the containment boundary,
r∆. The HA, then, needs to control both the radial and angular components of their position to move
and repel the TAs towards the containment region. See Figure 7 for a depiction of the corresponding
shepherding model task space and key model variables and parameters.
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Figure 7. Illustration of the task space employed for the multiagent shepherding model. Herder-i’s of
HA-i’s (where i = 1 or 2) location at any time within the game space is defined by a radial distance, ri,
and a polar angle, θi. rT,i and θT,i correspond to the radial distance and polar angle, respectively, of the
Target (TA) farthest from the origin on HA-i’s side of the game space. rmin is HA-i’s minimum preferred
radial distance for approaching the farthest TA, and r∆ is the radius of the target containment area or
the area within which the TAs are considered herded together. TAs with a radial distance greater than
r∆ are considered ‘uncontained’.
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To effectively capture the behavioral dynamics exhibited by participant dyads completing the
shepherding task, the proposed model need to capture the following: (i) S&R; and (ii) COC behavior;
as well as the potential for (iii) stable in-phase and anti-phase coordination to emerge during COC
behavior; and finally (iv) include the potential for nonlinear transitions back-and-forth between S&R
and COC behavior.

In order to achieve this, Nalepka and colleagues [10,15,54] first defined the critical task of HAs as
moving towards and corralling TAs whose radial distance was farthest from the containment region.
Recall that S&R entailed herders (participants) discretely moving to and corralling the farthest target(s)
on their side of the task field and, thus, the radial distance (ri) of HA-i (where i = 1 or 2 for the
dyadic shepherding task) during S&R behavior reflected point attractive dynamics. Thus, Nalepka
and colleagues were able to model each HA’s radial distance, ri, using the following environmental
coupled mass–spring systems,

..
ri = −αr

.
ri −ω

2
θ(ri − (rT,i + rmin)) (6)

which is similar to Equation (2) and where
.
r and

..
r correspond to the velocity and acceleration of HA-i’s

radial distance, respectively, rT,i is the radial distance of the farthest TA on HA-i’s side of the game field,
and rmin is a fixed parameter that specifies HA-i’s minimum preferred radial distance from a TA during
shepherding to ensure repulsion towards the goal. In short, Equation (6) operates to reduce the radial
distance of HA-i with respect to the radial distance of the currently pursued TA, rT,i (i.e., the farthest
TA from the containment region HA-i’s side of the task field). The coefficients αr and ω2

θ correspond to
the dampness and stiffness parameters, which vary the rate with which r converges to rT,i.

During S&R behavior, a HA’s radial angle (θi) must also exhibit fixed-point dynamics similar to
that defined in Equation (6), such that each HA-i’s radial angle θi is attracted toward the radial of angle
of the TA (θT) farthest from the containment region. However, the function that defines the dynamics
of θi for each HA also needs to entail the potential for oscillatory or limit cycle dynamics for COC
to emerge. As detailed above, for human limb movements, this is best captured using the Hybrid
nonlinear self-sustained oscillator (i.e., Equation (4)). Accordingly, Nalepka and colleagues captured
the dynamics of an HA’s radial angle using

..
θi = −αθ

.
θi − β

.
θ

3
i − γθi

.
θi −ω

2
θ(θi − θT) (7a)

where and
.
θi and

..
θi correspond to velocity and acceleration of radial angle, respectively, αr and ω2

θ

correspond to the dampness and stiffness parameters, and β
.
θ

3
i and γθi

.
θi are the nonlinear Rayleigh

and van der Pol terms.
When αθ > 0, Equation (7a) mirrors the fixed-point dynamics as in Equation (6), such that

the HA’s angular position (θi) and velocity (
.
θi) is attracted towards and converges upon the radial

angle of the pursued TA, θT. Collectively then, when αr > 0 and αθ > 0 in Equations (6) and (7a),
respectively, the system (modeled HA) moves towards the radial position (rT, θT) of the pursued
TA. This results in robust S&R behavior and although the switch between pursued TAs (i.e., what is
specified as the farthest TA [rT θT]) leads to discontinuous changes in rT and θT, the resultant model
still results in continuous changes in behavior. That is, the modeled HA seamlessly moves between
and corrals farthest TA to farthest-TA as the radial distance and angle (rT θT) of the TA farthest form
the containment area changes and fluctuates changes over time.

Importantly, when αθ < 0, Equation (7) results in limit cycle or oscillatory behavior at a frequency

approximately ω
2π Hz, centered around θT, with an amplitude equal to 2

√
|αθ |
γ . Again, the inclusion

of both the Rayleigh (β
.
θ

3
i ) and van der Pol (γθi

.
θi) terms results in angular dynamics that exhibits

the amplitude–frequency and peak velocity–frequency relationship exhibited by human actors [32].
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Additionally, by extending Equation (7a) such that the radial angles of two HAs are coupled (HA-i to
HA-j) in the following way:

..
θi = −αθ

.
θi − β

.
θ

3
i − γθi

.
θi −ω

2
θ(θi − θT) +

( .
θi −

.
θ j

) (
A + B

(
θi − θ j

)2
)

(7b)

where the coupling function,
( .
θi −

.
θ j

) (
A + B

(
θi − θ j

)2
)
, creates the potential for both in-phase (0◦) and

anti-phase (180◦) patterns of coordination to occur (see Haken et al., 1985; for more details). Parameters
A and B index the strength of the coupling, such that when |4B| > |A| stable in-phase and anti-phase
can both emerge. Accordingly, by combining Equations (6) and (7b), Nalepka and colleagues were
able to generate an HA model that was not only able to produce stable S&R behavior (when αθ > 0),
but also robust in-phase and anti-phase COC behavior (when αθ < 0).

At this point, it is worth emphasizing that the above model contains nothing more than the basic
DPMP functions outlined earlier—and that, by simply coupling the radial angle and distance functions
to task relevant environmental properties (i.e., farthest TA and co-Herder), the above systems are
able to effectively capture all of the behavioral modes exhibited by human actors completing the
multiagent shepherding task; i.e., model requirements, (i), (ii), (iii) listed above. Moreover, by simply
switching the sign of αθ from positive to negative, a Hopf Bifurcation occurs in Equation (7), such that
the system can spontaneously transition from S&R to COC behavior (and back again). Following this
realization, Nalepka and colleagues were then also able to capture the context-sensitive switching
between S&R and COC behavior (model requirement (iv) above) via a parametric control law that
define the value of αθ with respect to the task goal (i.e., containing TAs within the containment area).
More specifically, Nalepka and colleagues postulated the following control law to induce spontaneous
transitions between S&R and COC behavior,

.
αθ = −δ(αθ − ε(rT − r∆)) (8)

where r∆ is the critical boundary distance for the farthest TA (rT) to be considered contained with
the TA herd, and the parameters δ and ε operate to control the rate at which αθ changes. Briefly
stated, when rT > r∆, the farthest TA or the TAs in general are not defined (perceived) as contained as
a herd and αθ becomes positive resulting in Equation (7) exhibiting fixed-point behavior and, thus,
the collective systems (Equations (6), (7b) and (8)) exhibit S&R behavior. In contrast, when rT < r∆,
the farthest TA or the TAs in general are defined (perceived) as being contained as a herd, such that αθ
becomes negative and a Hopf bifurcation occurs, resulting in coupled rhythmic, limit cycle behavior
of COC.

To test the validity of the above shepherding model, Ref. [16] recently embodied the above
shepherding model (i.e., the systems of Equations (6), (7b), and (8)) into the control architecture of a
virtual artificial player that was designed to complete the multiagent shepherding with human novices
in a virtual reality environment. As expected, the artificial player not only produced and successfully
transitioned between S&R and COC behaviors in real-time, but exhibited both in-phase and anti-phase
patterns of COC behavior with the human novice co-actors. Furthermore, most participants were
not able to discern that their virtual co-actor was an artificial (model controlled) player and thought
they were completing the task with another participant remotely. Thus, not only was the model
able to reproduce the behavioral dynamics exhibited by human actors, but it was able to do so in a
way that seemed human-like, indicating that the model, including the appropriate coupling function
(see also [60]), captured the essential features of human task behavior.

3.2. Hopf Bifurcations as a Signature of Intentional Dynamics

Recall that not all participants who perform the shepherding task discover or employ COC
behavior and therefore do not learn when it is appropriate to transition between S&R and COC
behavior. This implies that something like the hypothetical control law specified in Equation (8) needs
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to be learned by participants. Importantly, however, information specifying COC as a potential and
effective solution to TA containment can emerge during S&R behavior and, when it does, appears to
ultimately lead to its discovery. More specifically, a recent analysis and simulation work (Auletta et al.,
in prep and [61]) suggests that, when the TA herd is sufficiently clumped together (i.e., when all TAs
are within a critical distance, r∆, and begin to form a single herd), implicit oscillatory behavior is often
induced within the movements of participants (HAs) (see Figure 6). Such induced oscillatory behavior
seems to occur prior to the full discovery and intentional implementation of COC behavior. Thus,
consistent with a more complex dynamical systems account of human behavior, these inter-participant
(HA) and TA interactions during ongoing task performance appear to scaffold the creation of intentional
dynamical behavior [62,63]; that is, the realization that COC behavior can be employed to successfully
contain a TA herd. The presence of subsequent Hopf bifurcations therefore reflect the realization
of this latent dynamic and its exploitation, as well as evidence that the appropriate control law has
been learned.

Note that this interpretation of the nonlinear phenomena exhibited by human participants assumes
that the transition between S&R and COC behavior is the result of a change in the parameter-dynamics
that lead to a Hopf bifurcation. Accordingly, the model detailed above was designed to embody
these potential dynamics (i.e., limit cycle or oscillator behavior). This assumption was based, in part,
on previous research demonstrating that human arm movements exhibit spring-like properties
consistent with Equations (4) and (7) [32,64] and the fact that human limbs (arms, legs) already entail
the potential to produce both point attractive (discrete) and limit cycle (rhythmic) behavior (as detailed
above). However, phase transitions due to a change in parameter-dynamics is not the only route to
behavior change [65]. Instead, the discovery of COC behavior can also be modeled as a change in the
underlying graph (systems of equations) used to define participant behavior. That is, it is possible
that, instead of implementing task dynamics akin to Equation (7b) during S&R behavior, participants
implement a more limited coordinative structure, defined by the following point attractor control:

..
θi = −αθ

.
θi −ω

2
θ(θi − θT). (9)

If so, then the discovery of COC behavior reflected a change in the coordinative structure or
system’s graph used to control the angular dynamics of participants’ movement (i.e., a transition from
using Equation (9) to Equation (7b) by introducing the nonlinear escapement and coupling terms).
Nonetheless, regardless of whether the discovery of COC behavior is best conceptualized as a change in
parameter- or graph-dynamics, once it is discovered, its discovery still requires that participants learn
to employ a control law similar to Equation (8) to induce an intentional Hopf bifurcation between S&R
and COC behavior. Indeed, in either case, the Hopf bifurcation observed in the multiagent shepherding
task appears to provide a signature characteristic of an intentional act [63], that, via the DPMPs used to
model the shepherding behavior, provides key insights into how coordinative, synergistic rhythmic
(limit cycle) and discreet (fixed-point) multiagent behavior can naturally emerge during ongoing
task performance.

4. Conclusions

The aim of the current paper was to detail how a task-dynamic model generated from DPMPs can
not only capture the behavioral modes observed in robust individual and multiagent behavior, but can
reveal how the discovery and intentional enactment of effective, synergistic oscillator behavior can
be spontaneously realized by a nonlinear transition process known as a Hopf bifurcation. This was
achieved by reviewing recent research directed towards exploring and modeling the behavior dynamics
observed during a dyadic, multiagent shepherding task. Although the task was designed as a laboratory
game, it is important to appreciate that the encirclement of the TA herd afforded by COC behavior strikes
a strong resemblance to the behaviors adopted by other animal systems that engage in shepherding
or collaborative hunting. For example, sheepdog herd driving leads to the emergence of periods of
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oscillatory behavior where sheepdogs must drive the herd together while retrieving sheep that flee
from the flanks of the herd [56]. During collaborative hunting, wolves and humpback whales, animals
faced with a different set of constraints, converge on encirclement solutions to catch their prey. Wolves
equally distribute themselves around a circle to isolate prey [66], while humpback whales create
“bubble nets” which entrap fish [67]. Additionally, minimally cognitive artificial agents, when working
within large groups, also converge on encirclement solutions to contain and transport agents [68].
Accordingly, the COC behavior observed by Nalepka and colleagues reflects a general shepherding
strategy, one that is relatively invariant across task and multiagent contexts [61].

One should also appreciate that the DPMP based multiagent shepherding model summarized
here provides just one example of how low-dimensional dynamics define synergistic, goal directed
(multi) agent-environment behavior and that the same DPMPs can potentially be applied across
countless multiagent task domains. However, although the model incorporates kinematic features
of human limb movement, such as the amplitude–frequency relationship provided by the nonlinear
escapement terms, the functions and model systems detailed here do not provide a generative account
about how such low-dimensional structures emerge from lower-level biological components. In the
literature, there are several models that seek to ground dynamical motor primitives with biological
structures, such as central pattern generators (see [9] for a review of several models). Regardless,
such functional/phenomenological models can still provide a way of uncovering the self-organizing
principles that span and constrain particular neuromuscular substrates [33,69,70]. Additionally, the
parameterization of such models via human movement timeseries may have relevance to medical
diagnosis [71] and the determination of personality characteristics or preferences, such as risk-taking
behavior [45].

Finally, the integration of model-based approaches to describing the features of human movements
(i.e., the implementation of dynamical motor primitives) with model-free optimization approaches
can provide a constrained flexibility in personalizing artificial agents embodying DPMP models for
the use of human–machine interaction. In general, when it comes to learning complex behaviors,
model-free techniques clearly work well in certain domains and theoretically can be guaranteed
to converge upon an optimal behavior [72], but learning by trial and error is typically very slow,
computationally expensive and fragile. Model-based techniques (i.e., Grey-box techniques), which are
based on the low-dimensional dynamical primitives of an agent’s action or control system, not only
operate to significantly reduce the action space that needs to be explored, but within the context of
human action and interaction can lead to more human-like and responsive behavior, and therefore
provide an advantage over model-free techniques. Furthermore, model-based solutions can more
readily transfer between tasks with overlapping task dynamics, whereas model-free techniques usually
require one to start completely from scratch when even the smallest property of the task dynamics
is changed [73]. The challenge, however, is defining such rules for the agent. We believe DPMPs
form a good foundation for a model-based approach for perceptual-motor behavior and, importantly,
one that can be easily implemented within human–machine interaction systems. Moreover, due to
the limited set of DPMPs that define human perceptual-motor behavior (i.e., discrete and rhythmic
behaviors), they can be theoretically combined to form an action grammar [10] for complex actions with
the assistance of model-free optimization techniques (e.g., reinforcement learning), which can be used
for achieving flexible and on-the-fly re-parameterization and composition. Furthermore, multiple
DPMPs can be combined together by assigning appropriate weights to them in order to generate even
more complex trajectories for articulated models [74]. Indeed, adopting the latter, integrated, approach
is likely to significantly advance the development artificial agents that are capable learning complex
skills faster, while also being as flexible and robust as their human counterparts.
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