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Abstract: Assembling Ln3+(HPBAn) (Ln = Eu or Tb, HPBA = N-(2-pyridinyl)benzoylacetamide)
in the cavities of zeolite Y (ZY) via the “ship-in-a-bottle” strategy leads to the formation of novel
luminescent composite, Ln(HPBAn)@ZY, whose luminescence can be easily modulated by ammonia
on the basis of the energy level variation of HPBA after deprotonation process. Additionally the
bimetallic complex doping sample, Eu0.5Tb0.5(HPBAn)@ZY, show great potential as self-referencing
luminescent sensor for detecting low ammonia concentration of 10−12–0.25 wt%.
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1. Introduction

Stimuli-responsive luminescent materials have attracted intensive interest in a wide range of
research fields, including sensors, probes, smart optical devices, to name a few [1–6]. Lanthanide-based
stimuli-responsive materials are highly interesting and desirable due to their unique optical properties
such as narrow emission bands and long decay time of the excited state [7–12]. This kind of
materials possess the ability of changing their structure and hence their luminescent properties when
stimulated by external factors such as pH [13–15], light [16–18], temperature [19,20] and chemicals [10].
However, most of the stimuli-responsive systems rely heavily on the design and synthesis of
complicated molecules and assemblies, which normally requires multi-step syntheses and tedious
purification procedures. Therefore, it is important and desirable to develop a facile, cost-effective and
environmentally friendly method for the construction of stimuli-responsive luminescent materials.
Recently, we have developed a facile strategy to prepare stimuli-responsive luminescent materials
by simply incorporating lanthanide compounds into hydrogels [21] or inorganic matrices such as
zeolites [22,23] and layered clays [24], the luminescence of which can be readily modulated by ammonia
and other chemicals [25,26]. For instance, the on/off luminescence of europium (III) complexes
encapsulated within the channels of nanosized zeolite L controlled by base/acid have been recently
reported by our group [22], based on the observation that the high proton strength inside the channels
of Eu3+-doped zeolite L can be detrimental to the luminescence of the hosted europium complexes and
alkaline molecules such as triethylamine can neutralize the acidic sites and therefore can switch on
the luminescence. This strategy to obtain stimuli-responsive luminescent systems is simple, cost-and
time-effective, easy to be scaled up, and environmentally friendly because it does not require intensive
organic synthesis procedure.
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Herein, we developed the ammonia-responsive luminescent systems by encapsulating Ln(HPBAn)
(Ln = Eu or Tb, HPBA = N-(2-pyridinyl)benzoylacetamide) within the cavities of ZY. Fascinatingly,
the emission color of Eu0.5Tb0.5(HPBA)n@ZY varies from green to red after treatment with NH3

vapor, since the introduction of NH3 into Eu0.5Tb0.5(HPBAn)@ZY can change the chemical properties
of the ligand, thus the triplet energy level of the ligand matches well with the 5D0 energy level of
Eu3+. Eu0.5Tb0.5(HPBA)n@ZY shows promise in the ammonia detection application. Ammonia is
commonly used in various industries such as agriculture, medicine and food industries, etc. [27,28].
However, ammonia can causes serious harm to the human body [29,30], and dissolved ammonia at
concentrations above 25 µg/L is also particularly harmful to organisms [27]. Therefore, ammonia
detection is of great importance in the environmental monitoring field [31]. The traditional methods
for ammonia detection, including electrochemical sensing, HPLC and mass spectrometry coupled with
gas chromatography, often require complicated and time-consuming pretreatments and specialized
instruments, which limit their widespread application [32–36].

2. Results and Discussion

The hybrid composites Eu(HPBAn)@ZY, Tb(HPBAn)@ZY and Eu0.5Tb0.5(HPBAn)@ZY were
prepared by using the so-called “ship-in-the-bottle” method [37,38]. Firstly Ln3+-exchanged ZY
(Ln3+@ZY) was prepared through an ion-exchange process, and then Ln(HPBAn)@ZY was obtained
through the formation of Ln(HPBAn) complex within the channels of Ln3+@ZY. The Ln3+ loading
in Eu0.5Tb0.5(HPBAn)@ZY was roughly analyzed to be 8.5 wt% through the EDTA titration method,
while the HPBA content in the composite was approximately 3.5 wt% as determined by elemental
analysis. In addition, no obvious changes in the XRD patterns and morphology of ZY (Figure 1) can be
observed after encapsulation with Ln3+ complexes, indicating that the reaction is not detrimental to
the ZY framework.

As mentioned in the previous report [2,39,40], the HPBA ligand in the Ln3+ complexes exists
as an enol tautomer, which possess the ability to sensitize Tb3+, while the deprotonated form
(named PBA) can efficiently transfer energy to Eu3+ (see Scheme 1). In the acidic environment
of zeolite Y [22,41], both Tb(HPBAn)@ZY and Eu0.5Tb0.5(HPBAn)@ZY show bright green emission
light under UV-light illumination as shown in Scheme 1 although almost equal amounts of Eu3+

and Tb3+ in Eu0.5Tb0.5(HPBAn)@ZY can be confirmed by the EDX spectrum shown in Figure S1,
whereas sample Eu(HPBAn)@ZY does not show any light under UV-light. Various changes in the
luminescence of all the samples(Eu(HPBAn)@ZY, Tb(HPBAn)@ZY and Eu0.5Tb0.5(HPBAn)@ZY) upon
treatment with ammonia vapors as displayed in Scheme 1, where the bright green luminescence for
Tb(HPBAn)@ZY almost disappeared and obvious red luminescence for Eu(HPBAn)@ZY appeared,
whereas the bright green luminescence changed to bright red luminescence for the co-doped sample
Eu0.5Tb0.5(HPBAn)@ZY. Such emission color variation under ammonia treatment is consistent with
that of the previously reported pure Ln3+-HPBA (Ln = Eu or Tb) complexes [2,39,40].
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Scheme 1. Illustration for the preparation of the hybrid composite Tb(HPBAn)@ZY, Eu(HPBAn)@ZY 
Eu0.5Tb0.5(HPBAn)@ZY, as well as the influence of NH3 (aq) on the emission color of the hybrid 
composite. 

 
Figure 1. XRD patterns (a) and SEM images of ZY (b) and Eu0.5Tb0.5(HPBAn)@ZY (c). 

Scheme 1. Illustration for the preparation of the hybrid composite Tb(HPBAn)@ZY, Eu(HPBAn)@ZY
Eu0.5Tb0.5(HPBAn)@ZY, as well as the influence of NH3 (aq) on the emission color of the
hybrid composite.
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In order to search for the explanation for the alteration in the luminescence of all the samples
treated with ammonia vapors. Excitation and emission spectra were measured and shown in Figure S2
and Figure 2. A broad band ranging from 250 to 450 nm in the excitation of Tb(HPBAn)@ZY was
observed by monitoring the 5D4→7F5 transition at 540 nm, attributed to the absorption of the ligand,
excitation into the ligand absorption at 369 nm led to the characteristic emission of Tb3+ ions, implying
effective energy transfer from ligand to Tb3+ ions. A similar absorption band but with less-resolved
structure appeared in the excitation spectrum of Eu(HPBAn)@ZY, and the strong absorption band
attributed to the Eu3+ itself as also observed, five weak sharp lines characteristic of Eu3+ ions was
observed in its corresponding emission spectrum, the presence of strong Eu3+ absorption and the
weak emission lines of Eu3+ ions imply the much less energy transfer from ligand to Eu3+, which can
explain why no obvious red luminescence can be observed when Eu(HPBAn)@ZY was illuminated by
a UV-light. Both the excitation and emission spectra of Eu0.5Tb0.5(HPBAn)@ZY are the same as those
of Tb(HPBAn)@ZY before ammonia treatment, and no emission lines characteristic of Eu3+ ions can
be observed despite the presence of Eu3+ ions in the sample, which is in good agreement with the
observed bright green luminescence under UV-light shown in Scheme 1. Once contacting the sample
with ammonia vapors, strong emission lines characteristic of Eu3+ ions together with relatively weak
emission lines from Tb3+ were observed for Eu0.5Tb0.5(HPBAn)@ZY, explaining why the emission color
of Eu0.5Tb0.5(HPBAn)@ZY changes from green to red when treated with ammonia.
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To explain the ammonia-responsive luminescence of the sample, we have to carefully consider the
nature of the ligand HPBA and the properties of the microenvironment inside the cavities of ZY. As well
established in the previously reported studies, HPBA can be an effective sensitizer for Tb3+ ions under
neutral or slight acid conditions and for Eu3+ ions under alkaline conditions due to the modulated
energy level of the ligand by acid/base vapor [39]. For the Ln3+-doped zeolites, abundant acidic sites
can be available inside the channels and cavities [22,41], which can be responsible for the bright green
luminescence of Tb(HPBAn)@ZY and the very weak luminescence of Eu(HPBAn)@ZY as well as the
distinct changes in the luminescence behaviors upon treatment with ammonia vapors. Such emission
color variation can be ascribed to the reaction between the ligand HPBA and ammonia, which leads to
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the deprotonation of HPBA, and the as-formed ligand PBA is more suitable for sensitizing Eu3+ rather
than Tb3+ (see Scheme 1) [2,39,40].

We further investigated the luminescence of Eu0.5Tb0.5(HPBAn)@ZY when it was exposed
to the vapors of various concentration of aqueous ammonia. The luminescence performance of
Eu0.5Tb0.5(HPBAn)@ZY as a function of the concentration of aqueous ammonia (ca) was investigated,
as shown in Figure 3 and Figure S3 (Supporting Information). We surprisingly found that even a
very low ca (10−12 wt%) can turn the emission color of Eu0.5Tb0.5(HPBAn)@ZY to red (see Figure 3
and Figure S3). Furthermore, according to the emission spectra of Eu0.5Tb0.5(HPBAn)@ZY shown in
Figure 3a, we found that the 5D0→7F2 transition intensity of Eu3+ (IEu) increases gradually while the
5D4→7F5 transition of Tb3+ (ITb) decreases gradually with the increase of ca. As a result, the emission
intensity ratio IEu/ITb increases gradually, as shown in Figure 3b. Besides, the emission color variation
of Eu0.5Tb0.5(HPBAn)@ZY towards different ca (10−12–0.25 wt%) can also be easily observed by naked
eyes under 365 nm UV lamp illumination (see Figure 3c and Figure S3). The quantitative relationship
between IEu/ITb and ca was also established, as shown in Figure 4. The curve can be exponentially
fitted in the ca range of 10−12 to 0.25 wt% (R2 = 0.994), and the fitted equation was shown as follows:

IEu/ITb = 20.33 − 19.59 × exp(−56.42ca) (1)

In total, such dual-emission luminescent sensor is fast-response, sensitive and self-calibrating.
Actually, we have also investigated the emission color response of Eu0.5Tb0.5(HPBAn)@ZY with several
other organic amines (including triethylamine (Et3N), ethanediamine (En), aniline, benzylamine,
tert-butylamine (t-BuNH2), n-butylamine (n-BuNH2) and N-methylaniline, see Figure S4, Supporting
Information). Obviously, not all the organic amines would give the same effect. In particular, ammonia
gives more considerable changes for the luminescence of Eu0.5Tb0.5(HPBAn)@ZY. So this luminescent
sensor displays excellent selectivity for ammonia.
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Figure 3. The emission spectra (a, λex=365 nm) and emission intensity ratio of 5D0→7F2 transition
of Eu3+ to 5D4→7F5 transition of Tb3+ (IEu/ITb, b) of Eu0.5Tb0.5(HPBAn)@ZY after treatment with
various concentration of aqueous ammonia, as well as the corresponding digital photograph of
Eu0.5Tb0.5(HPBAn)@ZY (c).
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3. Materials and Methods

3.1. General Information

2-Aminopyridine (99%), ethyl benzoylacetate (95%), EuCl3·6H2O (99.9%) and TbCl3·6H2O
(99.9%) were purchased from Beijing HWRK Chemical Co. Ltd. (Beijing, China). Zeolite Y (ZY)
were obtained from Sigma-Aldrich (Saint Louis, MO, USA). All reagents and solvents were used
without further purification. Fourier transform infrared spectroscopy (FT-IR) spectra were recorded
in the spectral range from 4000 to 400 cm−1 with a Vector 22 spectrophotometer (Bruker, Karlsruhe,
Germany) by using pressed KBr pellets for solid samples. 1H-NMR spectra were recorded at room
temperature, using perdeuterated solvents as internal standards, on a NMR system VX300 (Varian
Mercury, Palo Alto, CA, USA). Elemental analysis was performed on an Elementar Vario EI system
(Thermo Electron Corporation, Waltham, MA, USA). SEM images were obtained from an S-4300
FE-SEM (Hitachi, Tokyo, Japan) at an acceleration voltage of 10 kV. X-Ray diffraction data were
recorded on a Bruker D8 diffractometer with Cu-Ka radiation. (Bruker, Karlsruhe, Germany) The
steady-state luminescence spectra and the life-time measurements were measured on an FS920P
near-infrared spectrometer (Edinburgh Instruments, Edinburgh, England), with a 450 W xenon
lamp as the steady-state excitation source, a double excitation monochromator (1800 lines mm−1),
an emission monochromator (600 lines mm−1), and a semiconductor cooled RMP928 photomultiplier
tube (Hamamatsu, Hamamatsu, Japan).

3.2. Synthesis of the β-diketone Ligand HPBA

N-(2-Pyridinyl)benzoylacetamide (HPBA) was synthesized according to the literature
procedure [2]. Ethyl benzoylacetate was dissolved in p-xylene and 2-aminopyridine was added,
the mixture was refluxed at 135 ◦C for 10 h under vigorous stirring. The product was precipitate from
the reaction mixture after adding petroleum ether. The crude product was purified by recrystallization
in ethanol, and HPBA was obtained as a white powder in 65% yield. FT-IR (KBr): 3030 cm−1 (νC-H),
1442 cm−1 (νC = N), 1192 cm−1 (νC-N), 730–770 cm−1 (νC-H) (see Figure S5, Supporting Information).
1H-NMR (400 MHz, CDCl3): δ = 4.16 (s, 2H), 7.07 (t, 1H), 7.53 (t, 2H), 7.65 (t, 1H), 7.72 (t, 1H), 8.06 (d,
2H), 8.20 (d, 1H), 8.34 (d, 1H), 9.53 (s, 1H).
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3.3. Preparation of the Ln3+-Exchanged ZY

ZY (1 g) was dispersed in an ethanol solution of LnCl3 (0.1M) (Ln = Eu or Tb), and then the
mixture was stirred at 60 ◦C for 24 h. The product was recovered by centrifugation, washed with
deionized water for three times and dried at 70 ◦C, which was donated as Ln3+@ZY.

3.4. Preparation of the Luminescent Hybrid Composite Ln3+(HPBAn)@ZY

Ln3+@ZY (200 mg) and HPBA (100 mg) were manually ground for 30 min, and the product was
washed with dichloromethane three times following by drying at 70 ◦C for 12 h.

3.5. Exposure to Aqueous Ammonia (Concentration from 10−12 to 0.25 wt%)

The powder samples of Ln3+(HPBAn)@ZY were used to detect ammonia concentration. For each
experiment, the composite (200 mg) was put in a small bottle and exposed to aqueous ammonia.
The powder samples and the small bottle were placed into a sealed container (about 100 mL), which
contained about 5 mL liquid for 1 h.

4. Conclusions

In summary, we have prepared novel luminescent composites by doping lanthanide complexes to
the cavities of ZY through the so-called “ship-in-a-bottle” method. Samples of both Tb(HPBAn)@ZY
and Eu0.5Tb0.5(HPBAn) @ZY show green emission under UV-light illumination, while no obvious
emission can be observed for Eu(HPBAn)@ZY. The presence of ammonia vapors can make
Eu0.5Tb0.5(HPBAn)@ZY and Eu(HPBAn)@ZY emit red emission while severely quenching the
luminescence of Tb(HPBAn)@ZY. This is because the ammonia can alter the energy level of the
ligand through deprotonation. In addition, Eu0.5Tb0.5(HPBAn)@ZY exhibits high sensitivity to
low-concentrations of ammonia in aqueous solution, with exponential relationships between the
emission intensity ratio IEu/Tb and the concentration of ammonia in the range of 10−12–0.5 wt%,
showing advantages like simple preparation, fast response and high sensitivity.

Supplementary Materials: The following are available online. Figure S1: The EDX spectrum of
Eu0.5Tb0.5(HPBAn)@ZY; Figure S2: Excitation (green solid line) and emission spectra (green dot line) of
Tb(HPBAn)@ZY before treatment with NH3 vapor; excitation (black solid line) and emission spectra (black
dot line) of Tb(HPBAn)@ZY after treatment with NH3 vapor (a). Excitation (blue solid line) and emission spectra
(blue dot line) of Eu(HPBAn)@ZY before treatment with NH3 vapor; excitation (red solid line) and emission
spectra (red dot line) of Eu(HPBAn)@ZY after treatment with NH3 vapor (b); Figure S3: The corresponding CIE
1931 coordinates of Eu0.5Tb0.5(HPBAn)@ZY after treatment with different concentration of ammonium hydroxide;
Figure S4: Digital photographs of Eu0.5Tb0.5(HPBAn)@ZY upon contact with amines for 10 min under near UV
irradiation at 365 nm; Figure S5: FTIR spectrum of HPBA.
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