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ABSTRACT
Introduction Radiation- induced cognitive decline 
(RICD) occurs in 50%–90% of adult patients 6 months 
post- treatment. In patients with low- grade and benign 
tumours with long expected survival, this is of paramount 
importance. Despite advances in radiation therapy (RT) 
treatment delivery, better understanding of structures 
important for RICD is necessary to improve cognitive 
outcomes. We hypothesise that RT may affect network 
topology and microstructural integrity on MRI prior to any 
gross anatomical or apparent cognitive changes. In this 
longitudinal cohort study, we aim to determine the effects of 
RT on brain structural and functional integrity and cognition.
Methods and analysis This study will enroll patients with 
benign and low- grade brain tumours receiving partial brain 
radiotherapy. Patients will receive either hypofractionated 
(>2 Gy/fraction) or conventionally fractionated (1.8–2 Gy/
fraction) RT. All participants will be followed for 12 months, 
with MRIs conducted pre- RT and 6- month and 12 month 
post- RT, along with a battery of neurocognitive tests and 
questionnaires. The study was initiated in late 2018 and 
will continue enrolling through 2024 with final follow- ups 
completing in 2025. The neurocognitive battery assesses 
visual and verbal memory, attention, executive function, 
processing speed and emotional cognition. MRI protocols 
incorporate diffusion tensor imaging and resting state fMRI 
to assess structural connectivity and functional connectivity, 
respectively. We will estimate the association between 
radiation dose, imaging metrics and cognitive outcomes.
Ethics and dissemination This study has been approved 
by the Research Subjects Review Board at the University 
of Rochester (STUDY00001512: Cognitive changes in 
patients receiving partial brain radiation). All results will 
be published in peer- reviewed journals and at scientific 
conferences.
Trial registration number  ClinicalTrials. gov 
NCT04390906.

INTRODUCTION
Rationale and evidence gaps
Cognitive impairment in patients with brain 
tumours has a major impact on quality of life 

and on the ability to function at work and 
in daily life.1–4 Deficits manifest clinically as 
impairments in multiple cognitive domains 
including memory, attention and executive 
function.5 6 The aetiology is often multi-
factorial; contributing factors may include 
anxiety and/or depression, tumour location 
and pathology, comorbidities and age, as well 
as effects from treatment (chemotherapy, 
surgery and/or radiation therapy (RT)7). 
Notably, radiation- induced cognitive decline 
(RICD) is observed in more than 30% of 
patients at 4 months after partial or whole 
brain RT and in more than 50% at 6 months.8 
RICD is particularly important in patients 
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 ⇒ Limiting the study to participants with only benign 
and low- grade brain tumours helps mitigate con-
founding factors such as variation in tumour biology 
and normal tissue infiltration.

 ⇒ Prospective design with baseline evaluation prior to 
radiation allows capture of longitudinal changes in 
imaging and cognitive outcomes.

 ⇒ Use of open- source software assures transparency, 
reproducibility and implementation of the proposed 
protocol by other investigators.

 ⇒ Inclusion of patients receiving hypofractionated ra-
diation, which has increasingly been used in benign 
and low- grade brain tumours, is highly important 
since much of the data focuses on conventionally 
fractionated radiation.

 ⇒ Heterogeneity of patient population including tu-
mour type, size and location, radiation techniques, 
patient clinical factors including age, other cancer 
treatments including chemotherapy and surgery is a 
significant limitation; however, these factors will be 
adjusted for in analysis and improve generalisability 
of results.
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with low- grade and benign tumours who are expected 
to have long- term survivals. In these patients, treatment 
selection to maximise quality of life and minimise cogni-
tive deficits is imperative. Considerable efforts have been 
directed toward understanding and preventing RICD, an 
important late effect of RT.5 9 10 To date, multiple mecha-
nisms underlying RICD have been elucidated, including 
damage to sites of neurogenesis,11 12 neuroinflamma-
tion,13 14 neuronal dysfunction15 and vascular changes.16–18

RICD can occur in the absence of any gross anatomical 
changes. Advanced MRI techniques, however, may be able 
to detect effects from RT early on and may help elucidate 
mechanisms of radiation damage in RICD.19 MRI can 
examine volumetric and connectivity changes (both func-
tional and structural) as well as changes in brain vascula-
ture and perfusion. MRI may ultimately provide tools to 
identify patients at risk for RICD and help to direct efforts 
to prevent or ameliorate cognitive decline. Accordingly, 
accurate modelling of neurocognitive function with 
neuropsychological tests and correlation with in vivo 
imaging findings may help to identify putative biomarkers 
for routine quantitative evaluation of cognitive changes 
in patients with RICD. Novel MRI biomarkers of RICD 
are essential to improve understanding of how RT affects 
the brain structurally and functionally, to identify poten-
tial targets and therapeutics to mitigate RICD, and to 
improve initial RT plans to decrease complication rates.

RT affects both grey and white matter structures, yet 
the functional implications of these changes are actively 
being investigated. Studies have shown that cranial RT is 
associated with dose- dependent atrophy of the cortex,20 
hippocampus21 and amygdala22 on T1- weighted (T1w) 
MRI. The hippocampus in particular has garnered atten-
tion as a vulnerable structure in the setting of RT; where 
RT has been shown to reduce neurogenesis23 24 and the 
pool of neural stem cells in the dentate gyrus.25 26 Addi-
tionally, radiation dose to the hippocampus has also been 
shown to predict Hopkins Verbal Learning Test scores 
after brain irradiation.27 Currently, the hippocampus 
is the only intracranial structure for which validated 
dose constraints are used in standard treatment plan-
ning.28–31 NRG Oncology CC001 showed that conformal 
avoidance of the bilateral hippocampi (important struc-
tures in learning and memory) during whole brain RT 
reduced the risk of cognitive decline at 6 months from 
68.2% to 59.5%.32 Despite advances in understanding of 
the role of the hippocampus in RICD, however, nearly 
60% of patients still experience diminished cognitive 
function after RT despite conformal avoidance of the 
hippocampus. Moreover, recent studies have shown that 
radiation dose to the corpus callosum and surrounding 
white matter tracts can impact attention and processing 
speed at 6 months post- RT,33 executive function with radi-
ation damage to the anterior cingulate cortex,34 damage 
to perisylvian white matter can predict language dysfunc-
tion,35 and damage to the hippocampus, temporal pole 
and entorhinal cortex can predict changes in visuospatial 
memory.36 Thus, while the hippocampus is undoubtedly 

an important structure in memory formation, the singular 
focus on this region likely belies the complexity of struc-
tures and networks involved in memory formation and 
ignores the contribution of other anatomic structures to 
cognitive deficits seen post- therapy.

Novelty and innovation
While there have been some strides made in under-
standing RICD, there remain significant gaps in our 
knowledge, which our study hopes to address. These 
include applications of rs- fMRI in prediction of RICD, 
evaluation of cognitive outcomes after hypofractionated 
radiation for low- grade and benign brain tumours, eval-
uation of novel areas of interest that could contribute to 
cognitive decline, and integration of established autoseg-
mentation software such as Freesurfer with radiation dose 
information.

Whole brain networks can be evaluated by analysing 
structural and functional connections within the brain 
and their connections to function and behaviour.37 Struc-
tural connectivity (SC) in the brain is measured by tracing 
white matter tracts derived from diffusion tensor imaging 
(DTI).38 DTI evaluates the direction and magnitude of 
water molecular diffusion in a three- dimensional space 
(diffusion tensor) and can provide information on aniso-
tropic diffusion. Additional quantitative metrics such 
as the fractional anisotropy (FA), axial diffusivity (AD), 
mean diffusivity (MD) and radial diffusivity (RD) can 
be obtained from DTI and can help describe different 
disease states such as demyelination.39 40 Studies using 
DTI have shown that RT results in atrophy, demyelination 
of white matter and gliosis41 particularly in patients with 
a history of demyelinating diseases.42 Partial brain RT has 
also been shown to result in decreased AD and increased 
RD within the parahippocampal cingulum, where these 
changes are correlated with declines in verbal memory 
and fluency.43 Notably, reconstruction of fibre tracts in 
brain tumours and surrounding tissues is confounded 
by false continuities within the tumour and surrounding 
oedema.44 Accordingly, advanced diffusion methods have 
recently been developed to model and eliminate free 
water with single- shell diffusion weighted imaging data, 
to more accurately model the tissue microstructure of 
surrounding normal brain tissue.45 However, similar to 
gross volumetric changes, apparent evidence of white 
matter atrophy and demyelination may not be discern-
able prior to 6 months or 1- year post- RT.46 47 Resting 
state functional MRI (rs- fMRI) can be used to evaluate 
functional connectivity (FC). In particular, graph- theory 
analysis of FC has revealed topological organisation of 
brain networks,48 which has been used to investigate how 
network topology is affected in development,49 ageing50 
and pathology.51–53 Graph theory- based approaches treat 
the brain as a network of nodes and edges, where nodes 
can be a region of interest (ROI) or a single voxel. Edges 
are the connections between each node. These graph-
ical relationships can then be modelled as a correla-
tion matrix, in which cross correlation is performed to 
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determine the strength between pairs of nodes. Analysis 
of these matrices has revealed the brain to be highly 
modular,54 55 with specific network hubs (areas of many 
connections to other nodes),56 which have been shown to 
change in the setting of pathology and RT.57 Nevertheless, 
it is not known whether functional network changes can 
predict RICD or precede structural changes on MRI.

There has been limited evaluation of whether rs- fMRI 
can be used to predict early radiation changes. This may 
be partially due to difficulty in using rs- fMRI in high- 
grade glioma.33 Other studies have consistently demon-
strated that IDH wild type gliomas (ie, gliomas with more 
aggressive histology) have greater impact on FC metrics 
such as global FC derived from rs- fMRI58 as well as impact 
baseline cognitive status to a greater degree prior to any 
treatment.59 When limited to select patients, this modality 
may be useful as an MRI biomarker in early grade and 
benign brain tumour patients receiving radiation. Further 
studies focused on that population and excluding high- 
grade glioma patients, such as this one, are needed. 
Whole brain metrics such as FC may provide early iden-
tification of participants who are at risk of decline and 
can be targeted with novel therapeutics, either by using 
advanced RT techniques to improve RT plans or use of 
radioprotective pharmaceuticals. Preliminary studies are 
limited but suggest that rs- fMRI and FC represent a prom-
ising modality with which to develop dose constraints and 
mitigate cognitive decline after RT.60–62

Study aims
Investigation into structures outside the hippocampus 
that can be spared in order to improve cognitive outcomes 
remains an area of active study. We have the most data for 
RICD related to radiation dose to the corpus callosum33 63 
and hippocampus.31 32 However, we currently have no 
valid dose constraints for the structures outside the hippo-
campus including the corpus callosum. Development of 
dose constraints and investigation of which structures can 
be avoided and lead to improvement in clinical outcomes 
is an area of active research as we seek to understand the 
complex structural and functional relationships that lead 
to RICD.64

Additionally, radiosurgery and fractionated radiosur-
gery are important modalities used frequently in the 
treatment of benign brain tumours. With the increased 
use of hypofractionation and radiosurgery, it is important 
to establish dose constraints that are valid in the setting of 
high dose per fraction.65 As of now, we have little data on 
dose constraints for cognitive avoidance structures in the 
setting of hypofractionation, and much is extrapolated 
from studies of conventional fractionation.

Accordingly, this study will evaluate the effects of RT in 
patients with benign and low- grade brain tumours using 
multimodal neuroimaging and a battery of neurocogni-
tive tests. We hypothesise that radiation induced damage 
will manifest prior to gross anatomical changes via alter-
ations in network topology and microstructural integrity. 
Ultimately, we aim to establish structures beyond the 

hippocampus that are vulnerable to RT and develop dose 
constraints to minimise the risk and progression of RICD 
in this vulnerable patient population.

METHODS AND ANALYSIS
Study design
A total of 75 patients with benign and low- grade brain 
tumours planned to receive partial brain RT, either 
hypofractionated (>2 Gy/fraction) or conventionally 
fractionated (1.8–2 Gy/fraction), will be enrolled at the 
Wilmot Cancer Institute. All participants provide written 
informed consent according to the Institutional Review 
Board (IRB) approved protocol prior to any evaluation. 
Participants are followed for 12 months.

Key inclusion criteria include (1) age ≥18 years; 
(2) patients with benign or low- grade brain tumours 
including grade 2 IDH- mutant astrocytoma, grade 2 oligo-
dendroglioma, grade 1 and 2 meningiomas, vestibular 
schwannomas, pituitary adenomas, craniopharyngiomas, 
haemangiopericytomas or other benign or low- grade 
brain tumours; (3) planned to receive either conven-
tional or hypofractionated RT and (4) no contraindi-
cation to gadolinium- enhanced MRI. Surgical excision 
and/or chemotherapy prior to enrolment is permitted.

Key exclusion criteria include: (1) prior cranial RT; 
(2) inability to participate in neurocognitive testing; (3) 
intractable seizures; (4) non- English- speaking and (5) 
aphasia limiting ability to participate in neurocognitive 
testing.

Participants will undergo three comprehensive evalua-
tions (baseline, 6- month and 12- month time points) that 
include clinical evaluation, MRI, a battery of neurocog-
nitive tests, and questionnaires which evaluate patient- 
reported cognition, fatigue, anxiety and depression. An 
additional 3- month time point includes questionnaires 
and neurocognitive testing only (figure 1).

Patient and public involvement
Patients will be involved in the design and conduct of this 
research as follows: After completion of this study, we will 
plan to further tailor the study design for a larger study by 
conducting interviews with participants. Once the results 
have been published, participants will be informed via 
email.

Neurocognitive testing
Assessments of neurocognitive and functional perfor-
mance are performed to evaluate neurocognitive 
changes post- RT. The components of the neurocogni-
tive testing battery are described in table 1. The battery 
includes the standard tests recommended by the Interna-
tional Cognition and Cancer Task Force66 testing verbal 
memory (Hopkins Verbal Learning Test- Revised, HVLT- 
R),67 68 verbal fluency (Controlled Oral Word Associated 
Test)69 and executive function (Trail Making Test).70 71 
However, the battery additionally includes the Brief Visu-
ospatial Memory Test- Revised, which has a similar format 
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to the HVLT- R but focuses on visuospatial learning and 
memory,36 as well as additional iPad- based tests from 
Cambridge Cognition which have been shown to be valid 
and sensitive in the assessment of cancer- related cognitive 
impairment.72–74 Neuropsychological testing is adminis-
tered by trained study coordinators using a standardised 
testing manual; study coordinators are supervised by 
the study team with expertise in neurology, neuropsy-
chology and cognitive science. Raw scores will be used in 
analysis and adjusted for covariates such as age. Testing 
is performed in a quiet, comfortable room without 
distractions.

Patient-reported outcomes
Patient- reported outcome measures of symptoms that 
may influence cognition are recorded longitudinally so 
that they can be studied and accounted for in analyses. 
These symptoms include fatigue, anxiety and depres-
sion using validated measures including the Functional 
Assessment of Cancer Therapy- Brain (FACT- Br, neuro-
logical symptoms in brain tumour patients,75 Functional 
Assessment of Chronic Illness Therapy- Fatigue), symp-
toms of fatigue,76 Patient Health Questionnaire- 9, symp-
toms of depression,77 State- Trait Anxiety Inventory78 and 
Short Form of the Profile of Mood States- 2, subscales 

Figure 1 Study schema.

Table 1 Description and platform of tests in cognitive battery

Test Description Cognitive domain Platform

Wide Range Achievement 
Test- 4

Word reading Cognitive reserve, education 
level

Paper based

Hopkins Verbal Learning Test- 
Revised

Immediate and delayed recall of a 
word list

Verbal learning and memory Paper based

Controlled Oral Word 
Associated Test

Number of words the participant can 
provide in a category over 1 min

Verbal fluency Paper based

Trail Making Test A and B 
(TMT- A and TMT- B)

Connect circles containing a series 
of numbers (A) or numbers and 
letters (B) in a pattern

Executive function Paper based

Brief Visuospatial Memory 
Test- Revised

Immediate and delayed recall of a 
series of shapes and designs

Visuospatial learning and 
memory

Paper based

Emotional Recognition Task Identification of the emotion 
indicated by a facial expression

Emotional and social cognition Cambridge cognition

Spatial Working Memory Use of strategy to find a yellow 
token behind coloured boxes

Executive function, visuospatial 
working memory

Cambridge cognition

Paired Associates Learning Match the pattern to the box where 
it was previously displayed

Visuospatial episodic memory 
and new learning

Cambridge cognition

Delayed Matching to Sample Matching of complex visual patterns Visual matching ability and 
short- term visual recognition 
memory

Cambridge cognition

Reaction Time Task Select a circle in which a yellow dot 
appears

Assessment of motor and 
mental response speed

Cambridge cognition
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of anger- hostility, confusion- bewilderment, depression- 
dejection, fatigue- inertia, tension- anxiety, vigor- activity 
and friendliness.79 Subjective cognition is measured using 
the FACT- Cognition (FACT- Cog),80 for comparison with 
scores on objective neurocognitive testing.

Demographic and clinical information
Patient characteristics that may affect cognitive outcomes 
and trajectories are recorded, including age, education 
level, comorbidities including diabetes, hypertension, 
autoimmune disease, tumour hemisphere, tumour site, 
tumour pathology, prior surgeries, employment status, 
smoking status, alcohol use, sex/gender, hypopituita-
rism, menopausal status, steroid use, use of medications 
that can affect cognition and mood, and exposure to 
chemotherapy.

Radiotherapy planning
Each patient is planned and treated per standard of care 
by their treating radiation oncologist. RT plans for single 
fraction or fractionated radiosurgery are created using 
BrainLAB Elements planning software. All other plans 
were created using Varian Eclipse treatment planning 
software. For consistency, all radiation dose maps were 
calculated in Eclipse for all patients using a 1 mm × 1 mm 
grid.

MRI acquisition
All imaging is performed on a 3T GE Discovery 750 MRI 
system (Milwaukee, Wisconsin, USA), equipped with an 
8- channel head coil. High- resolution T1w anatomical 
images are acquired using a 3D BRAVO FSPGR sequence 
with the following parameters: repetition time (TR)=8.2 
ms, echo time (TE)=3.2 ms, field of view (FOV) 256 mm2, 
resolution 1×1×1 mm3.

Blood oxygen- level dependent (BOLD) rs- fMRI is 
acquired using a BOLD sensitive gradient- echo echo 
planar imaging (EPI) sequence with the following param-
eters: TR=2000 ms, TE=30 ms, FOV=192 mm2, resolution 
3×3×3 mm3, 150 volumes.

In order to evaluate white matter integrity and micro-
structural changes, we make use of a standard clinical DTI 
protocol with 30 diffusion directions, demonstrated to 
be sufficient for reconstructing white matter fibre tracts 
and not to affect test–retest reliability.81 DTI is acquired 
using a two- dimensional axial single- shot dual spin- echo 
EPI sequence with the following parameters: TR=10 000 
ms, TE=81 ms, FOV=256 mm2, resolution 2×2×2 mm3, 30 
diffusion weighted directions with b=1000 s/mm2 and 4 
b=0 reference images.

MRI data processing
Here, we describe a comprehensive image analysis pipe-
line, which includes preprocessing, data cleaning and 
postprocessing for each imaging modality, including 
advanced modelling and calculation of quantitative 
imaging biomarkers (figure 2).

All image processing is completed within URMC servers 
in the Centre for Integrated Research Computing, using 
BHWARD, a HIPAA compliant server.

RT dose calculations
The RT dose map is first scaled and mapped with CT 
images using pydicom (V.1.4). T1w images are registered 
to patient- specific CT space using FMRIB’s Linear Image 
Registration Tool (FLIRT).82 Patient- specific parcella-
tions derived from the Desikan- Killiany83 atlas using Free-
surfer are registered with the RT dose map. The mean, 
maximum and minimum RT doses are extracted from 
each ROI, and the 2 Gy/fraction equivalent dose (EQD2) 
is calculated using the linear quadratic model,84 with an 
 α/β  equal to 3, to model the radiosensitivity of normal 
brain tissue.85

T1 weighted
T1w images are processed by first masking out the tumour 
using the gross target volume (GTV) as contoured by 
the primary radiation oncologist from the RT structure 
set,86 delineated on planar MRI and CT imaging, using 
nibabel (https://nipy.org, V.3.1.1). This is achieved by 
mapping the GTV to the CT images in patient space, 
and then performing an affine transform to register the 
T1- w images to the patient specific CT images (figure 3). 
Thereafter, segmentation is performed using the tumour 
masked T1- w in Freesurfer (V.6.0.0, http://surfer.nmr. 
harvard.edu). The Freesurfer pipeline is run inde-
pendently for each participant at each time point (pre- 
RT, 6 months and 12 months post- RT). Briefly, processing 
includes skull- stripping and removal of non- brain tissue, 
motion correction, intensity normalisation, automated 
Talairach transformation, white matter segmentation and 
cortical parcellation using the Desikan- Killiany atlas,83 
which includes cortical and subcortical ROIs. Subsequent 
segmentation of thalamic nuclei are also performed 
using a probabilistic atlas based on ex vivo MRI and 
histology.87 ROIs will include whole brain grey and white 

Figure 2 MRI data processing pipeline. AD, axial diffusivity; 
dMRI, diffusion MRI; DTI, diffusion tensor imaging; FA, 
fractional anisotropy; FC, functional connectivity; FEAT, FMRI 
Expert Analysis Tool; FIX, FMRIB’s ICA- based Xnoisefier; 
GTV, Gross Target Volume; MD, mean diffusivity; MELODIC, 
Multivariate Exploratory Linear Optimised Decomposition 
into Independent Components; RD, radial diffusivity; rs- fMRI, 
resting state functional MRI; RT, radiotherapy; SC, structural 
connectivity.

https://nipy.org
http://surfer.nmr.harvard.edu
http://surfer.nmr.harvard.edu
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matter, cerebral hemispheres and subcortical grey matter 
(hippocampus, amygdala, caudate, putamen, thalamus, 
nucleus basalis of Meynert), as well as white matter tracts 
including cingulum, fornix, parahippocampal white 
matter and corpus callosum.

Diffusion imaging
DTI data are preprocessed using FMRIB’s Software 
Library (FSL,88–91 diffusion toolbox (FDT, http://fsl. 
fmrib.ox.ac.uk/fsl). Briefly, intervolume patient motion, 
brain extraction using BET91 and eddy- current induced 
distortion correction are performed using EDDY.92 The 
diffusion tensors are then fit on eddy- corrected data 
using DTIFIT.93 DTIFIT fits a diffusion tensor model at 
each voxel and provides the three principal eigenvectors 
and eigenvalues of the diffusion tensor, from which the 
FA, MD, AD and RD can be measured.93 All images are 
then registered to MNI standard space and interpolated 
to 1 mm3 voxels. Binary GTV masks are then used to mask 
out abnormal tissue in processed maps. The JHU white- 
matter tractography atlas, composed of 20 structures 
identified using probabilistic tractography, is then used 
to extract mean FA, MD, AD and RD values from ROI.94

Functional imaging
rs- fMRI data are processed using FSL’s FMRI Expert Anal-
ysis Tool (FEAT, V.6.00).95 Registration to high resolution 
structural space is carried out using a two- stage registra-
tion. First rs- fMRI data are registered to high- resolution 
structural space using FMRIB’s Linear Image Registration 
Tool (FLIRT),82 and then registration to MNI standard 
space96 is further refined using FMRIB’s Nonlinear Image 
Registration Tool (FNIRT).97 Since field maps were not 

acquired as part of the clinical scan protocol, a 12 df 
affine transformation was used for linear and nonlinear 
registration. All registrations are visually inspected during 
processing. Further, preprocessing includes skull strip-
ping using BET,91 motion correction using MCFLIRT,82 
slice- time correction, spatial smoothing using a Gaussian 
kernel of FWHM 5 mm and high- pass temporal filtering.

Single- session independent component analysis (ICA) 
is then performed for each participant using probabi-
listic ICA implemented in FSL’s Multivariate Exploratory 
Linear Optimised Decomposition into Independent 
Components (MELODIC, V.3.15). MELODIC decom-
poses input data into separate time courses and spatial 
maps using probabilistic principal component analysis. 
FMRIB’s ICA- based Xnoisifier (FIX)98 99 is then used to 
further denoise functional data by automatically clas-
sifying signal versus noise components from the time 
series data. FIX is run using the standard pretrained data 
(TR=3 s, 3.5×3.5×3.5 mm resolution, 6 min) which was 
preprocessed using default FEAT processing. All images 
and components are visually inspected for accuracy prior 
to further processing.

Once all fMRI data have been preprocessed, the 
denoised functional data are used to construct participant 
specific FC matrices. Participant- specific atlases generated 
using Freesurfer are then registered to the MNI standard 
space and used to extract the mean time series from each 
ROI. This is done to ensure that only functional regions 
outside of the tumour are used to construct FC matrices. 
FC matrices are then generated by computing the cross 
correlation between all pairs of nodes (ROIs), using the 
Pearson correlation coefficient (figure 4).

Participant- specific FC matrices are then analysed using 
the Brain Connectivity Toolbox100 in MATLAB (R2020a). 
Participant- specific correlation matrices are thresholded 
to yield weighted undirected networks, and analysed 
using graph theory to yield measures of functional inte-
gration and segregation. Global measures of integration, 
including global efficiency, transitivity and modularity, 
are then computed for further statistical analysis.101 Local 

Figure 4 Representative functional connectivity correlation 
matrices. Matrices are computed using the Pearson 
correlation coefficient between every time course for all pairs 
of nodes. Matrices are thresholded at 0.5 and normalised. 
The average of all patient specific correlation matrices 
at baseline (A) and 6 months post- RT (B). The colour bar 
represents the normalised correlation coefficient between 
pairs of nodes. RT, radiation therapy.

Figure 3 Representative images from participant with 
vestibular schwannoma. (A) RT dose map from RT structure 
set, mapped to CT image and scaled. (B) T1w structural 
image coregistered with CT image and RT dose map 
via affine transformation (yellow circle shows acoustic 
schwannoma). (C) T1w image with gross target volume (GTV, 
yellow circle) used to mask tumour prior to processing. 
(D) Subcortical and cortical structures obtained from brain 
parcellation, with vestibular schwannoma excluded (yellow 
arrow). RT, radiation therapy.

http://fsl.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl
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measures of segregation, including clustering coefficient 
and local efficiency (table 2), are also computed for each 
ROI for further statistical analysis. A more thorough 
review of graph theory- based measures for rs- fMRI may 
be found in Rubinov and Sporns.102

We estimate that 52 evaluable patients (a total of 75 
participants allowing for 30% of participants with missing 
or incomplete data) will have ≥80% power to detect at 
least 0.4 SD change on the delayed recall measure of the 
HVLT- R post- RT. The power analysis is based on a paired 
t- test with a two- sided significance level of 0.05.

Analysis plan
Graphical methods will be used to explore the cognitive 
test and imaging data, to visually describe and compare 
distributions of continuous variables, and to visualise 
results of statistical analyses. Quantitative imaging metrics 
(cortical thickness, subcortical volume, FA, MD, AD, RD, 
local efficiency and clustering coefficient) will be analysed 
to investigate their relationships with RT dose and cogni-
tive measures. Comparisons between raw scores on cogni-
tive tests and imaging metrics pre- RT and post- RT will be 
performed using paired t- tests and Wilcoxon signed- rank 
tests. Pearson and Spearman correlation analyses will be 
used to assess associations between pairs of continuous 
measures. Multivariate mixed effect regression models 
will be used to evaluate the relationships of cognitive 
tests at 6- month and 12- month visits with RT dose to 
ROIs known to be instrumental in the specific cognitive 
domain adjusting for the baseline cognitive test, imaging 
parameters, age, gender, tumour laterality and tumour 
type. During the analyses, false discovery rate method will 
be used to account for multiple comparisons.103 All statis-
tical analyses will be performed using R (R Foundation 
for Statistical Computing, Vienna, Austria) or SAS V.9.4.

RICD is an important target of efforts to use more 
sophisticated radiation techniques such as intensity 
modulated RT and proton therapy in order to decrease 

side effects.104 While validated dose constraints exist for 
structures such as the brainstem, cochlea, optic nerves 
and chiasm, and pituitary gland,28 development of dose 
constraints for intracranial structures involved in cogni-
tion is a new and exciting area of research that prom-
ises to improve radiation outcomes. Despite conformal 
dose reduction to the hippocampi, RICD occurs in a 
large percentage of patients, reflecting the complexity 
of memory formation and the need to identify non- 
hippocampal structures involved in higher cognitive func-
tions. The pathology underlying RICD likely begins prior 
to any gross anatomical changes or noticeable differences 
in cognition observed by the patient. Accordingly, devel-
opment of quantitative in vivo biomarkers is essential for 
developing dose constraints and monitoring RICD.

This study uses conventional and advanced MRI, neuro-
cognitive testing and dosimetry information to provide 
a comprehensive description of RICD in patients with 
brain tumours receiving RT. The proposed analyses will 
provide insight into which intracranial structures are 
particularly susceptible to RT and how they modulate 
changes in cognition via aberrant network topology. The 
results of this study will help to provide dose constraints 
to better avoid cognitive decline that can ultimately be 
used to create radiation plans associated with less cogni-
tive change. Incorporation of rs- fMRI into treatment 
planning and monitoring has the potential to improve 
cognitive outcomes in the setting of RT and provide 
personalised treatment. Additionally, utilisation of graph 
theory will be able to identify specific nodes and hubs 
within brain networks that are susceptible to RT at the 
population and individual level.105

This protocol and analysis pipeline will aid researchers 
interested in combining MRI data including segmenta-
tion of intracranial structures not used in standard radi-
ation planning with radiation dosimetry information to 
advance our understanding of RICD. We provide detailed 

Table 2 Overview of graph theory measures used to analysis resting state functional connectivity and structural connectivity 
obtained from diffusion tractography

Measurement Definition Equation

Node degree The no of connections between one node and the rest 
of the network  ki = Σ

(
aij
)
 

Clustering coefficient The no of connections between the neighbours of a 
node  2t/

(
k
(
k− 1

))
; 

k is the node degree; t is the fraction of 
triangles around a node.

Efficiency Inverse of path length (minimum no of edges to traverse 
from one node to another)

 
1

N
(
N−1

)Σ
(

1
dij

)
 

Where  dij   is the shortest path length between 
nodes i and j

Modularity Areas of highly interconnected nodes, with few 
connections to nodes in other modules

 
Q = 1

l Σ
(
aij −

(
kikj

)
l

)
δ
(
mi,mj

)
 

A more in depth review of graph theory and graph theory measures can be found in Rubinov and Sporns.102
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information on study design, clinical and imaging proto-
cols and analysis pipeline with which to investigate RT- in-
duced cognitive changes on intracranial structures that 
are not segmented with standard radiation planning soft-
ware. This is an important and complex process which 
should be transparent, and one of our goals with this 
paper is to promote utilisation of open software pack-
ages in a useful and standardised way for the radiation 
oncology community.
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