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Abstract

Collagen is the main structural element of connective tissues, and its favorable properties

make it an ideal biomaterial for regenerative medicine. In dental medicine, collagen barrier

membranes fabricated from naturally occurring tissues are used for guided bone regenera-

tion. Since the morphological characteristics of collagen membranes play a crucial role in

their mechanical properties and affect the cellular behavior at the defect site, in-depth knowl-

edge of the structure is key. As a base for the development of novel collagen membranes,

an extensive morphological analysis of four porcine membranes, including centrum tendi-

neum, pericardium, plica venae cavae and small intestinal submucosa, was performed.

Native membranes were analyzed in terms of their thickness. Second harmonic generation

and two-photon excitation microscopy of the native membranes showed the 3D architecture

of the collagen and elastic fibers, as well as a volumetric index of these two membrane

components. The surface morphology, fiber arrangement, collagen fibril diameter and D-

periodicity of decellularized membranes were investigated by scanning electron microscopy.

All the membrane types showed significant differences in thickness. In general, undulating

collagen fibers were arranged in stacked layers, which were parallel to the membrane sur-

face. Multiphoton microscopy revealed a conspicuous superficial elastic fiber network, while

the elastin content in deeper layers varied. The elastin/collagen volumetric index was very

similar in the investigated membranes and indicated that the collagen content was clearly

higher than the elastin content. The surface of both the pericardium and plica venae cavae

and the cranial surface of the centrum tendineum revealed a smooth, tightly arranged and

crumpled morphology. On the caudal face of the centrum tendineum, a compact collagen

arrangement was interrupted by clusters of circular discontinuities. In contrast, both surfaces

of the small intestinal submucosa were fibrous, fuzzy and irregular. All the membranes con-

sisted of largely uniform fibrils displaying the characteristic D-banding. This study reveals

similarities and relevant differences among the investigated porcine membranes, suggesting

that each membrane represents a unique biomaterial suitable for specific applications.
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Introduction

As a structural protein with excellent biocompatibility, low antigenicity, pronounced cell affin-

ity and biodegradability, collagen is a widespread biomaterial in regenerative medicine with

the potential to regenerate tissues and restore their physiological function [1–4]. In dental

medicine, decellularized biodegradable collagen membranes are widely used to create different

compartments for defect healing. For guided bone regeneration (GBR), collagen membranes

serve as an occlusive barrier to prevent the ingrowth of gingival soft tissue into a periodontal

or bone defect, thus allowing tissue regeneration via the unhampered proliferation and differ-

entiation of site-specific progenitor cells. These collagen membranes are derived from natural

tissues such as porcine skin, human dermis or bovine Achilles tendon [4–8]. All connective tis-

sues are composed of fibroblasts as a cellular component and of a highly organized extracellu-

lar matrix (ECM), which in turn comprises fibrous proteins, as well as an amorphous ground

substance made of glycoproteins, growth factors and water [9]. The ECM, which is secreted by

resident cells, serves as a physical support for cells, endows the tissue with its structural,

mechanical and biochemical properties and controls cell behavior by cell-matrix interactions

[10,11]. Within the ECM, collagens are the most abundant proteins [10,12]. To date, 28 differ-

ent collagen types have been described and can be grouped into distinct classes based on their

suprastructural organization [13]. The fibril-forming collagens (types I, II, III, V, XI, XXIV

and XXVII) are the most widespread family of collagen types. These collagens constitute the

main structural element of the ECM and provide the tissue with its tensile strength [13,14].

Collagen fibrils consist of covalently cross-linked collagen molecules measuring 300 nm in

length. Partial overlap of collagen molecules results in a gap-overlap array, which produces the

typical axial banding pattern named D-periodicity [10,13,15–17]. In transmission electron

microscopy, the average D-periodicity is in the range of 64–70 nm [17]. Microfibrils or subfi-

brils are filamentous subunits of the collagen fibril [18–21]. Depending on tissue and age, the

cylindrical collagen fibrils exhibit a diameter from 10 to more than 500 nm [22,23]. The length

of collagen fibrils in mature tissue is difficult to estimate as fibril ends are rarely seen in micro-

graphs. Presumably, collagen fibrils reach a length of several mm, or they even span the entire

length in force-transmitting tissues such as tendons and ligaments [24]. Usually, parallel fibrils

are interconnected by proteoglycans to form collagen fibers. Typically, fibers are cord- or tape-

shaped, run in a wavy course and may reach a diameter up to 100 μm. However, the size and

shape of collagen fibers depend on the tissue and organ [17].

Elastic fibers are another connective tissue element in extensible organs such as the arteries,

lung, or skin. Elastic fibers endow the tissue with elasticity and resilience, thus allowing

repeated stretch and the subsequent passive recoil [25,26].

Various membrane properties such as the diameter, spacing and orientation of fibers or

fibrils, as well as membrane stiffness, have been reported to modulate cellular behaviors such

as differentiation, migration and proliferation [27–31]. Since differences in collagen tissue

structure lead to different biological responses and hence account for their specific potential in

regenerative medicine, additional tissue sources of collagen membranes are of great interest.

The goal of the present study, therefore, was to characterize four naturally occurring porcine

membranes, i.e., centrum tendineum (CT), pericardium (PE), plica venae cavae (PL) and small
intestinal submucosa (SIS), with respect to their structural properties. Both sides of CT, PE and

PL are covered by a mesothelium, whereas SIS is devoid of mucosal and muscular layers due to

the manufacturing process [32]. Bovine pericardium is commonly used in regenerative medi-

cine to replace heart valve leaflets and as a patch material in cardiac surgery [33,34], whereas

SIS is used to reconstruct various soft tissues such as skin, vessels, the body wall or the urinary

bladder [35,36]. CT has recently been considered a scaffold material [37,38]. The four selected
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collagen membranes were evaluated with respect to thickness, as this parameter is an impor-

tant factor affecting the diffusion between blood capillaries and adjacent tissues. Qualitative

assessment of the collagen ultrastructure and quantitative analysis of the collagen fibril diame-

ter and D-periodicity was performed on NaOH-pretreated membranes using scanning elec-

tron microscopy (SEM) [39,40]. The collagen and elastic fiber organization in superficial and

deeper tissue layers were visualized by second harmonic generation (SHG) and two-photon

excited fluorescence (TPEF) microscopy, respectively. In addition to a qualitative structural

analysis of SHG and TPEF micrographs, an elastin/collagen volumetric index was calculated.

By providing detailed information on the thickness and structure of four different porcine

membranes, this study is expected to pioneer the development of new collagen barrier mem-

branes that may be tailored to specific clinical requirements. Overall, differences in membrane

thickness and in their ultrastructure were detected, thus indicating that the four membranes

might serve as raw materials for specific clinical applications.

Materials and methods

Membrane collection

Samples of CT, PE and PL were collected at a local abattoir (Metzgerei Nussbaum, 3114 Wich-

trach, Switzerland) from approximately 6-month-old feeding pigs (�140 kg) immediately

after slaughter. Membranes were stored in phosphate buffered saline (PBS, pH 7.4) at ambient

temperature during the transport to the laboratory. There, the membranes were rinsed in PBS

to remove any blood before further processing or dry storage at -80˚C.

SIS was purchased from Nikki SA (Boyaux Naturels, Switzerland), delivered in a pickling

salt solution and stored at 4˚C for several months. Prior to tissue processing, randomly selected

pieces of SIS were rinsed in tap water for several hours. Considering that the assessed pieces

were obtained from the intestines of different pigs or only from different locations of the same

or several intestines, the term piece is used rather than sample.

Thickness measurements

Thickness measurements were performed using a digital thickness dial gauge (Käfer Messuh-

renfabrik GmbH & Co., Germany). Membranes were unfurled on a customized plastic plat-

form, and the whole mount thickness was measured. The contact pressure was 1.2 kPa, and

thickness values were read out once the viscoelastic changes had stabilized. Three distinct

spots were selected per membrane, and triplicates were measured for every single spot to cal-

culate the average membrane thickness. Spots that visually differed from the general appear-

ance of the membrane because of local fat storage or large blood vessels were excluded. Eleven

PBS-washed native samples of CT, PE and PL and fifteen pieces of SIS were measured. For CT,

PE and PL, the samples were harvested from 33 different pigs so that only one of the three

membranes was collected per pig.

Scanning electron microscopy

Rinsed membranes were trimmed to a size of ca. 1 x 1 cm prior to fixation at 4˚C overnight

using 2.5% glutaraldehyde (Merck, Darmstadt, Germany) in 0.1 M sodium cacodylate buffer

(pH 7.4; Merck) for at least 12 hours. Next, cells were removed by NaOH digestion according

to [40]. Briefly, specimens were immersed in a 10% aqueous solution of NaOH for 3 to 6 days

at room temperature and were then rinsed in distilled water for up to 24 hours. Thereafter, the

specimens were dehydrated through an ascending ethanol series and critical point dried using

an EM CPD 300 (Leica Microsystems, Heerbrugg, Switzerland). Dried specimens were halved
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with a razor blade and mounted onto aluminum stubs by means of double adhesive conductive

tabs (Portmann Instruments, Switzerland) with the opposite sides facing up. The specimens

were then sputtered with 15 nm of platinum in a Bal-Tec SCD 004 sputtering device (Bal-Tec

AG, Balzers, Liechtenstein) and stored in a dessicator. SEM images were obtained with a DSM

982 Gemini digital field emission scanning electron microscope (Zeiss, Germany) at an accel-

erating voltage of 5 kV and a working distance of 6 mm.

SEM was performed on six samples of CT, PE and PL and six pieces of SIS. The samples of

CT, PE and PL were harvested from six pigs. Therefore, from every pig, a sample of each of

these three membrane types was collected. Images were acquired from two distinct spots per

membrane face (recto/verso). From every spot, an image series was acquired at 200x, 1,000x,

5,000x, 10,000x and 50,000x magnifications. In addition to the qualitative and descriptive anal-

ysis of the collagen structure, the fibril diameters and D-periodicity were determined at

50,000x magnification for every membrane by means of the measuring tool integrated in the

DSM 982. Fibril diameter was determined on a representative selection of fibers, avoiding the

inclusion of obvious thick or thin fibers. D-periodicity was calculated by measuring the dis-

tance over several D-periods and subsequently dividing the value by their count. At minimum,

30 measurements for either of the two criteria were performed per membrane side.

Second harmonic generation/two-photon excited

fluorescence (SHG/TPEF)

Native membranes were stored at -80˚C before imaging using second harmonic generation/

two-photon excited fluorescence (SHG/TPEF) microscopy. After thawing at room tempera-

ture, the membranes were rinsed in PBS before excision of square specimens of 10 mm x 10

mm size using scissors. The specimens were then mounted on an object slide with a drop of

PBS such that the opposite membrane sides were facing up, and the specimens were covered

with a 0.17 mm thick glass cover slip (Glaswarenfabrik Karl Hecht GmbH & Co, Sondheim

vor der Rhön, Germany). One-well Secure-Seal spacers (Thermo Fisher Scientific, Waltham,

USA) were used to avoid squeezing the specimen.

SHG/TPEF images of the porcine membranes were acquired using a Leica TCS SP8 MP

inverted multiphoton laser scanning microscope (Leica Microsystems, Germany) equipped

with a Mai Tai XF (Spectra-Physics, USA) femtosecond Ti-sapphire pulsed laser, which was

tunable from 720 to 950 nm. The excitation wavelength was set to 880 nm to excite both the

broadband autofluorescence of elastin (500–650 nm) and the SHG signal of collagen (440 nm).

A 25x/0.95 NA water immersion objective lens (HCX IRAPO L, Leica Microsystems, Ger-

many) and a 0.55 NA condenser lens (Leica 0.55 S28 Number 505234) were used. A DAPI

emission filter (435–485 nm) and a photomultiplier were used to record the forward SHG sig-

nal. The SHG signal in the epi-direction and the TPEF signal were both recorded by internal

hybrid detectors (Leica Microsystems), with the detection bandwidth range set to 430–460 nm

(SHG) and 500–650 nm (TPEF). The pinhole aperture was always fully open. Z-stacks of 1504

x 1504 pixel images (pixel size 0.2 x 0.2 μm) were acquired with a z-step size of 0.8 μm. Scan-

ning of the samples was performed in bidirectional mode with a scanning speed of 600 Hz in

combination with line averaging of 3 scans. Because of the different laser intensities required

to generate the SHG and TPEF signals, recording of SHG and TPEF was performed in sequen-

tial mode by switching between frames. The laser power and detector gain were adjusted for

each new image series based on visual assessment. Z-compensation was applied for all the

image stacks.

Only CT, PE and PL were imaged using these methods as the pickling salt treatment pre-

vented analysis of SIS by SHG/TPEF. Six samples per membrane type were investigated, and
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these samples were harvested from a total of six pigs. Z-stacks were acquired from two spots

per membrane side. SHG/TPEF z-stacks were deconvolved using Huygens Remote Manager

(Scientific Volume Imaging, Netherlands) before image processing with IMARIS software

(Bitplane AG, Switzerland). Sectional images and 3D composite images of the deconvolved z-

stacks were assessed in a qualitative manner, with descriptions of the collagen and elastin

arrangements. Furthermore, an elastin/collagen volumetric index was calculated from two z-

stacks for every sample of any given membrane type. For this purpose, forward and backward

SHG channels were combined in Fiji software [41] prior to performing a separate surface ren-

dering of the SHG and the TPEF channels using IMARIS. The volumetric index from the two

surface-rendered channels was computed based on the volumes (v) of the collagen and elastin,

as reported previously [42]: [VElastin-VCollagen/VElastin+VCollagen]. This calculation yielded

indexes from +1 (100% elastin) to -1 (100% collagen).

Statistical analysis

Statistical analysis was performed using NCSS 11 (NCSS, LLC, USA) for membrane thickness,

D-period, volumetric index (elastin/collagen) and fibril diameter. Descriptive statistics

revealed deviations from the normal distribution (Shapiro-Wilk test p<0.00) for the mem-

brane thickness, fibril diameter and D-period but not for the volumetric index. Therefore, dif-

ferences in the volumetric index among the membrane groups were assessed using one-way

ANOVA, while differences in fibril diameter, D-period and membrane thickness were com-

pared using the Kruskal-Wallis non-parametric one-way ANOVA and Dunn’s (all-pairwise)

post hoc multiple comparison tests.

To assess differences between different samples (or between different pieces for SIS) of a

given membrane type, the one-way ANOVA and Bonferroni multiple comparison tests were

used for all outcome variables. All raw data as well as statistical descriptive outputs are accessi-

ble under https://doi.org/10.6084/m9.figshare.7058600.

The significance level was set to 0.05.

Results

Thickness measurements

The four porcine membranes (PL, PE, CT, and SIS) were assessed regarding their thickness in

the native state. The obtained results are shown in Fig 1, and the detailed results are listed in

Table 1.

Overall, the median thickness (Fig 1A) was 785 μm for CT, 315 μm for PE, 82 μm for PL

and 130 μm for SIS. The differences between all studied membrane types were statistically sig-

nificant for the membrane thickness. The differences between individual samples were also

assessed (Fig 1B) and revealed that for each given membrane type, the median thicknesses of

some of the samples differed significantly from each other. The median thicknesses ranged

from 637–995 μm in CT, from 193–432 μm in PE and from 57–122 μm in PL (Fig 1A). The

median thickness of different SIS pieces was in the range of 68–209 μm (Fig 1A), with signifi-

cant differences occurring between the medians of some but not all collected pieces (Fig 1B),

indicating a certain level of heterogeneity.

SEM

Collagen structure. SEM was performed to assess the superficial collagen structure of the

porcine membranes after decellularization with NaOH (Fig 2). Both sides of the PE and PL

membranes and the cranial face of the CT membrane displayed a smooth, compact and
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Fig 1. Box plots of membrane thickness measurements of native CT, PE, PL and SIS. (A) Membrane thickness was assessed on native

membranes (CT, PE, and PL: N = 11; SIS: N = 15). For every sample of CT, PE and PL and for every piece of SIS, three triplicate

measurements at three distinct spots were performed. The plica was the thinnest membrane, whereas CT was the thickest. Statistical

comparison of the membrane types (Kruskal-Wallis one-way ANOVA and Dunn’s post hoc test) showed that all membrane types were

significantly different from each other in terms of median thickness. (B) Box plots show the thickness measurements of all individual
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irregularly crumpled surface morphology, as shown in Fig 2A and 2B. Collagen fibrils formed

fine, loosely arranged, undulating collagen bundles. The packing of fibrils into fibers was not

very tight, resulting in single fibrils or small bundles interconnecting larger bundles. Isolated

fibrils running crosswise formed a loose meshwork overlying the bundled fibrils (Fig 2C and

2D). Overall, bundles of different sizes were aligned in parallel and were separated from each

other by irregular spaces. On the other hand, both sides of the SIS membrane displayed a

fibrous and irregular appearance, with one face being smoother than the other (Fig 2E and 2I).

Both membrane faces were lacking the crumpled appearance of the other membrane types.

The fibers on the smoother side (Fig 2E–2H) of the SIS were thinner than those on the rougher

side (Fig 2I–2L). As seen from the rough side, the different collagen layers consisted of reticu-

lated fibers. A conspicuous loose meshwork of isolated fibrils was observed in the SIS mem-

brane as well (Fig 2G). While the cranial side of the CT membrane resembled that of the PL

and PE membranes (https://doi.org/10.6084/m9.figshare.7082999), the caudal surface of the

CT membrane showed a particular pattern (Fig 2M). Here, the continuous surface pattern

described above was interrupted by clusters of circular discontinuities that were often arranged

in parallel stripes (Fig 2M and 2N, arrows).

In all the membranes studied, the collagen fibrils displayed the characteristic periodic D-

banding pattern (Fig 2Q). Moreover, some fibrils revealed right-handed helical grooves (Fig

2R, arrows), which are indicative of supertwisted microfibrils. When bundled up, the collagen

fibrils sometimes were intertwined with each other. Overall, the fibril shape was very homoge-

neous and uniform for a given membrane type except for rare outliers.

Fibril diameter. The median diameter of the collagen fibrils was 70 nm in CT, 56 nm in

PE, 58 nm in PL and 47 nm in SIS. No statistically significant difference in fibril diameter was

found between PE and PL (Dunn’s test), while all the other membrane type-based compari-

sons revealed statistically significant differences. When considering the corresponding mem-

branes from different individuals, the median fibril diameters ranged from 60–81 nm in CT,

53–64.5 nm in PE and 50–64 nm in PL. The median diameter of collagen fibrils in SIS was in

the range of 45–48.5 nm. Within all membrane types, some of the samples (or pieces for SIS)

were significantly different from each other in terms of their median thickness (Kruskal-Wallis

and Dunn’s test).

D-periodicity. The median length of the D-period in collagen fibrils was 53 nm in CT

and PE, 52 nm in PL and 55 nm in SIS. With the Kruskal-Wallis and Dunn’s post hoc tests,

there was no statistically significant difference detectable between CT and PE, while all the

other membrane type-based comparisons revealed statistically significant differences. When

samples and pieces for every given membrane type. Statistical analysis showed significant differences within every membrane type. This

result illustrates the considerable heterogeneity of the material.

https://doi.org/10.1371/journal.pone.0205027.g001

Table 1. Thickness measurements of porcine membranes.

membrane # of measurements mean (μm) median (μm) SD (μm) Q1 (μm) Q3 (μm)

CT 99 804 785 118 733 860

PE 99 319 315 85 267 363

PL 99 90 82 38 63 103

SIS 135 133 130 44 104 168

For every membrane type, thickness was assessed at � 33 locations (triplicates each), i.e., at 3 spots on each of the 11 (CT, PE, PL) samples or 15 (SIS) pieces. The

Kruskal-Wallis one-way ANOVA test showed significant differences between all the membrane types.

https://doi.org/10.1371/journal.pone.0205027.t001
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Fig 2. SEM micrographs of porcine collagen membranes. (A)-(D) show different magnifications (200x to 10,000x) of one sample obtained from

the PL. The observed smooth surface morphology of PL is also detectable in PE and on the cranial face of CT. (E)-(H) show micrographs obtained

from the smooth side of SIS. (I)-(L) are images obtained from the rough side of SIS, and (M)-(P) depict the magnified micrographs from the

peritoneal (i.e., caudal) side of CT. The caudal side clearly shows circular discontinuities (arrows), whereas the cranial side does not (https://doi.org/

10.6084/m9.figshare.7082999). (Q) High magnification of fibril bundles reveals the typical periodic banding pattern of collagen fibrils. (R) Collagen

fibrils showing right-handed helical grooves (arrows) are occasionally found in all the membrane types.

https://doi.org/10.1371/journal.pone.0205027.g002
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comparing the D-period of different animals for each membrane type, the D-period median

values ranged from 52–57 nm in CT, 52–55 nm in PE and 51–55 nm in PL. For SIS, the

median D-period was in the range of 55–55.5 nm. The Kruskal-Wallis and Dunn’s post hoc

tests revealed significant differences between some samples of each membrane type (CT, PE,

and PL). Different pieces of SIS did not reveal significant differences in D-period.

SHG/TPEF

Descriptive image analysis. The collection of both the backward and forward SHG sig-

nals allowed an increased imaging depth, which was particularly valuable in CT. The forward

scattered SHG revealed finer and more defined collagen structures than did the backscattered

signal. The TPEF signal, which was used to detect elastin, was generally less intense than the

SHG signal. Membranes were analyzed in depth for collagen (depicted in blue, Fig 3) and elas-

tin (color-coded in green, Fig 3) structure.

Plica venae cavae. Fig 3A–3E show different sections and views of the images obtained

from PL. Overall, undulating collagen fibers formed a loose meshwork in parallel with the

membrane surface, which occasionally showed a preferential fiber alignment. A favored fiber

orientation was limited to discrete areas within individual collagen layers. A distinct network

of frequently branching straight cylindrical elastic fibers was present in the two most superfi-

cial layers (recto-verso) of the membrane (Fig 3A). In the intermediate layers, elastic fibers

were only sporadically seen (Fig 3B).

Fig 3C–3E show 3D views of the PL membrane with its elastin network and the undulating

collagen backbone. These micrographs substantiate the notion that the PL membrane consists

of a sandwich-like structure with inner layers being virtually devoid of elastin and superficial

layers comprising substantial amounts of elastin.

Pericardium. Unfortunately, full-thickness imaging of the PE membrane was not feasible.

Therefore, the samples were scanned from both sides to obtain as much information as possi-

ble. Collagen showed a particularly pronounced ripple in this membrane type. The collagen

fibers were arranged in layers that paralleled the surface (Fig 3F–3G). The degree of preferen-

tial fiber orientation was variable. Elastic fibers took a straight course and underwent extensive

branching. These fibers were most abundant in the superficial tissue layers, but their occur-

rence remained noticeable in deeper layers as well. Most elastic fibers ran parallel to the colla-

gen fibers, although a few elastic fibers running crosswise were regularly seen, especially in the

superficial layers.

Centrum tendineum. In the CT membrane, the ripple of the collagen was inconstant,

and some collagen fibers displayed a mostly straight course (Fig 3J). In this membrane, the col-

lagen fibers were also arranged in layers, which were parallel to the surface. Within these lay-

ers, the degree of collagen fiber orientation was variable. While some layers of collagen fibers

typically showed less uniformity regarding collagen fiber orientation and thus resembled an

interwoven fiber network (Fig 3J), others exhibited a higher degree of preferential fiber orien-

tation (Fig 3K). The shape of the elastic fibers in both superficial (Fig 3J) and deeper tissue lay-

ers (Fig 3K) was cylindrical, and their course was straight with occasional branching. 3D

images (Fig 3L and 3M) revealed a dense superficial elastin structure with several layers of elas-

tic fibers with varying orientation. The elastic fibers were rare but still present in the deeper tis-

sue layers.

Elastin/Collagen volumetric index. The volumetric index of elastin and collagen can

vary between +1 and -1, which correspond to pure elastin and collagen, respectively (a value of

-0.8 would indicate a collagen content of 90%). The mean elastin/collagen volumetric index

was -0.78 ± 0.15 for CT, -0.75 ± 0.13 for PE and -0.67 ± 0.11 for PL. The volumetric indexes in
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Fig 3. SHG and TPEF of native porcine membranes. Micrographs of single optical section planes and 3D composites of z-stacks generated by

SHG/TPEF reveal the collagen and elastic fiber arrangement in PL, PE and CT. Collagen is shown in blue, while the elastic fibers appear in green

(surface rendered). (A, F, J) are single optical section planes of a superficial tissue layer of the corresponding membrane type. The preferential

orientation of the collagen fibers exhibits some variation. Elastic fibers are abundant in the superficial tissue layers. (B, G, K) are single optical

section planes in deeper regions of the corresponding membrane type. The collagen alignment is variable again. Elastic fibers in deeper layers are

frequently observed in PE and CT but are rare in PL. (C, H, L) are 3D composites of the collagen structure alone, showing undulating collagen
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our membranes account for a collagen content clearly exceeding the elastin content. No statis-

tically significant differences in elastin/collagen volumetric indexes between different mem-

brane types were observed using one-way ANOVA and Bonferroni multiple comparison tests.

Discussion

The goal of the present study was to structurally characterize four porcine membranes that

have the potential to serve as a raw material for the production of novel collagen barrier mem-

branes. Corresponding tissues were selected on the basis of biological requirements such as

appropriate thickness and on the basis of their suitability for further downstream processing,

i.e., ease of harvest, abundance and homogeneity of the raw material.

As the slaughtering age (6 months) and weight (�140 kg) of feeding pigs are fairly stan-

dardized, individual body weight and age were not taken into account as variables in the pres-

ent study. Thus, minor variations in these parameters may be expected but are considered

irrelevant to the aims of the study. For the commercially available SIS, no information about

the number, age or weight of the pigs from which SIS was obtained was procurable. Further-

more, SIS was stored in saline prior to analysis, precluding its analysis by SHG microscopy.

Consequently, the provenance and manufacturing must be kept in mind when interpreting

the findings about SIS and when comparing SIS with the other three tissues.

Membrane thickness affects the mechanical properties of a membrane, defines the diffusion

distance between tissue compartments and, therefore, provides a rationale for selecting mem-

branes in view of specific applications in regenerative medicine. The average thicknesses of the

centrum tendineum (CT), pericardium (PE) and small intestinal submucosa (SIS) as determined

in our study were comparable to previous findings [32,37,43,44], whereas no data regarding

the thickness of the plica venae cavae (PL) was available. CT, which had a thickness greater

than 600 μm, may be predicted to be useful for laparoscopic hernia repair [37], whereas the

delicacy of PL supports its use in the reconstruction of thin-walled hollow organs.

Beyond the average thickness, the range of variation within a given membrane type may

also affect its suitability for the manufacture of products with defined specifications. Variations

in thickness measurements for the different membrane types studied mainly arose from inter-

individual differences. Furthermore, considerable variation within individual samples was typ-

ical for CT and PE. While thickness changes were gradual in CT, inhomogeneity in PE

resulted from discrete areas of fat deposition. The latter, however, should not affect the final

product as lipid extraction during further downstream processing is expected to minimize

these differences.

The surface morphology of a collagen membrane is likely to affect cellular behavior such as

attachment, migration, proliferation, stem cell differentiation and gene expression [29,45–47].

Therefore, an in-depth ultrastructural investigation of the membrane surfaces was performed.

Electron microscopy provides a resolution in the nanometer range [48], making this technique

the method of choice for studying collagen fibril structure. Furthermore, scanning electron

microscopy (SEM) offers a three-dimensional view of the sample surface and thus, was

adopted to image the collected tissue samples. NaOH cell digestion is a widely accepted

method to remove cellular components as well as interfibrillar elements while preserving

fibrils [17,39,40,49]. Our results corroborated this assertion, as collagen-specific D-periodicity

was observed confirming the presence of collagen fibers.

fibers arranged in planes parallel to the membrane surface. (D, I, M) are the same 3D composites also showing the elastic fiber network. (E) is a

cross-sectional view of the 3D composite of PL, revealing the sandwich-like structure arising from the superficial elastin network and the core of

the membrane that is almost devoid of elastin.

https://doi.org/10.1371/journal.pone.0205027.g003
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In membranes lined with a mesothelium, the collagenous structure seen after NaOH treat-

ment most likely represents the submesothelial connective tissue. This finding explains the

ultrastructural uniformity of the surfaces of CT, PE and PL. The epithelial lining of serous

membranes is known to feature mesothelial openings, which are the so-called lymphatic sto-

mata [50]. The lymphatic stomata establish connections from the visceral cavities to the sub-

mesothelial lymphatic system [51], and the stomata have been reported on both the muscular

portion and the tendinous portion of the diaphragm in different species [52,53]. Peritoneal

lymphatic stomata occur in circumscribed areas where they are arranged in clusters or strips

[50,52,53]. Maculae cribriformes are round or oval foramina in the submesothelial connective

tissue. They are located between the peritoneal mesothelial cells and the subperitoneal lym-

phatic lacunae [50,54] and are considered to function as a prelymphatic pathway [54]. The dis-

continuities observed in circumscribed areas of the caudal face of the CT membrane are thus

considered to represent maculae cribriformes, which is a structure that is essential for the

absorption of molecules and cellular elements into the lymphatic system.

Compared to the membranes with a mesothelial covering, both sides of the SIS membrane

were fuzzier, with one face being smoother than the opposite one. This finding is in accor-

dance with previous reports [55], which showed that the mucosal side of SIS was smoother

than the serosal (muscular) side. Rat SIS has been reported to consist of stacked collagen layers

with alternating fiber orientations of ±30˚ relative to the longitudinal axis of the intestine [56].

Additionally, Sacks and Gloeckner [44] occasionally found these two fiber populations in por-

cine SIS, but the researchers postulated an overall fiber alignment parallel to the longitudinal

axis of the intestine. Our own results corroborate the contention of a layered arrangement, but

a preferential fiber orientation was not systematically present. However, mechanical strain

during SIS processing may have distorted the original fiber orientation.

Fibril diameters were determined in SEM micrographs, which revealed statistically signifi-

cant differences between some membrane types. The median fibril diameter was lowest in SIS

and highest in CT, with values ranging only from 47 to 70 nm, respectively. The mean fibril

diameter and fibril diameter distribution in healthy tissues are known to depend on develop-

mental stage, age and type of tissue [22,23]. The average diameter of collagen fibrils is posi-

tively correlated with the tensile strength of a connective tissue; moreover, the fibril diameter

distribution is closely related to the duration and magnitude of mechanical strain the tissue is

exposed to [23]. Tissues such as flexor tendons experience a sustained mechanical load. These

tissues show a bimodal or multimodal distribution of fibril diameters, ranging from several

nanometers to more than 500 nanometers, which is associated with a higher tensile strength

[14,18,23]. In contrast, tissues that are less stressed, such as the cornea, blood vessels or inter-

stitial stroma, show a unimodal fibril diameter distribution. The exact diameter of these uni-

form fibrils varies depending on the tissue, where the range is narrow, but typically these

fibrils are not larger than 100 nm [14,18]. The membranes investigated in the present study all

revealed a unimodal distribution of small diameter fibrils. This finding is consistent with the

limited magnitude and duration of stress levels encountered by these membranes.

Collagen fibrils are assembled from filamentous subunits called microfibrils or subfibrils

[18,20,21]. Helical cleavages in a right-handed direction have been reported in corneal and

scleral collagen fibrils, as shown by SEM [20]. Similar helical cleavages were frequently

observed in our material as well, and although the inclination angles were not determined, the

angles were on the same order of magnitude of 17–18˚, as has been reported to be typical for

unimodal small diameter fibrils [18,21].

The median D-period was in the range of 53–55 nm for all the membranes studied. Simi-

larly, a mean D-periodicity between 52 and 54 nm has recently been reported for porcine peri-

cardium collagen in a TEM study [43]. This value is somewhat less than the typically reported
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63 to 70 nm for various tissues using different methods such as transmission electron micros-

copy (TEM) of plastic embedded tissue, scanning electron microscopy, low-angle X-ray dif-

fraction methods or atomic force microscopy [17,20,21]. Tissue preparation obviously has the

potential to affect D-periodicity [17,57], and drying the samples for SEM may have contributed

to this comparatively short D-period. Our measurements revealed statistically significant dif-

ferences in D-periodicity between some membrane types. However, these differences were

minimal in absolute terms and, hence, are not expected to be of functional relevance. In any

case, the presence of an axial periodical striation confirmed the collagenous nature of the

investigated tissue fibrils.

The major limitations of electron microscopy result from the fixation and dehydration pro-

cedures biological tissues have to undergo. In the present study, the processing was exacer-

bated by subjecting the tissue to a digestion with NaOH. Therefore, electron microscopy was

complemented by second harmonic generation (SHG) and two-photon excited fluorescence

(TPEF), techniques that allow the differentiation of collagen (SHG) and elastic (TPEF) fibers

in native membranes. SHG and TPEF also provide a comprehensive view of the fiber arrange-

ment throughout a membrane. This information is a prerequisite to assessing collagen archi-

tecture, which in turn, immediately affects the mechanical behavior of the membrane

[44,58,59]. The main SHG signal is transmitted forward. Depending on the molecular orienta-

tion and overall distribution of the emitters within the focal volume, some of the information,

however, is backscattered [60–62]. To collect the full SHG signal, both the forward and back-

ward signals were detected. SHG/TPEF substantiated the idea of a layered arrangement of

undulating collagen fibers. In general, the collagen fibers of all the membrane types studied

were arranged in layers parallel to the surface. For CT, the layering was particularly obvious,

but the collagen fibers were less undulated, as has been reported by others [58,63]. As opposed

to the situation in dogs [63], however, the CT membrane did not reveal two distinct orthogo-

nal layers. In the PE membrane, the collagen fibers were strongly undulating. This finding is

consistent with the reports of a more pronounced waviness of collagen fibers in pig PE than in

cattle PE [43]. The observation of a well-defined stratification in pericardium fibrosum also

substantiates previous findings [43,59,64]. Within the layers, the degree of collagen fiber align-

ment was variable; therefore, stacked layers with the same or alternating collagen fiber orienta-

tion, as well as layers with randomly organized fibers, were present. The multidirectional

arrangement of collagen fibers in the plane parallel to the pericardial surface is congruent with

the findings reported by [59,65] but differs from those of another study [43].

The presence of elastic fibers was very conspicuous in the most superficial tissue layers.

This result is fully compatible with the notion of an elastic network supporting the mesothelial

lining [17,66–68]. In deeper tissue layers, elastic fibers were usually less abundant, with the

smallest gradient being noticed in PE. This finding is in line with the previously reported pres-

ence of elastic fibers throughout PE [69,70]. In membranes thin enough to be completely

transilluminated such as the PL membrane, the elastin signal increased again toward the oppo-

site surface. Verhoeff-van Gieson staining of histological sections corroborated these observa-

tions (https://doi.org/10.6084/m9.figshare.7022669).

Taken together, these findings indicate that the decrease in elastin signal in deeper layers

does not result from signal loss. Most elastic fibers ran parallel to the collagen fibers. This find-

ing suggests a functional interaction of these two fibrous components that imparts the tissue

with both tensile strength and elasticity.

Overall, the present study provides an extensive morphological analysis of four porcine

membranes with potential for use in regenerative medicine and dentistry. We expect the

results to provide a rationale for selecting appropriate applications and for developing ade-

quate processing procedures.
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