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ABSTRACT
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies 
to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug 
Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, 
Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy 
for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 
investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite 
the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy 
and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker 
combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to 
shape the future development of ADCs. This review highlights the current status of marketed ADCs and 
those under clinical investigation with a focus on translational strategies to improve product quality, 
safety, and efficacy.
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Introduction

Antibody-drug conjugates (ADCs) are a rapidly expanding 
class of anticancer therapeutics, consisting of an antibody 
attached, via a chemical linker, to a potent cytotoxic agent 
also named as “payload.” The antibody is designed to target 
a specific antigen (receptor) that is highly expressed in tumor 
cells. ADCs deliver a drug with high selectivity to tumors, 
thereby minimizing their systemic exposure, potentially lead-
ing to an improved therapeutic index (greater efficacy and less 
side effects). The majority of ADCs follow a similar mode of 
action that involves antibody mediated receptor binding, ADC 
internalization, and subsequent payload release and execution 
of cytotoxicity (Figure 1). The success of ADCs relies on several 
critical factors: 1) target antigens (e.g., CD30, HER2, CD22, 
CD33 CD79b, Nectin 4, trophoblast-cell surface antigen 2 
(Trop2), B-cell maturation antigen (BCMA), CD19), 2) type 
of antibody (e.g., IgG1, IgG2, IgG4, nanobody, bispecific anti-
body), 3) type of payload (e.g., monomethyl auristatin 
E (MMAE), DM4, calicheamicin, DM1, monomethyl auristatin 
F (MMAF)), 4) type of linker (e.g., valine-citrulline, Sulfo- 
SPDB, hydrazone linker), 5) conjugation platform (e.g., 
lysine-, cysteine-, and site-specific conjugation), 6) target indi-
cations (e.g., breast cancer, lymphoma, leukemia, urothelial 
cancer, lung cancer, ovarian cancer). The complexity of 
ADCs requires state-of-the-art analytical techniques to ade-
quately characterize and control product quality and manufac-
turing consistency. This review highlights the recent advances 
in the clinical development of ADCs and the translational 
strategies associated with ADC manufacture and quality assess-
ment. Strategies to reduce toxicities of ADCs, including dosing 
regimens and payload-linker optimization, have been 

extensively discussed in previous reports,1, 2 and are not within 
the scope of this review.

The clinical pipeline for ADCs

To date, ten ADCs have been approved by the FDA, namely 
Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, 
Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™, with exclusively 
oncology indications (Table 1, Figure 2a). In addition, more 
than 80 ADCs are currently under active clinical development 
as monotherapy or combinational therapy for the treatment of 
various tumor types.

FDA Approved ADCs

Of the ten ADCs approved for clinical use (Table 1), six are 
indicated for treatment of hematological malignancies. 
Brentuximab vedotin (Adcetris®) is an ADC produced by 
Seattle Genetics (now known as Seagen). The anti-CD30 
(cAC10) ADC consists of ~4 MMAE molecules conjugated 
through cysteines of reduced interchain disulfide bonds via 
a protease-cleavable linker (Figure 2a). 3 Brentuximab vedotin 
was granted accelerated approval in 2011 and full approval in 
2015 for the treatment of classical Hodgkin’s lymphoma, sys-
temic anaplastic large cell lymphoma, and peripheral T-cell 
lymphoma.

In 2017, inotuzumab ozogamicin (Besponsa®), a Pfizer pro-
duct, was approved for treatment in adults with relapsed or 
refractory (R/R) B-cell precursor acute lymphoblastic leuke-
mia. The ADC targets the CD22 surface marker using an IgG4 
to deliver approximately 6 calicheamicin molecules. The 
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Figure 1. Cellular Processing of ADCs. Most ADCs undergo similar mechanisms to release the cytotoxic payload. In general, ADCs are designed for internalization and 
are processed via the endocytic pathway resulting in release of the payload and cytotoxic effect.

Table 1. ADCs approved for clinical use

ADC Target Antibody Linker Payload Indication Manufacturer
Approval 

Year

Adcetris® CD30 Chimeric 
IgG1

Valine-citrulline MMAE Previously untreated stage III or stage IV classical 
Hodgkin’s Lymphoma (cHL); relapsed or refractory 
cHL; cHL after failure of auto-HSCT or failure of at 
least two prior multi-agent chemotherapy 
regimens; systemic anaplastic large cell lymphoma, 
primary cutaneous anaplastic large cell lymphoma 
other CD30-expressing peripheral T-cell lymphomas

Seattle Genetics 
(Seagen)

2011

Kadcyla® HER2 Humanized 
IgG1

SMCC DM1 HER2-positive, metastatic breast cancer Genentech 2013

Besponsa®CD22 Humanized 
IgG4

ActBut Calicheacmicin Monotherapy in adults with relapsed or refractory 
B-cell precursor acute lymphoblastic leukemia (ALL)

Pfizer 2017

Mylotarg® CD33 Humanized 
IgG4

ActBut Calicheacmicin Single-agent and combinational therapy in newly- 
diagnosed CD33-positive acute myeloid leukemia 
(AML) in adults and relapsed or refractory CD33- 
positive AML in adults and pediatric patients 
(≥2 years).

Pfizer 2000; 2017

Polivy® CD79b Humanized 
IgG1

Valine-citrulline MMAE Combinational use with bendamustine and 
a rituximab product in adult patients with relapsed 
or refractory diffuse B-cell lymphoma (DBCL)

Genentech 2019

Padcev® Nectin- 
4

Human 
IgG1

Valine-citrulline MMAE Adult patients with locally advanced or 
metastatic urothelial cancer

Astellas Pharma, 
inc.

2019

Enhertu® Her2 Humanized 
IgG1

Tetrapeptide exatecan-derivative 
topoisomerase I inhibitor (DXd)

Adult patients with 
unresectable or metastatic HER2-positive breast 
cancer

Daiichi Sankyo 2019

Trodelvy® Trop-2 Humanized 
IgG1

Hydrolysable 
CL2A

SN-38 Topo I inhibitor Adult patients with metastatic 
triple-negative breast cancer who have received at 
least two 
prior therapies for metastatic disease.

Immunomedics 2020

Blenrep® BCMA Humanized 
IgG1

maleimidocaproylMMAF Adult patients 
with relapsed or refractory multiple myeloma who 
have received at least 4 
prior selected therapies

GSK 2020

Zynlonta™CD19 Humanized 
IgG1

Valine-alanine SG3249 PBD dimer adult patients with relapsed or refractory large B-cell 
lymphoma after two or more lines of systemic 
therapy, including DLBCL not otherwise specified, 
DLBCL arising from low grade lymphoma, and high- 
grade B-cell lymphoma

ADC 
Therapeutics

2021

Each ADC listed has been approved for treatment of oncological indications in the clinical setting. 
4-(4′-acetylphenoxy) butanoic acid (AcBut); 7-ethyl-10-hydroxycamptothecin (SN-38); Antibody–drug conjugate (ADC); B-cell maturation antigen (BCMA); classical 

Hodgkin’s lymphoma (cHL); GlaxoSmithKline (GSK); Mertansine (DM1); Monomethyl auristatin E (MMAE); Monomethyl auristatin F (MMAF); Pyrrolobenzodiazepine 
(PBD); Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC); Trophoblast-cell surface antigen 2 (Trop2)
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payload is conjugated via surface-exposed lysines using an 
acid-labile linker.4 This design nearly mirrors that of gemtu-
zumab ozogamicin (Mylotarg®), an anti-CD33 ADC with an 
average of 2–3 calicheamicin payloads conjugated to the anti-
body. Gemtuzumab ozogamicin was the first ADC to receive 
accelerated approval in 2000, contingent on fulfilling the post- 
marketing requirement of a randomized trial to confirm clin-
ical benefit (S0106; NCT00085709) (Figure 2a).5,6 However, the 
trial did not confirm the clinical benefit but instead raised 
safety concerns due to an increase in treatment-related fatal-
ities compared to the control group receiving standard che-
motherapy. The leading causes of fatality in the treatment arm 
were associated with infection and hemorrhage. Ultimately, the 
results of the trial led to the voluntary withdrawal of the 
application by Pfizer in 2010.7,8 Following modifications to 
the dosing schedule, which was associated with decreased 
incidence of hepatotoxicity and early mortality, and to address 
the critical unmet need for acute myeloid leukemia patients, 
gemtuzumab ozogamicin was granted approval again in 2017.9

Between 2019 and 2021, the FDA granted accelerated 
approval of polatuzumab vedotin (Polivy®) for R/R diffuse 
large B-cell lymphoma (DLBCL), belantamab mafodotin 
(Blenrep®) for R/R multiple myeloma, and loncastuximab tesir-
ine (Zynlonta™) for R/R B-cell lymphoma, respectively. 
Polatuzumab vedotin is an ADC produced by Genentech 
with an average of 3.5 MMAE molecules conjugated to 
cysteines of reduced interchain disulfide bonds on an anti- 
CD79b antibody (Figure 2a).10 Belantamab mafodotin is a first- 
in-class anti-BCMA ADC produced by Astellas Pharma, Inc. 
The ADC carries approximately 4 MMAF molecules conju-
gated via a non-cleavable linker to the cysteines of the 

afucosylated anti-BCMA antibody (Figure 2b). Belantamab 
mafodotin exhibits versatile mechanisms of action (MOA), 
including inducing cell death by delivering the MMAF mole-
cules to the target cell and inducing both antibody-dependent 
cellular cytotoxicity (ADCC) and antibody-dependent cellular 
phagocytosis (ADCP).11 Loncastuximab tesirine, or Lonca-T, 
is an anti-CD19 ADC manufactured by ADC Therapeutics for 
R/R B-cell lymphomas, including DLBCL.12 The ADC is the 
latest to be approved as of May 2021 and is the first to carry the 
pyrrolobenzodiazepine (PBD) dimer toxin (indicated as 
SG3249). Approximately 2.3 SG3249 molecules are attached 
to the antibody via a cathepsin-cleavable valine-alanine linker, 
facilitating DNA minor groove interstrand crosslinking of tar-
get cells following payload release (Figure 2a).

The remaining four ADCs are approved for treatment of 
solid tumors, including three for breast cancers and one for 
urothelial cancer. Ado-trastuzumab emtansine (Kadcyla®), also 
notated as T-DM1, is a conjugation of ~3.5 maytansinoid DM1 
molecules to the anti-HER2 antibody trastuzumab via surface- 
exposed lysines (Figure 2b).13 T-DM1, produced by 
Genentech, received FDA approval in 2013 for the treatment 
of HER-2 positive metastatic breast cancer (mBC), with addi-
tional approved uses including monotherapy and combina-
tional administration as well as an adjuvant treatment for 
early breast cancer. Similar to belantamab mafodotin, T-DM1 
induces cell death by release of the payload and ADCC activity 
retained in the parent mAb that inhibits HER2-signaling.14 

Despite such anti-tumor activity, resistance to T-DM1 remains 
a challenge and will be discussed further in later sections.15

To address this barrier, trastuzumab deruxtecan (Enhertu®), 
an anti-HER2 ADC with several unique properties, was 

Figure 2. Structure of ADCs Approved for Clinical Use. Design of each approved ADC, highlighting antibody isotype, linker chemistry, payload class and DAR are 
provided. (A) ADCs approved for hematological malignancies include Adcetris®, Polivy®, Mylotarg®, Besponsa®, Blenrep®, and Zynlonta™. (B)ADCs approved for solid 
tumors include Kadcyla®, Padcev®, Enhertu® and Trodelvy®.
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Table 2. ADCs currently under clinical investigation

Cytotoxic Payload ADC Target Conjugation Phase Conditions Clinical Trial Reference

Tubulin disruptor/ 
anti-mitotic

ASN004 5T4 Cysteine I Advanced solid tumors NCT04410224 22

IMGC936 ADAM9 Site-specific I Advanced solid tumors NCT04622774 23

ABGN-107 AG7 Undisclosed I Gastric, Colorectal, Pancreatic or 
Biliary Cancer

NCT02908451 24

AGS-16C3F ENPP3 Cysteine II Metastatic Renal Cell Carcinoma NCT02639182 25

HUMAX-AXL-ADC AXL Cysteine I/II Ovarian Cancer, Cervical Cancer, 
Endometrial Cancer, Non-Small 
Cell Lung Cancer (NSCLC), 
Thyroid Cancer. and Melanoma 
Sarcoma

NCT02988817 26

BA3011 AXL Undisclosed II I/II NSCLC Solid tumors NCT04681131 NCT03425279 27

CX-2009 CD166 Undisclosed II Advanced Breast Cancer NCT03149549 
NCT04596150

OBT076 CD205 Cysteine I Breast Cancer NCT04064359 28

TRPH-222 CD22 Site-specific I R/R B-Cell Lymphoma NCT03682796 29

SGN-CD228A CD228 Cysteine I Advanced solid tumors NCT04042480 30

F0002-ADC CD30 Lysine I R/R hematologic malignancies NCT03894150 31

Debio 1562 CD37 Lysine II R/R Diffused large B-cell lymphoma 
(DLBCL) and other forms of non- 
Hodgkin lymphoma

NCT02564744 32

STI-6129 CD38 Site-specific I R/R Systemic AL Amyloidosis NCT04316442
FOR46 CD46 Cysteine I 

I
R/R Multiple myeloma (MM) 

Metastatic castration-resistant 
prostate cancer

NCT03650491 
NCT03575819

33

IMGN-901 CD56 Lysine II R/R Wilms tumor, 
rhabdomyosarcoma, 
neuroblastoma, 
pleuropulmonary blastoma, 
malignant peripheral nerve 
sheath tumor, or synovial 
sarcoma

NCT02452554 34

CX-2029 CD71 Undisclosed I/II Solid tumors or DLBCL NCT03543813 35

STRO-001 CD74 Site-specific I Advanced B-cell malignancies NCT03424603 36

SAR408701 CEACAM5 Lysine

II 
II 
II 
I 

III 
I/II

Advanced solid tumors 
Non-squamous NSCLC

NCT04659603 
NCT04524689 
NCT04394624 
NCT03324113 
NCT04154956 
NCT02187848

37

ABBV-399 c-Met Cysteine
II 
I 
II

Advanced solid tumors 
Non-squamous NSCLC

NCT03574753 
NCT02099058 
NCT03539536

38

RC108 c-Met Undisclosed I Advanced malignant solid tumors NCT04617314
ABT-414 EGFR Cysteine II/III Glioblastoma NCT02573324 39

MRG003 EGFR Undisclosed II 
II 
II

Recurrent or metastatic squamous 
cell carcinoma of head and neck, 
unresectable, locally advanced 
or metastatic biliary tract cancer, 
and advanced NSCLC

NCT04838548 
NCT04838964 
NCT04868162

40

STRO-002 FolRα Site-specific I Ovarian and endometrial cancers NCT03748186 41

MORAB-202 FolRα Cysteine I/II 
I

Solid tumors NCT04300556 
NCT03386942

42

IMGN853 FolRα Lysine II 
II 
III 
II 
I 

III 
I 
II 

I/II

Endometrial, epithelial ovarian, 
fallopian tube, primary 
peritoneal, and triple negative 
breast cancers

NCT03832361 
NCT03835819 
NCT04296890 
NCT04274426 
NCT03552471 
NCT04209855 
NCT02996825 
NCT04606914 
NCT02606305

43

CDX-011 gpNMB Cysteine II Recurrent or refractory 
osteosarcoma

NCT02487979 44

OBI-999 Globo H Site-specific I/II Advanced solid tumor NCT04084366 45

PF-06804103 HER2 Site-specific I Solid tumors NCT03284723 46

ZW49 HER2 Undisclosed I HER2-expressing tumors NCT03821233 47

RC48 HER2 Cysteine II 
I 

I/II 
II 
II 

I/II 
II 
III 
II 

I/II 
III

Metastatic breast, gastric, biliary 
tract, and urothelial cancers

NCT04329429 
NCT04280341 
NCT04311034 
NCT03809013 
NCT04073602 
NCT04264936 
NCT03556345 
NCT04400695 
NCT03500380 
NCT03052634 
NCT04714190

48,49

ALT-P7 HER2 Site-specific I Breast cancer NCT03281824 50

ARX788 HER2 Site-specific I 
II

Breast and stomach neoplasms NCT03255070 
NCT04829604

51

(Continued)
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Table 2. (Continued).

Cytotoxic Payload ADC Target Conjugation Phase Conditions Clinical Trial Reference

FS-1502 HER2 Undisclosed I Advanced solid tumors and 
metastatic breast cancer

NCT03944499

A166 HER2 Site-specific I/II R/R HER2-expressing cancers NCT03602079 50

MRG002 HER2 Undisclosed I/II 
II

Advanced solid tumors, metastatic 
gastric/gastroesophageal 
junction cancer, and advanced 
metastatic breast cancer

NCT04492488 
NCT04742153

52

BAT8001 HER2 Undisclosed I/II 
I 

III

Advanced breast cancer NCT04151329 
NCT04189211 
NCT04185649

53

W0101 IGF-1 R Cysteine I/II Advanced or metastatic solid 
tumors

NCT03316638 54

SGN-B6A integrin-beta6 Undisclosed I Advanced solid tumors NCT04389632 55

SGN-LIV1A LIV-1 Cysteine I/II 
I 
II 
I 
I

Advanced or metastatic triple 
negative breast cancer

NCT03310957 
NCT01969643 
NCT04032704 
NCT03424005 
NCT01042379

56

BAY 94–9343 Mesothelin Lysine II 
I 

I/II 
I/II 
I/II

R/R ovarian, fallopian tube, or 
primary peritoneal cancers, 
advanced pancreatic cancer, and 
pleural mesothelioma

NCT03926143 
NCT03102320 
NCT03126630 
NCT03587311 
NCT03816358

57

BMS-986148 Mesothelin Undisclosed I/II Advanced solid tumors NCT02341625 58

RC88 Mesothelin Undisclosed I Advanced solid tumors NCT04175847
XMT-1536 NaPi2b Cysteine I 

I/II
Ovarian cancer and NSCLC NCT03319628 

NCT04396340

59

XMT-1592 NaPi2b Site-specific I/II Ovarian cancer and NSCLC NCT04396340 60

ARX517 PSMA Site-specific I Advanced solid tumors NCT04662580
VLS-101 ROR1 Lysine II 

I
Solid tumors and hematological 

malignancies
NCT04504916 
NCT03833180

61

SGN-STV STn Undisclosed I Advanced solid tumors NCT04665921
HUMAX®-TF-ADC TF Cysteine II 

I/II
Cervical cancer NCT03438396 

NCT03786081

62

JS108 Trop2 Undisclosed I Advanced solid tumors NCT04601285
DNA Damaging SYD1875 5T4 Site-specific I Solid tumors NCT04202705

MEDI2228 BCMA Site-specific I R/R MM NCT03489525 63

IMGN632 CD123 Site-specific I/II 
I/II

Acute lymphocytic leukemia, 
blastic plasmacytoid dendritic 
cell neoplasm, 
myeloproliferative neoplasm, 
and acute myeloid leukemia

NCT03386513 
NCT04086264

64

ADCT-602 CD22 Site-specific I/II R/R B-cell acute lymphoblastic 
lymphoma

NCT03698552 65

ADCT-301 CD25 Cysteine II 
I 
II 
II

Acute myeloid lymphoma, 
myelodysplastic syndrome, 
myeloproliferative neoplasm, R/ 
R Hodgkin lymphoma, and R/R 
DLBCL

NCT04639024 
NCT03621982 
NCT04052997 
NCT03589469

66

MGC018 CD276 Cysteine I/II Advanced solid tumors NCT03729596 67

TR1801 c-Met Site-specific I Solid tumors NCT03859752 68

ABBV-321 EGFR Site-specific I Advanced solid tumors NCT03234712 69

SYD985 HER2 Cysteine I 
II 
I 

III 
I

Metastatic breast cancer and 
endometrial carcinoma

NCT04602117 
NCT04205630 
NCT04235101 
NCT03262935 
NCT01042379

70

NBE-002 ROR1 Site-specific I/II Advanced solid tumors NCT04441099 71

Topo I DS-7300a B7-H3 Cysteine I/II Advanced solid tumors NCT04145622
DS-6157a GPR20 Cysteine I Gastrointestinal stromal tumors NCT04276415 72

U3-1402 HER3 Cysteine II 
II  

I 
I/II 
II 
I

Metastatic breast, colorectal, and 
non-small cell lung cancers

NCT04699630 
NCT04479436  

NCT03260491 
NCT02980341 
NCT04619004 
NCT04676477

73

DS-1062 TROP2 Cysteine II 
I 
I 

III 
I 

I/II

NSCLC (advanced or metastatic) 
and triple negative breast 
cancer

NCT04484142 
NCT04612751 
NCT04526691 
NCT04656652 
NCT03401385 
NCT03742102

74

DS-6000 CDH6 Undisclosed I/II Renal cell carcinoma and ovarian 
cancers

NCT04707248

SKB264 TROP2 Site-specific I/II Advanced or metastatic solid 
tumors

NCT04152499 75

RNA pol II HDP-101 BCMA Site-specific I/II R/R MM NCT04879043 76

TLR agonists BDC-1001 HER2 Undisclosed I/II HER-2 expressing advanced 
malignancies

NCT04278144

SBT6050 HER2 Undisclosed I Solid tumors NCT04460456 77

BCL2 family protein inhibitor ABBV-155 CD276 Cysteine I R/R solid tumors NCT03595059 78

(Continued)
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approved in 2019. Produced by Daiichi Sankyo for the treat-
ment of HER2-positive metastatic breast cancer following 
a prior trastuzumab-based regimen, trastuzumab deruxtecan 
(T-Dxd) uses the same parent IgG1 antibody as T-DM1, but it 
is conjugated to approximately 8 molecules of an exatecan- 
derivative topoisomerase I inhibitor, Dxd, via a protease- 
cleavable tetrapeptide linker (Figure 2b).16 Release of the pay-
load and influx into neighboring tumor cells exerts anti-tumor 
activity in heterogenous cell populations with varying levels of 
HER2 expression (high or low).17

Another ADC recently approved for breast cancer is sacitu-
zumab govitecan (Trodelvy®), an anti-Trop2 ADC produced by 
Immunomedics.18 Sacituzumab govitecan is a first-in-class 
ADC for the treatment of metastatic triple-negative breast 
cancer (TNBC) in patients who have received two prior treat-
ments for metastatic disease including chemotherapy, targeted, 
or immunotherapy. Sacituzumab govitecan is another example 
of an ADC product with a high drug-to-antibody ratio (DAR), 
consisting of ~7.6 SN-38 molecules, a moderately toxic topoi-
somerase I inhibitor, using a novel, hydrolysable linker called 
CL2A through cysteines (Figure 2b).18 SN-38 is the active drug 
form of the clinically used anticancer agent, CPT-11 or irino-
tecan. Interestingly, SN-38 was found to be more potent than 
CPT-11, but less potent than cytotoxic agents conventionally 
used in ADCs, including calicheamicin and MMAE 
derivatives.19 The use of moderately toxic payloads is being 
investigated as a method to increase payload concentration and 
overcome the challenges of stability and efficacy with higher 
DAR ADCs.

Of the four ADCs approved for solid tumors, enfortumab 
vedotin (Padcev®) is the only product approved for a solid 
tumor aside from breast cancer. Produced and marketed 
through a collaboration between Astellas Pharma Inc. and 

Seagen, enfortumab vedotin is a first-in-class therapeutic indi-
cated for the treatment of Nectin-4 positive urothelial cancer.20 

The ADC consists of a human IgG1 against nectin-4, a member 
of the nectin family of immunoglobulin-like adhesion mole-
cules known to mediate Ca+-independent cell–cell adhesion 
through the recruitment of cadherins and modulation of cytos-
keletal arrangements (Figure 2b).21 Approximately 3.8 MMAE 
molecules are conjugated through cysteines via the same clea-
vable linker technology previously used in other ADCs pro-
duced by Seagen.20

Novel ADCs in clinical trials

More than 80 ADCs are currently in active clinical trials, with 
a majority in phase I and I/II (Table 2, Figure 3a). Over 80% of 
the clinical trials are investigating ADC safety and efficacy in 
various solid tumors, while the remaining trials involve hema-
tological malignancies (Figure 3b). This may suggest a shift in 
recent years toward investigational ADCs for solid tumors 
following the earlier success of T-DM1 and recent approvals 
of T-Dxd, sacituzumab govitecan, and enfortumab vedotin. Of 
this list, there are approximately 40 different targets with sev-
eral ADCs against the same target (Table 2, Figure 3c).

HER2 is currently one of the most attractive targets for ADC 
development, with three anti-HER2 ADCs currently in phase 
III trials. One such anti-HER2 ADC is RC48, produced by 
RemeGen, joining an IgG1 anti-HER2 antibody, hertuzumab, 
to approximately four MMAE molecules via a protease- 
cleavable valine-citrulline linker through cysteine 
conjugation.48 In preclinical studies, RC48 demonstrated anti-
tumor activity at lower doses in trastuzumab and lapatinib 
sensitive and resistant xenograft models. Superior inhibition 
was also observed when compared to T-DM1.48 Early clinical 

Table 2. (Continued).

Cytotoxic Payload ADC Target Conjugation Phase Conditions Clinical Trial Reference

Undisclosed CC-99712 BCMA Undisclosed I R/R MM NCT04036461
JBH492 CCR7 Undisclosed I Chronic lymphocytic leukemia and 

non-Hodgkin lymphoma
NCT04240704

M1231 EGFR/MUC1 Undisclosed I Solid tumors, metastatic NSCLC, 
and esophageal squamous cell 
carcinoma

NCT04695847

B003 HER2 Undisclosed I Metastatic breast cancers NCT03953833
BB-1701 HER2 Undisclosed I Locally advanced/metastatic solid 

tumors
NCT04257110

DP303c HER2 Undisclosed II 
II 
I

Advanced ovarian and gastric 
cancers and solid tumors

NCT04828616 
NCT04826107 
NCT04146610

GQ1001 HER2 Site-specific I Advanced solid tumors NCT04450732
SHR-A1811 HER2 Undisclosed I 

I/II 
I

Advanced gastric or 
gastroesophageal junction 
adenocarcinoma, advanced 
NSCLC and colorectal cancer

NCT04513223 
NCT04818333 
NCT04446260

ARX517 PSMA Site-specific I Advanced solid tumors NCT04662580
BA3021 ROR2 Undisclosed I/II Solid tumors NCT03504488
MRG004A Tissue factor Undisclosed I/II Advanced or metastatic solid 

tumors
NCT04843709

ABBV-011 Undisclosed Undisclosed I R/R Small cell lung cancer NCT03639194
SHR-A1904 Undisclosed Undisclosed I Advanced solid tumors NCT04877717

Each ADC listed is currently under investigation in one or more active clinical trials as of 15 May 2021. The ADCs listed are all registered with clinicaltrials.gov with phase 
1-3 trials of “Not yet recruiting”, “Recruiting”, “enrolling by invitation”, and “Active, not recruiting” status investigating use in cancer indications. ADCs marketed for 
clinical use and developmental ADCs with trials that have been terminated, withdrawn, completed, or are of unknown status were excluded from the table. Disclosed 
information regarding target, payload action, and conjugation technique are provided or otherwise noted as “Undisclosed”. Data shown was derived from the U.S. 
National Library of Medicine ClinicalTrials.gov (access date 15 May 2021, search terms of “antibody drug conjugate” and “cancer”)). 

Diffuse large B-cell lymphoma (DLBCL); Multiple myeloma (MM); Non-small cell lung cancer (NSCLC); Relapsed and/or refractory (R/R)
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Figure 4. Mechanisms of ADC Resistance. Like other therapeutics, tumor cells may develop resistance against ADCs. (1) One mechanism, common to ADCs and 
monoclonal antibody therapeutics is a reduction in antigen binding, most notably by decreased antigen expression. (2) Most ADCs are internalized following antigen 
binding, however if internalization of the antigen-ADC complex is impaired, efficacy of the ADC can be reduced. (3) Following internalization, the antibody of the ADC is 
degraded leaving only the payload (cleavable linkers) or a linker-payload complex (non-cleavable linkers). Defects in the lysosomal degradation process can prevent 
release of the payload. (4) A common mechanism of resistance to ADCs is the elimination of the payload via drug transporters prior to payload-induced cytotoxic effect. 
Many traditional payloads of ADCs are substrates of these transporters. (5) Alterations to payload-specific cytotoxicity or cell death pathways can prevent eradication of 
the tumor cell.

Figure 3. Novel ADCs in Clinical Trials for Oncology. There are currently 82 novel ADCs in 150 active clinical trials registered with clinicaltrials.gov for cancer patients. 
(a) Most of the ADCs are currently under investigation in phase 1 trials, while a small percentage has advanced to phase 3. (b) Of the 150 ongoing trials, more than 80% 
are evaluating ADC safety and efficacy in solid tumors whereas less than 20% are trials for hematological malignancies. (c) There are 43 disclosed targets organized here 
by the number of ADCs designed to recognize them. Most of these targets are under evaluation by a single ADC, while some are being investigated by several different 
ADCs. (d) Of the 82 novel ADCs, most employ tubulin disrupting payloads, followed by DNA-damaging molecules, topoisomerase I inhibitors, and finally unique 
payloads such as TLR agonists, a BCL2-xL inhibitor, and an RNA polymerase II inhibitor. Many payloads remain undisclosed. (e) Most ADCs under clinical investigation 
either utilize the conventional cysteine conjugation strategy or site-specific conjugation platforms while few conjugate to surface lysines. Many techniques remain 
undisclosed. Data shown was derived from the U.S. National Library of Medicine ClinicalTrials.gov (access date 15 May 2021, search terms of “antibody drug conjugate” 
and “cancer”).

e1951427-8 A. Q. DEAN ET AL.



studies have shown a manageable safety profile in multiple 
phase I trials for HER2-positive malignancies. Notably, RC48 
advanced as a potential therapeutic for the treatment of meta-
static or unresectable urothelial carcinoma, demonstrating 
promising results in a phase II pivotal trial (NCT03507166), 
including an overall response rate (ORR) of 51.2% in pre-
treated HER-2 positive locally advanced or metastatic urothe-
lial carcinoma.49

Other similarities among ADCs under clinical evaluation 
include the class of payload. Most use a payload to induce 
tubulin disruption and mitotic arrest, while a small number 
cause DNA damage (Figure 3d). Topoisomerase inhibitors, as 
seen in approved ADCs such as trastuzumab deruxtecan and 
sacituzumab govitecan, have also begun to appear more fre-
quently in clinical trials, though they still represent a very small 
percentage. A number of novel payloads are emerging that 
target specific proteins or receptors. For example, several 
ADCs, such as the anti-HER2 immune-stimulating antibody 
conjugate BDC-1001, use a toll-like receptor 7/8 agonist as 
a payload to elicit immune-mediated tumor efficacy.79 BDC- 
1001 may activate human myeloid antigen-presenting cells 
within the tumor environment in addition to inducing 
ADCC and ADCP functions. Currently, BDC-1001 is being 
investigated in a phase I/II clinical trial for HER2-expressing 
solid tumors (NCT04278144). Another novel payload class 
targets the BCL-xL anti-apoptotic protein. ABBV-155 (mirzo-
tamab clezutoclax) is the sole ADC under investigation that 
uses this class of payload and is designed to target tumors 
expressing CD276.78 ABBV-155 is being evaluated in a phase 
I trial for R/R solid tumors alone or in combination with taxane 
therapy (NCT03595059). RNA polymerase II inhibitors, such 
as amanitin derivatives, can halt cellular transcription pro-
cesses and protein synthesis, resulting in apoptosis and cell 
death. HDP-101 is a BCMA-targeting ADC utilizing this deri-
vative under clinical evaluation in a phase I/II trial in R/R 
multiple myeloma patients (NCT04879043).76

Conjugation methodology can directly affect the quality of 
the ADC, and subsequently the safety and efficacy profiles of 
the product. There are three main methods of conjugation, 
including through cysteines of reduced interchain disulfide 
bonds, surface-exposed lysines, and site-specific techniques. 
Of the investigational ADCs in active clinical trials, most are 
manufactured via conventional cysteine conjugation or pro-
prietary site-specific technology licensed by the manufacturers. 
Only a small portion of ADCs in development use the conven-
tional lysine conjugation methodology, likely due to the vast 
heterogeneity that can result, as will be discussed in later 
sections (Figure 3e).

As site-specific conjugation technology can vary among 
developers, it is worth mentioning several ADCs produced 
via unique platforms. TRPH-222 is an anti-CD22 ADC con-
jugated to a maytansinoid payload using the SMARTag™ 
(Specific Modifiable Aldehyde Recombinant Tag) technology. 
This platform uses the chemoenzymatic method to engineer 
a reactive aldehyde (formylglycine) into the mAb for aldehyde- 
specific conjugation, herein resulting in a controlled maximum 
DAR of 2.29 TRPH-222 is currently in a phase I trial for R/R 
B-cell lymphoma, though early results have demonstrated this 
ADC to be well tolerated (NCT03682796). XMT-1592 is an 

anti-NaPi2b ADC that is currently under investigation in 
a phase I/II study for NaPi2b-expressing tumors 
(NCT04396340). The ADC is produced by Mersana 
Therapeutics using the Dolasynthen platform that targets the 
glycan-remodeled Asn297 for site-specific conjugation. The 
payload auristatin F-hydroxypropylamide (AF-HPA) is mem-
brane-permeable and capable of bystander killing, but it is 
further metabolized to the membrane-impermeable auristatin 
F (AF), locking the payload molecules within the cell to achieve 
“controlled bystander effect” (termed DolaLock).80 Preclinical 
data showed time-dependent accumulation of both AF-HPA 
and AF in cultured cancer cell lines and in xenograft 
tumors.81,82

Several novel antibody platforms are being applied to ADC 
development strategies. Variations in antibody size, such as the 
scFv-Fc format used in the ASN004 ADC, could demonstrate 
an advantage in permeability of solid tumors.22 Two 
PROBODY drug conjugates (PDCs) are under investigation 
for tumors expressing CD71 and CD166. Both surface markers 
are highly expressed in tumor tissues, while also ubiquitously 
expressed in normal tissues as well. PDCs are masked conju-
gates that restrict normal tissue recognition and are unmasked 
by tumor proteases, thereby restricting on-target toxicity out-
side the tumor site.83,84 CX-2029, an anti-CD71 PDC, is cur-
rently under evaluation in a phase I/II trial for solid tumors or 
DLBCL (NCT03543813). CX-2009 is an anti-CD166 PDC in 
a phase I/II trial for unresectable solid tumors (NCT03149549) 
and a phase II trial to assess activity as a monotherapy or 
combinational therapy in TNBC (NCT04596150).

Challenges in the development of ADCs

Despite the growing number of ADC approvals, challenges 
remain in the development of ADCs that demonstrate both 
superior safety and efficacy in the clinic. One unexpected 
challenge many developers face during clinical evaluation is 
the inability to demonstrate benefits over the control arm, such 
as occurred with MM-302. MM-302 was an anti-HER2 mAb 
conjugated to liposomal doxorubicin.85 The phase II 
HERMIONE trial (NCT02213744) was designed to determine 
the benefit of MM-302 treatment with trastuzumab compared 
to standard care chemotherapy as either gemcitabine, capeci-
tabine, or vinorelbine in HER2-positive locally advanced 
mBC.86 However, the study was terminated due to lack of 
benefit over comparator treatments. Another ADC to report 
similar circumstances was AbbVie’s rovalpituzumab tesirine 
(Rova-T), which targeted cancer-stem cell-associated delta- 
like protein 3 (DLL3).87 Rova-T consisted of an IgG1 anti- 
DLL3 mAb conjugated to two PBD dimers via a valine- 
citrulline dipeptide linker. The ADC was intended to treat 
small cell lung cancer, which is known to overexpress DLL3 
in 80% of small cell lung cancer patients with no expression on 
normal tissues.87 Encouraging results in the phase I trial 
reported 18% ORR in assessable patients and a 38% ORR in 
patients with high DLL3 expression (NCT01901653), but safety 
and efficacy concerns were raised due to the results of the phase 
II trial TRINITY (NCT02674568) in which the primary end-
point was not achieved and high toxicity rates were reported. 
The most frequent event among patients was pleural effusion, 
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which is considered to be a toxicity associated with PBD 
dimers.88,89 Ultimately, the results of the phase III trials, 
TAHOE (NCT03061812) and MERU (NCT03033511), in 
which a lack of survival benefit over the control arm was 
observed, led to the complete discontinuation of the develop-
ment of Rova-T by AbbVie.90

Further challenges in the development of ADCs as thera-
peutic agents involve toxicities that can be attributed to con-
stituents of the ADC product. Such events have been 
investigated, mainly focusing on different adverse effects that 
can be attributed to specific payloads. For example, use of the 
calicheamicin payload has been associated with increased inci-
dences of liver injury and hepatotoxicity.7,91 Specifically, 
increased incidences of veno-occlusive disease, also referred 
to as sinusoidal obstruction syndrome, and drug-induced 
liver injury were observed during clinical trials and post- 
approval use of gemtuzumab ozogamicin, despite dose reduc-
tion efforts that led to its re-approval in 2017. Similar occur-
rences have also been observed with the use of inotuzumab 
ozogamicin.92,93 A comprehensive review published in 2016 
summarized key clinical toxicities of other approved and devel-
opmental ADCs.1 In general, their findings showed peripheral 
neuropathy and neutropenia induced by MMAE, which is 
consistent with adverse events listed for those approved 
ADCs carrying an MMAE payload. MMAF was associated 
with ocular toxicities, which is listed as a precaution for the 
administration of belantamab mafodotin. Differences in clin-
ical toxicities observed between payloads of the same class, e.g., 
MMAE and MMAF, may indicate linker-associated contribu-
tions to these events. Incidences of neutropenia and gastroin-
testinal system effects have been observed with some ADCs 
carrying DM1, including T-DM1 and IMGN-901, with 
increased levels of liver enzymes occurring in some patients 
administered T-DM1.1,34 Neutropenia may be a common 
event among ADCs carrying a topoisomerase I inhibitor, as is 
observed with trastuzumab deruxtecan, sacituzumab govite-
can, and even some developmental ADCs such as U3- 
1402.1,94 Myelosuppression, effusion, and inflammation were 
observed with ADCs carrying PBD dimers, such as Lonca-T 
and the previous Rova-T and may require concomitant medi-
tation to reduce the incidence of side effects.69,95 As new pay-
loads continue to emerge in clinical development, clinical data 
are awaited to understand safety profiles specific to those 
agents. Understanding events that may be associated with 
specific payloads can not only aid developers in ADC design 
but also spur the development of more novel payloads that are 
less likely to induce harmful events in patients.

Over time, tumors can develop mechanisms to overcome 
drug efficacy, thereby limiting the success of the treatment. As 
ADCs are multifunctional therapeutics, some pathways of 
resistance can develop against individual components of the 
ADC (Figure 4). One mechanism of resistance could emerge 
from modulations in antigen recognition by the antibody. This 
could result from downregulation of the target from the cell 
surface, rendering the ADC relatively unable to exert their 
cytotoxic effect.96 Several preclinical studies have generated 
models of acquired resistance, in which cells consistently trea-
ted with the ADC over time eventually showed decreases in 
target antigen protein expression along with other effects.97,98 

In this regard, novel formats of mAbs that can be incorporated 
into ADCs, such as bispecific or biparatopic mAbs that target 
two different antigens or nonoverlapping epitopes on the same 
target antigen, respectively, could aid in overcoming antigen- 
specific mechanisms of resistance. Li et al. synthesized 
a biparatopic anti-HER2 ADC conjugated to tubulysin. 
Preclinical data indicated its ability to restrict tumor growth 
in four T-DM1-resistant cell lines, though it is not clear 
whether this is entirely due to the antibody format, or if the 
novel linker and payloads included in the ADC design con-
tributed as well.99 ZW49, a new biparatopic anti-HER2 ADC, is 
currently undergoing evaluation in a phase I clinical study 
(NCT03821233). M1231, a bispecific anti-EGFR/MUC1 ADC 
is also in a phase I trial (NCT04695847).

Another common mechanism of drug resistance is the 
removal of the payload via ATP-binding cassette 
transporters.100 Many of the cytotoxic warheads used in 
ADCs may be substrates for these pumps, which can cause 
drug efflux out of the target cell and a reduction in drug 
efficacy.101 Clinical data have demonstrated that efflux pumps 
contribute to the reduced efficacy of gemtuzumab 
ozogamicin.102,103 For instance, calicheamicin has been 
shown to be a substrate of multi-drug resistance mutation 1 
(MDR1), and MDR1 expression and activity has been asso-
ciated with response to gemtuzumab ozogamicin with similar 
preclinical results observed for inotuzumab ozogamicin.102–104 

Increased drug transporter protein expression has also been 
observed in T-DM1 resistant cells in addition to decreases in 
surface antigen expression.105 Thus, the ability of the small 
molecule to bypass efflux pump-mediated drug resistance 
should be considered during the selection of the cytotoxic 
payload. Other mechanisms of drug resistance may be influ-
enced by any of the several steps involved in the ADC MOA: 1) 
defects in internalization, trafficking, and recycling, 2) lysoso-
mal degradation leading to impairment of drug release, or 3) 
alterations in cell death pathways (Figure 4).100 Preclinical 
evaluation of these and other potential mechanisms is critical 
to optimizing ADC development and improving clinical ben-
efit. More attention should be paid to the technical considera-
tions involving ADC design that ultimately influence cellular 
uptake and processing of the ADC.

Key considerations for ADC design

ADCs use three components to achieve greater clinical benefit, 
i.e., the mAb, the cytotoxic payload, and a chemical linker. By 
combining a targeting molecule with a cytotoxic payload, con-
ceivably, the therapeutic window of ADCs is wider than treat-
ment with small-molecule drugs alone. Several reviews have 
highlighted the complexity of ADCs and the challenges in 
developing products with improved therapeutic index.106–109 

Optimization of ADC design is critical and requires a more 
mechanistic understanding of the ADC and its components to 
heighten the clinical benefit of ADCs.

1. Target antigen

Improvement of ADC safety and efficacy profiles relies signifi-
cantly on selection of the target antigen and its interaction with 
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the mAb of the ADC. Two critical parameters involved in the 
selection of the target antigen are tumor specificity and expres-
sion level.110,111 Ideally, the chosen target will exhibit a high 
level of tumor-specific or disease-specific expression and be 
minimal to absent in normal tissues. Specificity of the target is 
critical to reducing toxicity of ADCs, and thus plays 
a substantial role in their overall success. For oncological 
indications, the antigen can be expressed as a surface receptor 
on tumor cells, tumor stem cells, or within the tumor vascu-
lature and microenvironment.112,113 In best cases, the antigen 
will also be expressed homogenously across tumor cells at 
similar levels.111 ADCs with sufficient control of bystander 
effect may overcome the challenge of heterogenous cell popu-
lations within a tumor.

2. Monoclonal antibody

After selecting a target, mAbs are produced and screened based 
on selectivity, tumor penetrating ability, and isotype.111 ADCs, 
both in development and approved, belong to the IgG1, IgG2, 
or IgG4 subclasses. These subclasses differ in cross-linking 
capabilities and biological activity, including ADCC and com-
plement-dependent cytotoxicity (CDC) effector functions.114 

IgG1 is commonly used due to its enhanced delivery capabil-
ities and additional effector functions compared to IgG2 and 
IgG4.115 However, when considering the target characteristics 
and the proposed MOA, effector function may not, in some 
cases, be desirable, and IgG2 and IgG4 antibodies may be 
preferred. Isotype selection can also play a role in drug-linker 
conjugation, particularly when conjugating via cysteine 
residues.

2.1 Size of the monoclonal antibody

After selection of target antigen and antibody isotype, it is 
pertinent to consider the size constraints of the antibody for 
targeting tumors. Classical ADCs include a full-length anti-
body molecule, which may present challenges for the uptake 
and permeability of some solid tumors.116 To generate ADCs 
with improved uptake and penetration, several strategies in 
novel ADC design have pivoted toward the use of smaller 
formats of the antibody, including Fab-drug conjugates, scFv- 
drug conjugates, and diabody-drug conjugates.117–119 

However, these smaller formats may be associated with faster 
clearance compared to the full-length IgG.116 Although the 
theoretical potential for these smaller formats exists, much 
work is still needed to prove a clear benefit.

2.2 Antibody modifications

Another important factor to address when considering ADC 
design is the posttranslational modifications (PTMs) of the 
antibody. Like most proteins, antibodies are subject to mod-
ifications both during antibody production and storage. 
Modifications can affect the stability, structure, and biological 
activity of the antibody, and consequently the ADC.120 PTMs, 
such as deamidation, sialylation, and c-terminal lysine clea-
vage, can affect the net charge of the mAbs.121 These changes 
can lead to the production of charge variants and heterogeneity 

of the ADC with wider consequences for antibody structure 
and biologic activity. With regard to the ADC, these changes 
can interfere with target-ADC binding and ADC entry into the 
tumor cells, resulting in lower efficacy of the ADC 
molecule.122,123 ADCC or CDC functions may be inhibited 
through PTMs, further hindering the ADC efficacy. To ensure 
batch-to-batch consistency, it is critical that the ADC charge 
profile and other modifications that may have been introduced 
are thoroughly characterized during development.

2.3 ADC internalization

Most ADCs are designed against a target antigen that displays 
efficient internalization via receptor-mediated endocytosis to 
facilitate ADC entry upon recognition.124 Receptor internaliza-
tion has long stood as a requirement for effective ADC design 
to enable release of the cytotoxic payload with limited effects 
on healthy cells.125 To design a successful internalizing ADC, 
target accessibility, density, internalization rate, and intracel-
lular trafficking of the ADC must be assessed. In general, ADCs 
against targets expressed on solid tumors have more physical 
barriers to overcome to reach the antigen following adminis-
tration compared to hematological malignancies in which the 
targets are readily exposed to circulating ADCs.126 Further, 
targets can sometimes “shed” from the surface and be released 
into the blood, posing challenges against loss of ADC in circu-
lation, clearance by the liver, and overall lower efficacy.127 

Determination of the receptor expression (receptor copies/ 
cell), internalization rate, and rate of recycling can all directly 
affect ADC entry into target cells and can be difficult to 
address.

While it is a known fact that the targeting mAb should 
exhibit high affinity toward the antigen, establishing 
a minimum threshold for target binding can be variable.109 

As stated earlier, target density and internalization rates are key 
to ADC entry, metabolism, and payload accumulation within 
the tumor cell, but these may also be challenging to optimize. 
Efforts have been made to explore the potential of non- 
internalizing ADCs that target structural components of the 
environment surrounding the tumor cell.128,129 Such an 
approach may help overcome the penetration barriers of solid 
tumors by targeting an antigen highly expressed within the 
tumor stroma.113 In such cases, proteases shed from nearby 
apoptotic cells allow for the release of the payload which, due to 
its smaller size, can cross the membrane of tumor cells.130 

A recent study showed anti-tumor activity in vivo of a non- 
internalizing ADC toward Gal-3BP protein that is secreted by 
cancer cells and localized to the cell surface. Due to accumula-
tion at the surface of cancer cells, toxicity to normal tissues was 
limited, suggesting that non-internalizing ADCs can exhibit 
both potency and safety.131 Similarly, ABBV-085, produced by 
AbbVie, is an anti-LRRC15 ADC that was recently evaluated in 
clinical trials.132 Leucine-rich repeat containing 15 (LRRC15) is 
a member of the LRR superfamily with expression primarily on 
the surface of cancer-associated fibroblasts and stromal cells.133 

In preclinical studies, ABBV-085 demonstrated anti-tumor 
activity in several LRRC15-positive cancer models, as well as 
LRRC15 stromal fibroblast-positive/cancer-negative 
models.133 The cell permeable properties of the two MMAE 

MABS e1951427-11



molecules conjugated to the antibody allowed for bystander 
activity, while an increase in immune infiltrate was also 
observed in the tumor microenvironment, both contributing 
to the efficacy of the ADC. Despite such promising preclinical 
data, only 14.8% of sarcoma patients treated with ABBV-085 at 
the recommended phase I b dose demonstrated a confirmed 
partial response, while 29.6% maintained stable disease, and 
progressive disease was observed in 40.7%.132 As of May 2021, 
no clinical trials that include ABBV-085 are ongoing. More 
studies are needed to look into the effectiveness of non- 
internalizing and tumor microenvironment-directed ADCs 
compared to those that are classically internalized by tumor 
cells in the clinical setting.

3. Cytotoxic payload

While the mAb is arguably the most important component in 
ensuring ADC efficiency, the cytotoxic payload is responsible 
for the execution of tumor cell killing.112 The cytotoxic payload 
(sometimes referred to as the “warhead”) is typically a small- 
molecule drug with the purpose of eliciting cell killing of the 
targeted tumor cells/tissues. The first generations of ADCs 
used drugs approved for clinical use, including doxorubicin, 
and resulted in low clinical activity.134 The next wave of ADCs 
adopted the use of more potent small-molecule drugs that were 
too toxic as a stand-alone treatment, but showed promise in 
efficacy when selectively delivered to target cells with IC50s in 
the 0.01–0.1 nM range.134 Even so, due to biodistribution, 
uptake, and loss of conjugation in circulation, it is estimated 
that only 1–2% of ADC payload will reach the intracellular 

target.108 Thus, the potency of the payload must be high (ide-
ally in the subnanomolar range) so that even at a lower accu-
mulated concentration, the ADC can still eradicate the target 
cells. To achieve this goal, current ADCs mostly incorporate 
potent molecules that either disrupt tubulin polymerization or 
induce DNA-damage (Figure 3d).24 Understanding the MOA 
of the ADC payloads and its applicability to the target is 
critical. While many ADCs in development currently use anti- 
mitotic tubulin disruptors for their selective eradication of 
rapidly proliferating cells, these payloads may not be effective 
toward targets that are not highly proliferative. It is worth 
noting the emergence of various toxic molecules conjugated 
to antibodies that are currently being investigated in clinical 
trials. Payloads such as topoisomerase inhibitors are gaining 
interest as cytotoxic agents that may be less toxic, allowing for 
higher DAR ADCs. This effect can be observed in the recently 
approved HER2-targeting ADC, trastuzumab deruxtecan, in 
which both a high DAR and reduced toxicity of the payload 
were used to produce a molecule with increased stability, 
efficient cytotoxic effect, and improved safety profile compared 
to T-DM1. Other payloads such as PBD dimers that exhibit 
high potency are also emerging for ADC design. These agents, 
as seen in the recently approved Lonca-T, can exert cytotoxi-
city at low concentrations with other advantages including 
efficient bystander cell killing and the potential for low sys-
temic toxicity due to such short half-lives, dependent on sev-
eral factors, such as conjugation strategies. This often results in 
low DAR species (e.g., DAR2) and lower dosing compared to 
ADCs carrying less potent payloads to balance the anti-tumor 
activity and safety profile of PBD-ADCs. Novel payloads such 

Table 3. Analytical characterization of ADC CQAs

Quality Attributes

Analytical Methods

Cysteine Conjugates Lysine Conjugates
Site-Specific 
Conjugates

DAR, DLD, and 
unconjugated 
species (DAR-0)

● HIC
● Native IM-MS, native SEC-MS, or native sheathless CE-MS
● SEC-HIC two-dimensional HPLC (2D-LC)
● HIC-RPLC-MS or HIC-SEC-MS (2D-LC-MS)
● HIC-SEC-IM-MS (2D-LC-IM-MS)

● UV/Vis spectroscopy (only for average DAR)
● CIEF

● HIC
● RPLC
● RPLC-MS
● SEC-MS on 

deglycosylated 
ADC

Conjugation sites ● RPLC-MS/MS or sheathless CE-MS/MS ● RPLC-MS/MS (combining tryptic peptide 
mapping with Asp-N and/or Glu-C peptide 
mapping)

● RPLC-MS/MS

Posttranslational 
modifications (PTMs)

● HILIC-MS or sheathless CE-MS/MS on Fc-fragments
● HIC-RPLC-MS on reduced ADC

● mCE-MS
● CEX-RPLC-MS

● RPLC-MS/MS

Free drug species ● RPLC on ADC-free sample
● SEC, SEC-RPLC, or solid phase extraction LC (SPE) coupled with 

RPLC-MS (SPE-RPLC-MS) analysis of untreated ADC sample

● RPLC on ADC-free sample
● SEC or SEC-RPLC analysis of untreated ADC 

sample

● RPLC on ADC- 
free sample

Size variants ● SEC
● SEC-HIC or SEC-RPLC

● SEC
● SEC-PRLC
● CE-SDS

● SEC
● Analytical ultra- 

centrifugation 
(AUC)

● CE-SDS
Charge variants ● CIEF ● CIEF ● IEX

The listed techniques have been used to characterize the CQAs of cysteine, lysine, and site-specific conjugates. 
Antibody–drug conjugate (ADC); Analytical ultracentrifugation (AUC); Capillary isoelectric focusing (CIEF); Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS); 

Cation exchange chromatography (CEX); Hydrophobic interaction chromatography (HIC); Hydrophilic interaction liquid chromatography (HILIC); Ion mobility mass 
spectrometry (IM-MS); Microfluidic capillary electrophoresis (mCE); Mass spectrometry (MS); Reverse phase liquid chromatography (RPLC); Size exclusion chromato-
graphy (SEC); Solid phase extraction (SPE); Ultraviolet-visible spectroscopy (UV/Vis)
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as immunostimulatory agents, RNA polymerase II inhibitors, 
and pro-apoptotic BCL-xL inhibitors are also emerging. 
Further, the choice of payload should also consider potential 
drug resistance mechanisms. Although payloads such as 
MMAE and calicheamicin have been shown to be good sub-
strates of P-glycoprotein, others such as PBD dimers and some 
topoisomerase I inhibitors have been shown to exhibit anti- 
tumor activity in multi-drug resistant cancer cells.135,136

While aggregation due to unfolding and exposure of certain 
hydrophobic residues are concerns that exist for the parent 
mAb, this challenge is heightened with regard to ADCs due to 
conjugation methods and linker-payload additions.137 

Research groups have demonstrated the effects of small- 
molecule drugs on the hydrophobicity of the ADCs, making 
the drug more prone to aggregation, particularly under thermal 
stress.138,139 As with unconjugated mAbs, aggregation 
decreases the activity of the ADC and can render the molecule 
less effective. Apart from aggregation due to linkage, 

hydrophobic drugs that are conjugated to the mAb can, if 
exhibiting efficient hydrophobicity, enter neighboring cells 
upon release from specific chemical linkers and induce killing 
of non-target cells. For ADCs carrying PBD or MMAE such as 
the vedotin ADCs, the payload’s cell permeability allows for 
a bystander killing effect within a heterogenous population. 
T-Dxd has also been reported to cause bystander killing via 
drug efflux into neighboring antigen-negative tumor cells.17

Several conjugation methods address the issue of hydropho-
bicity by using hydrophilic spacers, linkers, or payloads.140,141 

In a recent study, Satomaa et al. demonstrated the enhanced 
stability of a novel hydrophilic payload that allowed for higher 
DAR achievement and low toxicity as a free drug while main-
taining high cytotoxicity in target cells.142 This auristatin glyco-
side, β-D-glucuronyl-monomethylauristatin E also showed 
efficient internalization, metabolic processing, and bystander 
killing effect following conversion to MMAE through cellular 
metabolism.142 Further study into a hydrophobicity balance is 

Figure 5. Expanding the ADC Framework. New monoclonal antibody formats, conjugation methods, linker and spacer techniques are emerging to optimize safety 
and efficacy profiles for oncological indications.
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needed to promote the efficacy of ADCs, hinging on both 
linker-payload choice and conjugation characteristics.

4. Linker chemistry and conjugation methods

The chemical linker is a critical component of the ADC that 
joins the mAb and the cytotoxic payload. The linker facilitates 
ADC stability in circulation until the ADC reaches the target 
cell and the payload is released.143 There are two classes of 
linkers: cleavable and non-cleavable.144 Cleavable linkers can 
be cleaved in response to certain environment factors to release 
the free drug into the cytosol.145 This includes hydrazine lin-
kers that are cleaved in response to the acidic environment of 
the endosome and lysosome, exhibited in gemtuzumab ozoga-
micin. Cleavable linkers can also be cleaved in the presence of 
proteases or reducing agents, such as cathepsin B or high levels 
of glutathione.145 For non-internalizing ADCs, drug release 
relies on extracellular cleavage by glutathione and proteases 
that have been shed as a result of tumor cell death.146 Non- 
cleavable linkers are resistant to proteolytic degradation and 
rely on the full degradation of the antibody to release the 
attached linker-payload complex. This requires the payload to 
remain active, while linker bound.144 Because of this, non- 
cleavable linkers have been proposed as a strategy to overcome 
drug resistance as the linker-payload complex is no longer 
a substrate for MDR1.147 Therefore, the proposed MOA of 
the ADC can be a determinant for linker choice.

For some ADCs, the chemical linker may also serve to 
balance the hydrophobicity between the mAb and payload, 
therefore reducing potential aggregation. In this regard, ana-
lyzing the bioanalytical significance of all components of an 
ADC is important for evaluating the safety and efficacy of the 
drug. Hydrophilic linkers and spacers, including cyclodextrins, 
polyethylene glycol, and other polymers, may play a role in 
improving the stability of circulation, potency toward the tar-
get cells, and overall pharmacokinetics of the conjugate.148–150

In addition to selectively choosing a chemical linker, the 
method by which the payloads are conjugated to the antibody 
is essential in modulating the homogeneity and potency of the 
ADC.151 Until recently, conventional methods relied upon 
lysine and interchain cysteines to conjugate cytotoxic mole-
cules to the antibody. In the case of lysine conjugation, hetero-
geneity was unavoidable due to the large number of lysines 
available for conjugation compared to cysteine conjugation.144 

Due to the lack of control of conjugation site and quantity, 
lysines proximal to Fc binding can be affected by drug con-
jugation, resulting in lower efficiency of binding and cytotoxi-
city of the ADC.152

Currently, most ADCs in use or under development rely on 
interchain disulfide cysteines for conjugation, in which the 4 
(IgG1 and IgG4) or 6 (IgG2) interchain disulfide bonds are 
reduced by an excess reducing agent, namely tris(2-carbox-
yethyl)phosphine or dithiothreitol.153 This spares disruption 
of intrachain disulfide bonds while freeing sulfhydryl groups 
from cysteine residues participating in interchain disulfide 
bonds (Figure 3e). The resulting product is a mixture of 
ADCs containing 0–8 drugs per parent IgG1 or IgG4 and 0– 

12 per IgG2, with predominantly even numbered DAR (0, 2, 4, 
6, 8, 10, 12) species within the ADC mixture. Homogeneity of 
ADCs has improved because substantially fewer cysteines are 
available for conjugation following reduction compared to 
lysines. However, even with more homogenous methods, con-
trol over DAR and drug-load distribution (DLD) can still be 
enhanced. Optimizing the DAR and DLD is critical for the 
pharmacokinetics of the ADC and eradication of target cells.154 

Ensuring homogeneity across all ADCs produced is a key 
aspect of quality control for developers and manufacturers to 
advocate for the safety of the product. Early studies initially 
indicated that DAR of 2–4 drug molecules per antibody is ideal 
for ensuring stability in circulation and efficacy.155 ADCs with 
too few conjugated payloads may exhibit low potency, while 
increased off-target toxicity and rapid clearance were pre-
viously observed in ADCs with higher DAR.155 However, the 
recent approvals of trastuzumab deruxtecan and sacituzumab 
govitecan have challenged this previously defined limit of 4, as 
both carry nearly eight payloads per antibody. Further, there is 
a broad range of average DAR in ADCs under clinical evalua-
tion, with as low as 1 payload per antibody such as BDC-1001 
and as many as 15 such as ASN004. The DAR may also 
influence dosing, antibody concentration to be administered, 
and subsequent tumor uptake of the ADC. ADCs of low DAR 
may be administered at higher doses depending on payload 
potency, which delivers a higher antibody concentration to 
facilitate ADC penetration into solid tumors. ADCs of high 
DAR may be administered at lower doses, which may lead to 
a lower antibody concentration and poorer tumor uptake. This 
notion was supported by in vitro studies involving co- 
administration of DAR0 or the naked antibody.156,157

Novel site-specific conjugation methods using unique linker 
chemistries that yield homogenous ADCs of desired DARs 
have emerged.107 One technique involves installing natural or 
unnatural amino acids into the antibody sequence for strict 
control over DAR and DLD. The most notable approach to 
engineering natural amino acids is THIOMAB™, which inserts 
cysteines at specific sites to allow for thiol conjugation.158 The 
resulting ADCs, referred to as THIOMAB™ -drug conjugates or 
TDCs, have shown improved homogeneity compared to con-
ventionally conjugated ADCs.

Engineering of unnatural amino acids has included exam-
ples such as p-acetylphenylalanine and p-azidomethyl- 
L-phenylalanine, yielding ADCs in which DAR and DLD 
could be regulated.159,160 Another strategy is the SMARTag™ 
technology, which uses chemoenzymatic reactions to install an 
aldehyde tag for site-specific conjugation,144 as mentioned 
above. Here, the conjugation site is a formylglycine (aldehyde) 
residue produced through enzymatic oxidation of a cysteine in 
a specific pentapeptide consensus sequence in the mAb.29,161 

A similar engineering method installs natural or synthetic 
carbohydrate moieties onto the glycan as points of target for 
drug conjugation.162 Not only does this technique address 
homogeneity concerns, but it also provides consistency in 
loading despite the heterogeneity of N-glycan forms of immu-
noglobulins. Thompson et al. conjugated PBD with DARs of 4 
to azide-modified GalNAc to demonstrate the utility of 
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glycoengineering in ADC design.163 The glycoengineered 
ADCs exhibited potent killing both in vitro and in vivo. With 
this method, developers enzymatically alter the glycan profile 
by introducing particular carbohydrate moieties for drug con-
jugation, yielding evidence of increased homogeneity and 
potency over conventional conjugation methods. Using 
enzymes that recognize specific engineered amino acid 
sequences to cleave and covalently attach drug molecules can 
also improve control over ADC homogeneity.

Another site-specific conjugation method that has gained 
attention both among researchers and biotechnology compa-
nies is disulfide rebridging.164 This method is attractive due to 
its ability to control DAR and DLD without the need of re- 
engineering the mAb. The technique takes advantage of the 
conventional cysteine coupling method to conjugate 
a bifunctional payload.165 As a result, one drug molecule is 
coupled per interchain disulfide bond. Using this method, 
developers achieve consistent DARs of 4 and 6, depending on 
the immunoglobulin isotype, with expected DLDs. This tech-
nique has shown promise to address homogeneity concerns as 
demonstrated by Bryant and colleagues.166 One drawback to 
this method is the use of additional chemicals, requiring addi-
tional purification methods and analytical characterization of 
the final product. Further, as with other described methodolo-
gies, the success of each technique in producing a homogenous 
product is dependent on other factors, such as the nature of the 
antibody and payload.

Quality assessment

ADCs are complex molecules with unique critical quality 
attributes (CQAs), including DAR, DLD, the amount of 
unconjugated payload or unconjugated antibody, antigen 
binding, and cellular activity, in addition to the quality 
requirements for naked mAbs. To ensure product quality 
and manufacturing consistency, each CQA must be ade-
quately evaluated. Several analytical platforms are adopted 
from mAb analysis, with state-of-the-art analytical 
techniques being developed to assess ADC-specific CQAs, 
such as high-resolution native mass spectrometry (MS), 
native ion-mobility (IM) MS, and two-dimensional high 
performance liquid chromatography (2D-HPLC) (Table 
3).167,168

1. DAR and DLD

For cysteine-linked ADCs, hydrophobic interaction chro-
matography is commonly used to determine the average 
DAR, DLD, and unconjugated mAb species (DAR-0).-
139,169,170 Emerging techniques include high-resolution 
MS and native IM-MS, operated under native conditions 
using MS-compatible ammonium acetate buffer at neutral 
pH.171 Similar analytical approaches can also be applied to 
other site-specific ADCs.172,173 Lysine-linked ADCs are 
inherently associated with a high heterogeneity, posing 
an analytical challenge. For those ADCs, DAR is usually 
determined by measuring both the drug-specific absor-
bance and the mAb absorbance at 280 nm.174,175 The 
conjugation sites and PTMs of mAbs can be determined 

through peptide mapping, producing a single tryptic pep-
tide map for cysteine-linked ADCs, or a combination of 
tryptic, Asp-N, and Glu-C maps for lysine-linked 
ADCs;176,177 alternatively, sheathless capillary electrophor-
esis (CE) coupled with MS/MS can also be used to assess 
these attributes.178

2. Process- and product-related impurities

ADCs are associated with specific process-related impuri-
ties, such as unconjugated payload, free linker, or other 
chemicals used in the manufacturing process. Reverse- 
phase (RP)-HPLC provides a platform for assessing these 
potential impurities in the final products.179 Removal of 
protein-containing species (e.g., intact ADC, unconjugated 
antibody) can help improve assay performance, using pro-
tein precipitation, size-exclusion chromatography (SEC), or 
SEC×RP 2D-LC.180,181 2D-LC-MS can increase assay sensi-
tivity, enabling detection of trace amount of free payload.182 

Product-related impurities such as aggregates, fragments, 
charge variants, and other PTMs on the antibody can be 
assessed by a combination of SEC, analytical ultracentrifu-
gation, CE, capillary isoelectric focusing, ionic exchange 
chromatography, and peptide mapping.183,184,185

3. Potency assays

Potency assays are a critical component of quality control 
strategies for complex drug products,together with physico-
chemical tests to ensure manufacturing consistency in the 
product lifecycle. In general, potency assays should reflect 
the product’s MOAs. For multifunctional products, more 
than one potency assay will be needed to fully capture the 
biological activities. An ADC may retain its mAb-associated 
MOAs, such as signaling blockade, ADCC, or CDC. An 
ADC may also elicit a bystander effect, thereby affecting 
both antigen-positive and antigen-negative cells upon 
release of the cytotoxic payload into the surrounding 
tumor microenvironment. Therefore, ADCs should be eval-
uated using both antigen-binding assays and cell-based 
functional assays as appropriate.

Future perspectives

The availability of ADCs offers a promising therapeutic 
option for numerous cancer types. With more ADCs enter-
ing clinical trials, the industry is gradually shifting from 
conventional technologies to newer and more robust 
approaches to develop such complex products. This 
includes strategies for exploring novel tumor antigens, anti-
body formats, payloads, linkers, and advanced conjugation 
technologies, each with the aim of improving the therapeu-
tic window of ADCs. Among the emerging antibody for-
mats, scFv may have better solid tumor penetration and 
uptake. Bispecific and biparatopic ADCs may overcome the 
barrier of tumor heterogeneity. Probodies and other con-
ditionally active biologics (CABs) may reduce off-target 
effects. Multiple payload classes besides microtubule- 

MABS e1951427-15



disrupting agents, including PBD dimers, topoisomerase 
inhibitors, anthracyclines, and protein-specific modulators, 
are being introduced into a new generation of ADCs. 
Furthermore, several site-specific conjugation platforms 
are now used to enhance ADC stability in circulation 
while maintaining efficient release of the payload 
(Figure 5). The complexity of ADCs poses daunting analy-
tical challenges, especially when hydrophobic payloads are 
incorporated. State-of-the-art analytical techniques are 
required and continue to evolve in alignment with the 
rapid growth of ADC development. Applying the appropri-
ate sets of analytical techniques is crucial for adequately 
characterizing product attributes, thereby ensuring manu-
facturing consistency during development and throughout 
the product lifecycle.

The therapeutic potential of ADCs is also highlighted by the 
expansion of clinical indications, shifting from hematological 
malignancies (lymphoma and leukemia) to an increase in solid 
tumors (e.g., breast cancer, urothelial cancer, lung cancer, and 
ovarian cancer). Many ADCs within the clinical pipeline are 
being evaluated in combination with other established thera-
peutic classes, such as immune checkpoint inhibitors and 
mAbs targeting different antigens. The cumulative clinical 
data, combined with the product quality information described 
here, are helping to shape the future development of ADCs. As 
more data becomes publicly available, a comprehensive analy-
sis of potential correlations between specific product quality 
attributes and the safety and efficacy profiles of individual 
products will certainly inform optimization of ADC design 
and manufacturing toward next-generation innovative cancer 
medicines.
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