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Abstract: We present an automated method for measuring the sagittal vertical axis (SVA) from lateral
radiography of whole spine using a convolutional neural network for keypoint detection (ResUNet)
with our improved localization method. The algorithm is robust to various clinical conditions, such as
degenerative changes or deformities. The ResUNet was trained and evaluated on 990 standing lateral
radiographs taken at Chang Gung Memorial Hospital, Linkou and performs SVA measurement with
median absolute error of 1.183± 0.166 mm. The 5-mm detection rate of the C7 body and the sacrum are
91% and 87%, respectively. The SVA calculation takes approximately 0.2 s per image. The intra-class
correlation coefficient of the SVA estimates between the algorithm and physicians of different years of
experience ranges from 0.946 to 0.993, indicating an excellent consistency. The superior performance
of the proposed method and its high consistency with physicians proved its usefulness for automatic
measurement of SVA in clinical settings.
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1. Introduction

Adult spinal deformity (ASD) is a broad diagnosis referring to stable asymptomatic curves and
disabling deformities in the spine that contribute to pain, weakness, and low health-related quality of life
(HRQOL). Although ASD is quite common, the variation and unique pattern of each spinal deformity
make reproducible measurement difficult. Previous studies investigating the correlation between
radiographic appearances and clinical symptoms yielded rather low predictive power due to highly
variable health status [1]. Little correlation between radiographic assessment and questionnaire scores
was found for adolescent idiopathic scoliosis [2]. However, in 2005, Glassman et al. showed that sagittal
plane balance is the most reliable predictor of clinical symptoms in adults with spinal deformity [3].
Even mild positive sagittal balance results in destructive spinal deformity, clinical symptoms of which
deteriorate linearly [4]. Therefore, a surgical plan for restoring sagittal balance is crucial in all spinal
reconstructive surgeries [3].

Parameters to describe the sagittal alignment of the spine include the sagittal vertical axis (SVA),
thoracic kyphosis, lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope. SVA, which is the
most commonly used measure of the sagittal plane, is obtained from standing lateral radiographs and
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is defined as the horizontal distance between two landmarks: the center of C7 vertebral body and the
posterior superior aspect of the S1 vertebral body. According to Schwab’s classification based on Jean
Dubousset‘s cone of economy, the realignment of the spine should aim to meet the criteria of SVA < 50
mm to alleviate sensations of falling over [5]. Consequently, formulating a patient-specific surgical
plan requires SVA measurement both preoperatively and postoperatively, using whole-spine lateral
radiographs. However, manual SVA estimation on radiographs is rather inconvenient due to lack
of easy-to-use tools. To solve this issue, we propose using deep-learning models for fully automatic
estimation of SVA.

A well-known family of deep-learning models is the convolutional neural networks (CNNs).
CNNs have drawn considerable attention since 2012, as they were found to outperform traditional
image processing algorithms on image classification tasks [6]. Since then, CNNs have been increasingly
used for medical image analysis [7,8]. a CNN is primarily made of stacked convolution layers, which can
be regarded as a series of learnable feature extractors designed for acquiring low-to-high-level features
of an image. In general, basic image features, such as blob of colors or edges of different orientations,
are learnable by the shallow convolution layers. On the other hand, complex image features, such as
appearances of objects, are learnable by the deep convolution layers [9]. Therefore, well-trained
convolution layers can be used to extract informative features that are useful for landmark localization
or other specific tasks [10,11].

Automatic SVA estimation can generally be regarded as the task of landmark localization,
as SVA was defined as the horizontal difference between two anatomical landmarks. In this study,
we investigated the performance of ResUNet [12] for automatic vertebrae localization on radiographs.
ResUNet is a variant of CNN. Its UNet-like structure [13] combines the contextual information produced
by deep layers and better location information produced by shallow layers, allowing better utilization
of low- and high-level features. In addition, the encapsulated residual blocks [14] of ResUNet enable
better flow of information and can avoid performance deterioration as the network goes deeper.
ResUNet has been used for cell segmentation from biomedical images [12] and road extraction from
satellite images [15]. To the best of our knowledge, our study is the first to utilize ResUNet for
anatomical landmark localization.

Some previous works use CNN for vertebrae segmentation or localization. For example, for 3D
CT and MR images, Lessmann et al. [16] used a 3D UNet-like model for vertebrae segmentation.
In addition, Wimmer et al. [17] used 3D CNN for vertebrae localization. There were also studies on
radiographs: for biplanar radiographs, including A-P and lateral view, Gallbusera et al. [18] used
a database collected using the EOS™ imaging system [19] and trained CNN models for each of the
landmarks. For lateral spine radiographs, Al Arif et al. [20] applied a UNet model for the localization
of cervical vertebral centers.

In this study, we applied ResUNet on plain lateral spine radiographs. Although our algorithm is
similar to the one in [20], there are some major differences. First, we did not split images into patches,
as patching leads to extra pre- and post-processing steps, and the correlation between landmarks
of different patches will be ignored completely. However, if patching was not performed, the large
image size would lead to insufficient amount of RAM on GPU. To alleviate this issue, we used
a small batch size (batch size = 2) and replaced the widely used batch normalization with the group
normalization [21] in our network. Group normalization is known to perform well even when the batch
size is small, as it does not perform normalization along the batch axis. Secondly, we let probability
maps of landmarks to be predicted separately. Thus, predictions were not on the same map and further
post-processing steps involving separation and identification of the landmarks can be eliminated.

Our main contribution in this paper is three-fold. Firstly, we validated that automatic SVA
estimation on lateral spine radiography is feasible using the current deep-learning techniques.
The procedure of 10-fold cross-validation was applied to validate the effectiveness of the constructed
SVA estimator (ResUNet). Secondly, modern networks often take the Gaussian heatmaps centering at
landmark locations as the targets of regression [22–24]. In this study, we experimented also the use
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of exponential heatmaps for model selection. Our experiments suggested that, when the heatmap
function was narrow, the exponential heatmaps can be more easily learned, as compared with the
Gaussian heatmaps. Thirdly, we compared the estimates between ResUNet and human experts of
different seniority. The results show that they were in excellent agreement.

2. Materials and Methods

2.1. Data Preparation

We collected 990 whole spine lateral radiographs from 990 patients who had degenerative changes
or deformities in the spine from January 2012 to September 2018 at Chang Gung Memorial Hospital,
Linkou, Taiwan. The collected radiographs were from different X-ray scanners and the mean pixel
resolution was 3552× 1434. Poor-quality images such as those with poor image contrast and positioning
errors were excluded. Among the collected radiographs, 13% (128) of the images are of children (age
< 12), 42% (414) of the images are of young adults (age 13–18) and 45% (448) of the images are of
adults (age > 18). Overall, 77% (765) of the images do not have an implant, while 23% (225) do. In the
group without implants (765), 56% (428) of the patients have scoliosis, while 44% (337) of patients have
degenerative change. In the group with implants (229), 76% (170) of the implants extend from thoracic
to lumbar, 21% (48) of the implants extend from lumbar to sacral, 2% (5) of the implants only involve
lumbar, and 1% (2) of the implants only involve thoracic. Pediatric and young adult patients diagnosed
of scoliosis were enrolled in this study. In terms of sacral morphology, this cohort displayed various
degrees of physiological sacral fusions, as well as pathology resulting from scoliosis. The images
were anonymized, and standard research protocols were followed. This study was approved by the
Institutional Ethical Committee (IRB number: 201801651B0 (1809270049)).

The whole dataset (990 images) was annotated by one senior resident orthopedic surgeon.
This surgeon has more than five years of experience for manual measurement of spine parameters.
When a difficult case was encountered, the surgeon discussed with an experienced spine surgeon to
reach a consensus. This annotated dataset was used for model training and evaluation. An annotated
radiograph can be seen in Figure 1. We used a custom written MATLAB GUI program for annotation.
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In addition, an experienced radiologist and a junior resident physiciane also provided their
annotations for a subset of the dataset (99 images), which were randomly selected from the 990 images.
Hence, three human annotations (senior/junior resident orthopedic surgeon, and radiologist) can
be found for this subset of data and the consistency between our model and human experts can be
examined further.

2.2. Gaussian and Exponential Heatmaps

A Gaussian heatmap centering at (xk, yk) can be defined as:

Gk(xi, yj; σ) = ce−
(xi−xk)

2 + (yi−yk)
2

2σ2 , (1)

where (xi, yj) is a pixel location of an image (on i-th column and j-th row), (xk, yk) is the human-annotated
landmark location, σ is a hyperparameter that controls the width of the Gaussian, and c is the scaling
constant, which was fixed to be a large constant (at the order of 103) so that the heatmap pixels close to
landmark locations were more salient and easier to learn.

Representing landmark locations using heatmaps is beneficial. First, the regression of a heatmap
was considered as an easier task as compared to the regression of x and y values, as the latter requires
the learning of a highly non-linear function that maps all image pixels into two values only. Secondly,
after normalization, the predicted heatmap is more informative, as it can be interpreted as a predicted
probability map for the location of a landmark.

However, to determine Gk(xi, yj; σ), we need to select σ manually. The value of σ is often set as
a small value because wide Gaussians may introduce high uncertainties to the prediction of landmark
locations. However, if the Gaussian is not wide enough, features which are useful for prediction but
outside the narrow region of Gaussian may have the chance to be ignored, as we simply let the model
to predict zeros at the locations of those features.

To overcome this issue, we propose the use of exponential heatmaps for landmark localization.
An exponential heatmap Ek(xi, yj; α) centering at (xk, yk) can be defined as:

Ek(xi, yj; α) = ce−α(|xi−xk |+|yj−yk |), (2)

where (xk, yk) is the human-annotated landmark location, α is a hyperparameter that controls the
decay rate of the exponential function, and c is the scaling constant as defined in the Gaussian heatmap.
For the purpose of comparison, we let α = 1

σ

√
log 2/2 so that both Gk(xi, yj; σ) and Ek(xi, yj; σ) reach

to the same half maxima at (xk ± σ
√

2 log 2, yk) and (xk, yk ± σ
√

2 log 2), as shown in Figure 2.
Compared to the Gaussian heatmap Gk(xi, yj; σ), the proposed exponential heatmap Ek(xi, yj; σ)

has a sharper peak centering at the landmark location. As a result, the predicted locations of landmarks
can be less uncertain. Furthermore, Ek(xi, yj; σ) decays more slowly (especially when the pixels are
close to y = yk and x = xk), which leads to a wider region of heatmap pixels that should be predicted
nonzero. In this case, useful features that lie within the non-zero zone are easier to detect and can be
used as a clue for easier localization of landmarks.
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values. We put (xk, yk) at the heatmap center and draw the half-maximum contour of the heatmap
(black-dashed lines) for each heatmap plot. When σ is fixed, the half-maxima contours of Gaussian
and exponential heatmaps coincide at u1 = (xk + σ

√
2 log 2, yk), u2 = (xk − σ

√
2 log 2, yk),

u3 = (xk, yk + σ
√
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2.3. Model Architecture

Our automatic SVA estimator (Figure 3) was based on a 31-layer ResUNet (Figure 4), which was
composed of the head convolutional layers (C1), the downsampling path (C2–C5), upsampling path
(C6–C9), and the tail convolutional layers (C10). In the downsampling path, both height and width
of the feature maps were reduced by half four times. This process was then reversed during the
upsampling path, and two heatmaps of landmarks were predicted immediately after C10.
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Figure 3. Automatic sagittal vertical axis (SVA) estimator. This estimator will turn an input image
(tenor shape = 768 × 448 × 1) into predictions of two probability maps of landmarks (tensor shape
= 768× 448× 2 ), which correspond to the C7 center and the posterior corner of the sacrum. The two
landmarks are then localized from their corresponding maps and their horizontal difference (i.e., SVA)
is calculated.
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Figure 5. Building blocks of the ResUNet: (a) CONV; (b) Res; (c) Res-Down/Res-Down-C. For all 
subfigures shown above, GN/ReLU stands for Group Normalization/ Rectified Linear Unit. In 
addition, CONV and Res were both used for feature extraction, where the latter improved 
information flow further by adding an extra skip-connection. Res-Down/Res-Down-C was used not 
only for feature extraction but also for data downsampling, where downsampling was achieved in 
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Figure 4. The ResUNet architecture. This network has 31 convolutional layers and is made of the
following blocks: CONV, Res, Res-Down, Res-Down-C and Upsampling. The upsampling block
performs bilinear upsampling and is non-learnable. The remaining four learnable blocks are illustrated
in Figure 5.
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Figure 5. Building blocks of the ResUNet: (a) CONV; (b) Res; (c) Res-Down/Res-Down-C. For all
subfigures shown above, GN/ReLU stands for Group Normalization/ Rectified Linear Unit. In addition,
CONV and Res were both used for feature extraction, where the latter improved information flow
further by adding an extra skip-connection. Res-Down/Res-Down-C was used not only for feature
extraction but also for data downsampling, where downsampling was achieved in the dimension of
width and height (for Res-Down) or channel (for Res-Down-C). We set strides to 1 for the 1× 1 Conv
and the first 3× 3 Conv in Res-Down. For all other convolutional layers, strides were set to 1.

The details of the ResUNet architecture are further illustrated in Figure 5 and Table 1. It is worth
mentioning that, if the C7 center and the posterior corner of the sacrum were to be predicted on the
same heatmap, then we would have to cope with landmark extraction and identification. For the
former, we would have to, e.g., fit a Gaussian mixture model (which is rather complex) and regard the
locations of the fitted Gaussian centers as the landmark locations. For the latter, we perhaps would
have to assume that the one above is the landmark of C7, and the one below is the landmark of sacrum,
as the extracted landmarks are indistinguishable.
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Table 1. The architecture of a 31-layer ResUNet.

Level Block # 3 × 3
Conv

# 1 × 1
Conv

Output Shape
(N × H ×W × C)

C1
CONV 1 0 N × 768 × 448 × 64

Res 2 0 N × 768 × 448 × 64

C2
Res-Down 2 1 N × 384 × 224 × 128

Res 2 0 N × 384 × 224 × 128

C3 Res-Down 2 1 N × 192 × 112 × 256

C4 Res-Down 2 1 N × 96 × 56 × 512

C5
Res-Down 2 1 N × 48 × 28 × 512

Res 2 0 N × 48 × 28 × 512

C6 Upsampling 0 0 N × 96 × 56 × 512

C7
Res-Down-C 2 1 N × 96 × 56 × 256
Upsampling 0 0 N × 192 × 112 × 256

C8
Res-Down-C 2 1 N × 192 × 112 × 128
Upsampling 0 0 N × 384 × 224 × 128

C9
Res-Down-C 2 1 N × 384 × 224 × 64
Upsampling 0 0 N × 768 × 448 × 64

C10
CONV 1 0 N × 768 × 448 × 64
CONV 1 0 N × 768 × 448 × 32
CONV 1 0 N × 768 × 448 × 2

N, Number of images passed into the architecture; H/W/C, Height/Width/Channel of the input images; # 3 × 3 Conv,
Number of 3 × 3 convolutional layers; # 1 × 1 Conv, Number of 1 × 1 convolutional layers.

In this work, all landmarks were predicted on separate heatmaps, i.e., the landmarks were
separated and distinguishable from the very beginning. Thus, all we need to do was fit an exponential
or a Gaussian function to each of the heatmaps and then regarded the obtained center of the fitted
function as the estimated location of its corresponding landmark.

2.4. Image Preprocessing and Augmentation

Before training, all radiographs were downsized to 768 × 340 and then padded to 768 × 448.
The padding procedure was crucial, as the radiographs were randomly rotated (angle ∈ [−30◦, 30◦])
during training, and the vertebrae part of the body should not be missing after rotation.

During training, techniques of data augmentation were applied to the radiographs in order to
prevent CNNs from adapting to images of certain scales, orientations, and types of noise. The applied
techniques were random scaling (scale ∈ [0.9, 1.1]), random rotation (angle ∈ [−30◦, 30◦]), and random
Gaussian blur (strength ∈ [0, 0.5]).

2.5. Details of Experiments

We trained a 31-layer ResUNet for the localization of the C7 center and the posterior corner of
the sacrum. For model selection, the experimented hyperparameters for fine-tuning were heatmaps
of different types (Gaussian and exponential) and sizes (σ = 3.14, 1.57, 0.78, 0.39). Furthermore,
the procedure of 10-fold cross-validation was followed to test the effectiveness of the constructed models.
For a schematic description about how the procedure of 10-fold cross-validation was performed,
please refer to Figure S1.

Two GPUs were used for training (NVIDIA Tesla V100), and the batch size was set to 2 per GPU
(therefore, the total batch size was 4). For the procedure of group normalization, the number of groups
was set to 32. In addition, mean squared error was chosen as our loss function, which was minimized
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using stochastic gradient descent (SGD) with Nesterov momentum (momentum = 0.9). To eliminate
the effect of overfitting, L2 regularization (strength = 10−5) was also added to the loss function.

During training, the learning rate was initially set to 0.01 and was then reduced by half on epoch
100. The number of training epochs was set to 120 and the final model was obtained from the checkpoint
that performed the best on the validation data after epoch 80. The elapsed time of an experiment of
10-fold cross-validation was approximately 50 h. We used TensorFlow v1.12 and its Estimator API for
model construction and training.

3. Results

We used absolute error of SVA and detection rate of landmarks to evaluate model performance.
To obtain errors in pixels, we converted the predicted locations of landmarks back to the resolution of
the original (unresized and unpadded) image and then calculated the pixel errors using locations of
the true and predicted landmarks. The pixel errors were then converted to mm using the scaling factor
recorded in each radiograph. We chose to represent errors in mm because scaling factor is different
between radiographs and number of pixels would not be a universal standard.

3.1. Median Absolute Error of SVA

The median absolute error (MAE) of SVA is defined as:

MAESVA = Median( |SVA(1)
true − SVA(1)

pred.|, |SVA(2)
true − SVA(2)

pred.|, ..., |SVA(N)
true − SVA(N)

pred.

∣∣∣∣), (3)

where N stands for number of samples. SVA(i)
true and SVA(i)

pred. stand for the i-th true and predicted
SVA, respectively.

As MAE is insensitive to outliers, we also report the number of outliers (>10 mm) for absolute
errors. The results of various hyperparameter settings are shown in Table 2.

Table 2. The median value and number of outliers of the absolute errors of SVA are reported for models
constructed using different hyperparameter settings. Mean ± standard deviation (SD) of the median
value of the absolute errors of SVA were obtained following the procedure of 10-fold cross-validation.

Heatmap Type Heatmap Width (σ) Median Absolute Error of
SVA (Mean ± SD, mm)

Number of Outliers
(>10 mm)

EXP 6.28 1.570 ± 0.268 67 (6.77%)
GS 6.28 1.508 ± 0.305 54 (5.45%)

EXP 3.14 1.222 ± 0.162 69 (6.97%)
GS 3.14 1.206 ± 0.139 62 (6.26%)

EXP 1.57 1.183 ± 0.166 68 (6.87%)
GS 1.57 9.826 ± 14.1 293 (29.6%)

EXP 0.79 1.210 ± 0.123 82 (8.28%)
GS 0.79 28.80 ± 10.4 588 (59.4%)

EXP, Exponential heatmap; GS, Gaussian heatmap.

Our results indicated that, when narrow Gaussian heatmaps were used (σ = 1.57, 0.79),
the performance of SVA estimator became highly unstable (standard deviation > 10 mm). These results
suggest that σ has to be fine-tuned carefully when choosing Gaussian heatmaps as the regressing targets.

To further investigate the quality of landmark localization, we also calculated the detection rate
of the C7 center and the posterior corner of the sacrum, respectively. The results are shown in the
following section.
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3.2. Detection Rate of Landmarks

A landmark was considered to be detected when the distance between the true and predicted
landmark locations was under some acceptable error threshold. To investigate the quality of predicted
landmark locations, the detection rate was plotted against different degrees of error thresholds,
as shown in Figure 6 (for the C7 center) and Figure 7 (for the posterior corner of the sacrum).J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 16 
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Figure 7. Detection rate of the posterior corner of the sacrum against different degrees of error
thresholds. The results of various σ values: (a) σ = 6.28; (b) σ = 3.14; (c) σ = 1.57; and (d) σ = 0.79.
The detection rates were results from 10-fold cross-validation (mean with 1 standard error band).
For each figure, EXP and GS stand for exponential and Gaussian heatmaps, respectively.

The results of detection rates indicate that the C7 center was difficult to be localized when narrow
Gaussian heatmaps were used (σ = 1.57, 0.79). a possible reason is that there were few or no distinct
features near the center of the vertebra. The distinct features, such as the vertebrae borders, were not
included in the highlighted, non-zero region of the narrow Gaussian and were therefore difficult to
be utilized for better localization of landmarks. By contrast, at small σ, the exponential function has
not only a narrow region at its center, but also a rather extended region at its tail. Hence, for the
exponential function, even if the distinct features were not inside the narrow region, they may still be
discovered and utilized, if they were contained within the non-zero, extended tail region.

In contrast to models trained with narrow Gaussian heatmaps, models trained with narrow
exponential heatmaps achieved the best performance for the detection of the C7 center. At σ = 1.57,
the 1-mm and 5-mm detection rate of the C7 center reached 0.496 ± 0.023 and 0.911 ± 0.012, respectively,
as shown in Table 3.
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Table 3. The 1-mm and 5-mm detection rates of models trained using different hyperparameter settings.
Mean ± standard deviation (SD) of the detection rates were obtained following the procedure of
10-fold cross-validation.

Heatmap
Type

Heatmap
Width (σ)

DC7 at 1 mm
Mean ± SD

DC7 at 5 mm DS at 1 mm DS at 5 mm

Mean ± SD Mean ± SD Mean ± SD

EXP 6.28 0.279 ± 0.013 0.863 ± 0.015 0.220 ± 0.014 0.859 ± 0.011
GS 6.28 0.313 ± 0.027 0.858 ± 0.011 0.235 ± 0.023 0.867 ± 0.0093

EXP 3.14 0.433 ± 0.017 0.899 ± 0.0046 0.289 ± 0.029 0.872 ± 0.0054
GS 3.14 0.460 ± 0.016 0.898 ± 0.0093 0.309 ± 0.028 0.853 ± 0.015

EXP 1.57 0.496 ± 0.023 0.911 ± 0.012 0.328 ± 0.016 0.871 ± 0.0037
GS 1.57 0.231 ± 0.13 0.401 ± 0.23 0.354 ± 0.018 0.849 ± 0.026

EXP 0.79 0.487 ± 0.026 0.873 ± 0.012 0.349 ± 0.012 0.827 ± 0.016
GS 0.79 0.012 ± 0.050 0.018 ± 0.039 0.307 ± 0.013 0.792 ± 0.026

EXP, Exponential heatmap; GS, Gaussian heatmap; DC7, Detection rate of the C7 center; DS, Detection rate of the
posterior corner of the sacrum.

Additionally, we used fixed narrow heatmap function (σ = 1.57) and compared the 5-mm
detection rate of models trained with different model complexity (31-layer ResUNet and 12-layer
UNet) and different types of heatmaps (Gaussian and exponential). The results are shown in Table 4.
Our results suggest that, when the model complexity was fixed, replacing the Gaussian heatmap with
the exponential heatmap leads to a better and a more stable performance (the standard deviation has
decreased by an order of magnitude). The 5-mm detection rate of C7 increased from 0.045 to 0.842,
when a 12-layer UNet was used, and increased from 0.401 to 0.911, when a 31-layer ResUNet was used.
These results indicate that the exponential heatmaps were easier to learn at σ = 1.57, regardless of the
model complexity. Furthermore, when the heatmap type was fixed, replacing a 12-layer UNet with
a 31-layer ResUNet led to significant improvements for the localization of the C7 center. This indicated
that the extra skip-connections and convolutional layers of the 31-layer ResUNet were effective at
σ = 1.57.

Table 4. The 5-mm detection rates of models trained using σ = 1.57. Mean ± standard deviation (SD)
of the detection rates were obtained following the procedure of 10-fold cross-validation.

Model Number of Layers Heatmap Type DC7 at 5 mm DS at 5 mm

Mean ± SD Mean ± SD

UNet 12 GS 0.045 ± 0.078 0.750 ± 0.039
UNet 12 EXP 0.842 ± 0.0079 0.853 ± 0.0093

ResUNet 31 GS 0.401 ± 0.23 0.849 ± 0.026
ResUNet 31 EXP 0.911 ± 0.012 0.871 ± 0.0037

EXP, Exponential heatmap; GS, Gaussian heatmap; DC7, Detection rate of the C7 center; DS, Detection rate of the
posterior corner of the sacrum.

3.3. Analysis of Inter-Rater Reliability

To further compare the SVA estimates between ResUNet and human experts, or the SVA estimates
between human experts only, we calculated the intra-class correlation coefficient (ICC). With ICC,
the agreement between any two estimators can be tested. Our ICC scores were calculated by
two-way-random effects model with absolute agreement. For the evaluation of ICC, 99 radiographs
from one fold of 10-fold cross-validation were used.

We report the ICC scores and their 95% confidence intervals in Table 5. The ICC scores were
evaluated for four participants, including a 31-layer ResUNet (σ = 1.57, heatmap type = exponential),
a junior resident orthopedic surgeon, a senior resident orthopedic surgeon, and a radiologist. Our results
show that the ICC scores derived from any pair of the four participants were all >0.9, indicating a high
agreement among the four participants.
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Table 5. The intra-class correlation coefficient (ICC) and its 95% confidence interval (CI). The ICC
values were evaluated for different pair of estimators.

Measurement: SVA (mm) ICC with 95% CI 95% CI

ResUNet vs. Rater 1 1 0.989 0.984–0.993
ResUNet vs. Rater 2 2 0.946 0.920–0.963
ResUNet vs. Rater 3 2 0.993 0.989–0.995

Rater 1 vs. Rater 2 0.949 0.925–0.966
Rater 1 vs. Rater 3 0.996 0.993–0.997
Rater 2 vs. Rater 3 0.955 0.934–0.970

1 Rater 1, Radiologist. 2 Rater 2 (Rater 3), Junior (Senior) resident orthopedic surgeon.

We also report the Bland–Altman (B-A) plot for the SVA values estimated by the senior resident
orthopedic surgeon and the ResUNet model in Figure 8. The median absolute difference and the mean
difference of these two set of estimates was 1.34 mm and −0.32 mm, respectively. For a comparison
between doctors, the B-A plot for the SVA values estimated by the senior and the junior resident
orthopedic surgeons is shown in Figure 9. The median absolute difference, and the mean difference of
these two set of estimates was 1.14 mm and −0.4 mm, respectively.
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4. Discussion

Sagittal balance is a primary issue for clinical assessment of spine. There are several important
morphological indicators of the alignment of spine and pelvis, including sagittal vertical axis (SVA),
lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope. Among them, SVA is the most common
parameter used for the evaluation of overall spinal alignment, which represents the sagittal curvature
of the spine [25]. SVA can be used to determine the relationship between the spine and pelvis, and has
a normal range. Yukawa et al. [26] reported the average value of 3.1 ± 12.6 mm for the SVA of
626 asymptomatic volunteers, and SVA may steadily increase from ages of 30 to 70 years.

Although SVA may change with aging, it remains a reliable sagittal spinopelvic parameter for the
assessment of spine alignment. Several authors have demonstrated high inter-rater reliability of SVA
measurement by the intra-class correlation coefficient (ICC). Kyrölä et al. [27] reported the ICC score of
0.99 (95% CI: 0.98, 1.00) for SVA in unselected adults with degenerative spine disorders. In a previous
study, Katzman et al. [28] also showed a high ICC score of 0.93 (95% CI: 0.83, 0.97) in older adults
with hyperkyphosis.

We selected the best model (σ = 1.57, heatmap type = exponential) based on the absolute error of
SVA. This model can be applied to patients of different age groups and with various clinical conditions,
including patients with or without implants (Figure 10), having scoliosis, or degenerative changes
(Figure 11).

The hyperparameter, σ, which controls the width of the heatmap function, plays an important role
for model selection. In our experiments, we showed that the exponential heatmap allows the model to
keep its performance and stability, when σ is small. This is potentially helpful when many landmarks
exist. In that situation, fine-tuning σ values for each heatmap is very time-consuming and a heatmap
function whose resulting performance is less sensitive to σ may be beneficial.



J. Clin. Med. 2019, 8, 1826 13 of 16

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 13 of 16 

 

 
Figure 10. Examples of predicted images of post spinal fusion surgery with varied length of 
implants: (a) thoracic-lumbar fusion; (b) thoracic fusion; and (c) lumbar-sacral fusion.  

 
Figure 11. Examples of predicted images of different clinical conditions. These images include 
patients of: (a) ages 8; (b) age 23; and (c) age 63, who also present with degenerative change. 

The hyperparameter, σ, which controls the width of the heatmap function, plays an important 
role for model selection. In our experiments, we showed that the exponential heatmap allows the 
model to keep its performance and stability, when σ is small. This is potentially helpful when many 
landmarks exist. In that situation, fine-tuning σ values for each heatmap is very time-consuming 
and a heatmap function whose resulting performance is less sensitive to σ may be beneficial. 

In this study, the inter-rater reliability of ResUNet and human experts was also examined. We 
classified the ICC scores similarly to the criteria introduced by Aubin and Kuklo et al. [29,30], i.e. 
ICC values greater than 0.90 indicate excellent reliability, values between 0.70 and 0.89 indicate 
good reliability, values between 0.50 and 0.69 indicate moderate reliability, values between 0.25 and 
0.49 indicate low reliability, and values less than 0.24 indicate poor reliability. To the best of our 

Figure 10. Examples of predicted images of post spinal fusion surgery with varied length of implants:
(a) thoracic-lumbar fusion; (b) thoracic fusion; and (c) lumbar-sacral fusion.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 13 of 16 

 

 
Figure 10. Examples of predicted images of post spinal fusion surgery with varied length of 
implants: (a) thoracic-lumbar fusion; (b) thoracic fusion; and (c) lumbar-sacral fusion.  

 
Figure 11. Examples of predicted images of different clinical conditions. These images include 
patients of: (a) ages 8; (b) age 23; and (c) age 63, who also present with degenerative change. 

The hyperparameter, σ, which controls the width of the heatmap function, plays an important 
role for model selection. In our experiments, we showed that the exponential heatmap allows the 
model to keep its performance and stability, when σ is small. This is potentially helpful when many 
landmarks exist. In that situation, fine-tuning σ values for each heatmap is very time-consuming 
and a heatmap function whose resulting performance is less sensitive to σ may be beneficial. 

In this study, the inter-rater reliability of ResUNet and human experts was also examined. We 
classified the ICC scores similarly to the criteria introduced by Aubin and Kuklo et al. [29,30], i.e. 
ICC values greater than 0.90 indicate excellent reliability, values between 0.70 and 0.89 indicate 
good reliability, values between 0.50 and 0.69 indicate moderate reliability, values between 0.25 and 
0.49 indicate low reliability, and values less than 0.24 indicate poor reliability. To the best of our 

Figure 11. Examples of predicted images of different clinical conditions. These images include patients
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In this study, the inter-rater reliability of ResUNet and human experts was also examined.
We classified the ICC scores similarly to the criteria introduced by Aubin and Kuklo et al. [29,30],
i.e. ICC values greater than 0.90 indicate excellent reliability, values between 0.70 and 0.89 indicate
good reliability, values between 0.50 and 0.69 indicate moderate reliability, values between 0.25 and
0.49 indicate low reliability, and values less than 0.24 indicate poor reliability. To the best of our
knowledge, this study is the first to compare the inter-rater reliability between ResUNet and human
experts, and obtained an excellent reliability with the range of ICC values from 0.946 to 0.993.

Using the ResUNet-based framework, the inference time was approximately 0.2 s per image
(using one NVIDIA Tesla V100). Due to its short inference time and minimal labor requirement,
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the automated SVA estimator can be used as an SVA screener for either preoperative or postoperative
patients. Nevertheless, recently, abundant important spinal parameters have been proposed and share
the same importance as SVA, either at the coronal aspect or lateral aspect. Based on the success of this
ResUNet-based SVA estimator, we would like to extend this robust deep learning method to other
parameters in the future.

This study has some limitations. Firstly, the outline of vertebrae is slightly torched, as the X-ray
was emitted from a single source of radiation. If, for example, the EOS™ X-ray machine [19] can be
utilized, then the resulting outline of vertebrae, as well as the landmark locations predicted by our
experts, may be more accurate. Secondly, when the selected CV model (σ = 1.57, heatmap type =

exponential) was used for predicting the entire dataset (990 images), we found 68 (6.9%) images were
with large SVA absolute error (>10 mm). Among these 68 images, there were 33 and 17 images whose
predictions were suspected to be influenced by numerical variation of mobile vertebrae (NVMV),
and the occlusion of C7 or sacrum, respectively. In the former case, we found it difficult (for both
human experts and for ResUNet) to predict the sacral point when confronting with cases of NVMV,
or variable sacral fusion, by using the lateral plain radiographs only. NVMV is not uncommon in
Chinese adults. In the study of Yan et al. [31], it was shown that 9.6% of patients have the condition of
NVMV. We expect our model to handle patients with NVMV better, once more NVMV images are
gathered and learned. In the latter case, by using the plain radiography, the C7 vertebral body was
sometimes severely occluded by radiopaque areas around the shoulder, e.g., the clavicle, scapula,
and humeral head, which may increase the difficulty for the algorithm to learn. By contrast, our human
experts were generally able to infer the location of C7 body by observing the context of vertebrae and
imagine the alignment of them.

5. Conclusions

The automatic measurement of spinal parameters is believed to have a great impact on orthopedics
in the coming years. a fully automatic model was developed for the measurement of SVA using
a ResUNet framework. The proposed model showed a median absolute error of 1.18 mm. The inference
time for one image took approximately 0.2 s, which can be useful for fast screening of large datasets.
Our model was cross-validated and fine-tuned to achieve optimal performance with a 31-layer
ResUNet. The SVA values estimated by ResUNet was compared with the assessment of experienced
doctors and showed excellent agreement. This proposed algorithm can also facilitate the process that
allows orthopedic surgeons to design and plan the surgical procedures preoperatively and predict
the postoperative outcomes. In addition, this method can be further improved by the ability to detect
more landmark points for more clinical application in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/11/1826/s1,
Figure S1: Schematic outline of the procedure of 10-fold cross-validation.
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