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Abstract: Recently, photothermal therapy has attracted attention as an alternative treatment to
conventional surgical techniques because it does not lead to bleeding and patients quickly recover
after treatment compared to incisional surgery. Photothermal therapy induces tumor cell death
through an increase in the temperature using the photothermal effect, which converts light energy
into thermal energy. This study was conducted to perform numerical analysis based on heat transfer
to induce apoptosis of tumor tissue under various heating conditions in photothermal therapy. The
Monte Carlo method was applied to evaluate a multi-layered skin structure containing squamous
cell carcinoma. Tissue-equivalent phantom experiments verified the numerical model. Based on the
effective apoptosis retention ratio, the numerical analysis results showed the quantitative correlation
for the laser intensity, volume fraction of gold nanorods injected into the tumor, and cooling time. This
study reveals optimal conditions for maximizing apoptosis within tumor tissue while minimizing
thermal damage to surrounding tissues under various heating conditions. This approach may be
useful as a standard treatment when performing photothermal therapy.

Keywords: apoptosis; heat transfer; photothermal therapy; squamous cell carcinoma; thermal
damage

1. Introduction

The incidence of skin cancer is increasing each year because of the influence of global
warming and increase in outdoor activities [1–3]. Skin cancer is divided into three types:
squamous cell carcinoma, basal cell carcinoma, and malignant melanoma, which are
generally treated by tumor incisions. However, treatment through incision is associated
with recurrence due to incomplete incision of the tumor tissue; additionally, there are
risks of bleeding occurs in the affected area and secondary infection [4–7]. Photothermal
therapy has attracted attention as an alternative to incisional treatment to overcome these
disadvantages [8–10]. Photothermal therapy uses the photothermal effect, in which light
energy is converted into thermal energy to kill tumor tissue by increasing the temperature.
This treatment is non-invasive compared to conventional treatment, reducing bleeding
risks and increasing the rate of recovery [11,12].

Photothermal therapy supplies heat sources through various methods such as lasers
and optic fibers. Among them, lasers in the near-infrared region are widely used because it
is convenient to control the heat intensity and heating range [13–15]. However, using lasers
in near-infrared regions results in less light absorption in normal and tumor tissue than in
visible light regions [16]. A light absorber composed of a material that improves the light
absorption of the medium is injected only into the tumor tissue to overcome this problem,
enabling selective heating of the tumor tissue [17]. In this research field, gold nanoparticles,
which have various advantages such as convenient surface modification and biosafety, are
mainly used to enhance light absorption [18–21].

Various biological reactions, including death, depend on the temperature in typical
biological tissues; the types of death mainly include apoptosis and necrosis [22,23]. In necro-
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sis, metastasis and recurrence of cancer cells may occur through effects on surrounding
tissues as cells die. Therefore, it is very important to induce apoptosis without affecting
surrounding tissues. It is generally known that apoptosis occurs at temperatures between
43 ◦C and 50 ◦C, and necrosis occurs at temperatures above 50 ◦C [22,23]. Accordingly, in
photothermal therapy, the apoptosis temperature range should be maintained by control-
ling the appropriate heat source, amount of gold nanoparticles injected, and total treatment
time and prevent necrosis due to excessive temperature increases [24].

Numerous researchers have investigated the factors affecting photothermal therapy.
Abo-Elfadl et al. [25] cultured human skin melanoma Sk-Mel-28 cells and square skin
cell carcinoma in mice, injected gold nano semi-cubes into the tumor, and confirmed the
tumor removal rate using photothermal therapy. The effect of photothermal therapy on
partially inhibiting tumor growth and inflammation was confirmed. Maksimova et al. [26]
demonstrated the effect of photothermal therapy by examining the temperature distribution
and absorbed laser distribution when 808- and 810-nm lasers were irradiated to small
animals injected with silica/gold nanoshell and malignant tumors through experiments
and numerical analysis. This study revealed tumor tissue destruction when using various
intensities and types of lasers for a fixed irradiation time, and confirmed that photothermal
therapy effectively destroyed tumor tissues. Asadi et al. [27] presented the results of
numerical analysis modeling based on magnetic resonance imaging for simulation and
treatment planning of photothermal therapy using nanoparticles. This study utilized
y-Fe203@Au nanoparticles, and the temperature and damage distribution for biological
tissues was confirmed by the Pennes bioheat equation and Arrhenius damage model. After
injecting nanoparticles into the CT26 cell line derived from mouse colon adenocarcinoma,
the numerical analysis model was verified by irradiating a laser with a wavelength of
808 nm to evaluate the temperature distribution. Numerical and experimental results
confirmed that damage was focused in the heating area and tumor tissue.

In summary, numerical analysis and experiments in these studies confirmed the light
absorption and temperature distribution for limited conditions under the irradiated laser,
showing that tumor tissue was destroyed. However, the apoptosis rate in the tumor tissue
and thermal damage to the surrounding normal tissues were not quantified by simply
checking the presence of damage using the Arrhenius damage integral model or just
phenomenologically confirming the removal rate of the tumor through experiments. In
addition, photothermal therapy could not be performed under various conditions, such as
an extended laser irradiation time, and the conditions for achieving the optimal therapeutic
effect were not determined.

Therefore, in this study, the temperature distribution of the tumor tissue and sur-
rounding multi-layered skin structure for different laser irradiation times and various
laser intensities, as well as the volume fraction of the injected gold nanorods (GNR), was
confirmed through numerical analysis. In addition, by applying the apoptotic variable
proposed by Kim et al. [28], the apoptosis rate in the tumor tissue and amount of thermal
damage to the surrounding normal tissue were quantified to determine the appropriate
irradiation time and laser intensity and volume fraction of the injected GNR to achieve
optimal therapeutic effects.

2. Materials and Methods
2.1. Monte Carlo Method and Heat Transfer Model

When lasers represented by the heat source of photothermal therapy used to irradiate
biological tissue, scattering occurs simultaneously as increasing amounts of heat from the
laser are absorbed within the medium. The Monte Carlo method is used in bioheat transfer
to analyze this behavior [29]. This method is a probabilistic calculation of the movement of
laser photons through random numbers when a laser irradiates the medium.

In the Monte Carlo method, the distance and direction in which a photon moves are
determined by a random number. First, the distance a photon moves is determined as in
Equations (1) and (2) using the total attenuation coefficient of the medium and a randomly



Int. J. Mol. Sci. 2021, 22, 11091 3 of 20

selected number, where S is the distance moved by a photon per one time; ξ is a random
number generated between 0 and 1; and µa, µs, µtot are the light absorption coefficient,
light scattering coefficient, and total attenuation coefficient of the medium, respectively:

S =
− ln(ξ)

µtot
(1)

µtot = µa + µs (2)

For the angle of movement of photons, the deflection angle and azimuth are calculated
as shown in Equations (3) and (4) using the anisotropic factor, a variable that determines
the directionality in which particles are scattered, where cosθ is the deflection angle, ψ is
the azimuth, and g is the anisotropy factor:

cos θ =

 1
2g

{
1 + g2 −

[
1−g2

1−g+2gξ

]2
}

i f g > 0

2ξ − 1 i f g = 0
(3)

ψ = 2πξ (4)

Once the azimuth and deflection angle have been determined, the direction vector in
the Cartesian coordinate system can be calculated using Equations (5)–(7), where µx, µy,
µz are the direction cosines for each axis:

µ′x =
sin θ√
1− µ2

z
(µxµz cos ψ− µy sin ψ) + µx cos θ (5)

µ′y =
sin θ√
1− µ2

z
(µyµz cos ψ− µx sin ψ) + µz cos θ (6)

µ′z = − sin θ cos ψ
√

1− µ2
z + µz cos θ (7)

∆W = W
µa

µtot
(8)

Finally, when the distance and angle at which the photon moves are determined, the
energy reduction of the photon according to one movement of the photon is ascertained
from the optical properties of the medium, as shown in Equation (8), and moves until the
energy converges to zero through energy reduction due to absorption from the medium. W
is the energy weight of the photon. The overall simulation flow chart is shown in Figure 1.

Once the final movement path of a photon is determined by the Monte Carlo method
mentioned above, the absorption distribution of laser heat in the medium is determined
according to the intensity of the irradiated laser per unit area and optical properties of the
medium. The temperature distribution of the medium over time can thus be calculated
through the thermal diffusion equation of Equation (9), where q is the amount of heat
absorbed by the medium, k is the thermal conductivity, ρ is the density, and cv is the
specific heat:

∂T
∂τ

=
q +∇ · (k∇T)

ρcv
(9)

∆T = ∆τ
ρcv

(
µaFPldxdydz + (Tx− − T) 2kkx−

k+kx−
dydz
dx + (Tx+ − T) 2kkx+

k+kx+

dydz
dx + (Ty− − T)

2kky−
k+ky−

dxdz
dy

+(Ty+ − T)
2kky+

k+ky+
dxdz

dy +(Tz− − T) 2kkz−
k+kz−

dxdy
dz + (Tz+ − T) 2kkz+

k+kz+

dxdy
dz

) (10)

In this study, the thermal diffusion equation of Equation (9) was calculated using the
explicit finite element method (Equation (10)), where F is the fluence rate, Pl is the intensity
of the laser, and dx, dy, dz are the differential lengths of each axis [30].
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2.2. Apoptotic Variable

The final goal of photothermal therapy is to maximize apoptosis in tumor tissue when
the laser is irradiated on tumor tissue while minimizing thermal damage to surrounding
normal tissue. Three apoptotic variables proposed by Kim et al. [28] were used to confirm
this effect quantitatively.

First, the apoptosis ratio (θA), which confirms the volume ratio corresponding to the
apoptosis temperature range in the tumor tissue between 43 ◦C and 50 ◦C, is expressed as a
ratio of the volume corresponding to the apoptosis temperature to the total tumor volume
as shown in Equation (11). For example, if all parts of the tumor fall within the apoptosis
temperature range, θA has a value of 1. This study aims to determine the effects of treatment
time on photothermal therapy. However, as θA confirms the rate at which apoptosis occurs
within the tumor at a specific time to determine how long the tumor tissue maintains the
temperature band corresponding to apoptosis during the total treatment time, as shown in
Equation (12), the average for the total treatment time was used. This value was named as
the apoptosis retention ratio (θ∗A), where τ represents the total treatment time:

θA =
Apoptosis volume (i f 43 < V(T) < 50)

Tumor volume
(11)

θ∗A =
1
τ

∫ τ

0
θA(τ)dτ (12)

Second, the thermal hazard value (θH,n), which represents the degree of thermal
damage to normal tissues, is determined by weighting each of the phenomena in biological
tissues according to temperature, as shown in Table 1. The variable can be calculated as
a ratio of the weighted sum of volumes belonging to each temperature band to the total
volume of the surrounding normal tissue, as shown in Equation (13). If there is no thermal
damage to the surrounding normal tissue, θH,n becomes 1; if thermal damage increases as
the temperature increases, θH,n has a value of 1 or more. As this variable also identifies
results at a specific time, thermal damage in the surrounding normal tissues was identified
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by averaging the θH,n at each time to obtain results over the total treatment time, as shown
in Equation (14). This value was named as the thermal hazard retention value (θ∗H,n):

θH,n =

m
∑

j=1

(
Vn(T) · wj

)
Vn

(13)

θ∗H,n =
1
τ

∫ τ

0
θH,n(τ)dτ (14)

However, as shown in Equation (13), θH,n is calculated as a ratio to the volume of
the surrounding normal tissue. Accordingly, it is necessary to establish a standard area of
surrounding normal tissue that should be viewed. We confirmed the thermal damage to
normal tissues from the end of the tumor to 50% of the diameter of the tumor tissue [31].

Table 1. Laser-induced thermal effects [28,32].

Temperature Range (◦C) Biological Effect Weight, w

37 Normal 1

37 < T < 43 Biostimulation 1

43 ≤ T < 45 Hyperthermia 2

45 ≤ T < 50 Reduction in enzyme activity 2

50 ≤ T < 70 Protein denaturation (coagulation) 3

70 ≤ T < 80 Welding 4

80 ≤ T < 100 Permeabilization of cell membranes 5

100 ≤ T < 150 Vaporization 6

150 ≤ T < 300 Carbonization 7

T > 300 Rapid cutting and ablation 8

Finally, the effective apoptosis retention ratio (θ∗A,e f f ) to confirm the final goal of
photothermal therapy, which is to maximize apoptosis in tumor tissue while minimizing
thermal damage to the surrounding normal tissue, is a ratio between θ∗A and θ∗H,n, as shown
in Equation (15). Thus, various conditions that produce the optimal treatment effect can be
determined by simultaneously confirming the degree to which the apoptosis temperature
is maintained according to the total treatment time and degree of maintaining thermal
damage to surrounding normal tissues:

θ∗A,e f f =
Apoptosis retention ratio

(
θ∗A
)

Thermal hazard retention value o f normal tissue
(

θ∗H,n

) (15)

2.3. Experiment for Validation of the Numerical Model

In skin cancer, which was evaluated this study, it remains difficult to experimentally
determine the treatment effect because the ability to analyze patients is limited. Therefore,
a phantom with similar thermal properties to that of the human body is manufactured
and used for experiments in this research field. In this study, an acrylamide-based tissue-
equivalent phantom proposed by Surowiec et al. [33] and Iizuka et al. [34] was used. The
phantom exhibits thermal properties similar to those of human skeletal muscle tissue. The
thermal properties of the skeletal muscle tissue and phantom are shown in Table 2.
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Table 2. Thermal properties for tissue-equivalent phantom and human muscle.

Polyacrylamide Phantom Skeletal Muscle Tissue [35]

Density (kg/m3) 1070 1070

Specific heat (J/kgK) 3810 3470

Thermal conductivity (W/mK) 0.56 [36] 0.535

The tissue-equivalent phantom used in the experiment was produced with an acry-
lamide stock solution followed by addition of a catalyst and coagulant. The mixture of
each ingredient for producing the phantom is shown in Table 3.

Table 3. Recipe of polyacrylamide phantom.

Materials Stock (% by Weight) Remarks

Acrylamide 26.0

Acrylamide stock
solution

N, N’-methylenebisacrylamide 0.2

Sodium chloride 1.05

De-ionized water 71.7

Ammonium persulphate (10%) (APS) 1 coagulant

N,N,N′,N′-Tetramethylethylenediamine
(TEMED) 0.5 catalyst

In this study, to simulate GNR injection, a simulating tumor tissue part with a diameter
of 10 mm and depth of 10 mm was manufactured. GNR were injected in a volume fraction
of 2× 10−5 and surrounded with a phantom without GNR with 40 mm diameter and
30 mm length to simulate normal tissue. where the volume fraction represents the volume
of gold nanoparticles relative to the volume of the tumor and is a dimensionless number.
Figure 2 shows information on the produced phantom. The red circle in Figure 2a indicates
the phantom part that mimics the tumor tissue and has a bright purple color because of
the effect of GNR. In this study, GNR with a diameter of 10 nm and length of 67 nm was
used. Figure 2b shows a schematic diagram of the manufactured phantom and location of
the thermocouple attached to measure temperature. The temperature was measured after
attaching a T-type thermocouple at a depth of 1 mm from the surface and at 4 positions
along the radial direction. Temperatures were recorded by a data acquisition system
(34972A, Agilent Technologies, Santa Clara, CA, USA) and PC.
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Figure 3 is an experimental device for the numerical analysis verification experiment.
The experiment was conducted on an optic table to prevent interference from external
vibrations. A wavelength laser of 1064 nm with a diameter of 1 mm was used as a heat
source. The laser diameter was increased to 10 mm by a beam expander, and the laser path
was changed from horizontal to vertical using an optical mirror. Finally, a laser with the
same diameter as the phantom mimicking the tumor tissue was irradiated vertically to
heat the phantom. The resulting temperature change in the radial direction of the phantom
was confirmed.
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Figure 4 shows the temperature measurement results of experiments and numerical
analyses at various locations over time. The experiment was conducted for 20 min after
setting the initial temperature to 20 ◦C, and the temperature difference between the initial
temperature and corresponding time point was confirmed. As shown in Figure 4, the
average RMSE between the experiment and numerical analysis at various points was
derived as 0.1677. Based on these results, the numerical analysis model used in this study
is suitable.
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2.4. Numerical Investigation

The human skin is divided into four layers, which is considered in a numerical analysis
model. Figure 5 shows a cross-sectional view of the numerical model. A cylindrical tumor
with a diameter and length of 10 and 3.5 mm, respectively, was in normal tissue of a
three-dimensional cuboid structure with a width, length, and depth of 30, 30, and 10 mm,
respectively, and gold nanorods were assumed to be uniformly distributed within the
tumor. The tumor was at a depth of 0.1 mm from the surface and a laser with a wavelength
of 1064 nm with an appropriate penetration depth into the tumor tissue was used as the
heat source [37]. The thickness and thermal optical properties of each skin layer and tumor
are shown in Table 4.
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Table 4. Depth and thermal and optical properties of the skin layers and tumor [16,38–45].

t (mm) ρ (kg/m3) cp (J/kgK) k (W/mK) µa (1/mm) µs (1/mm) g

Epidermis 0.08 1200 3589 0.235 0.4 45 0.8
Papillary dermis 0.5 1200 3300 0.445 0.38 30 0.9
Reticular dermis 0.6 1200 3300 0.445 0.48 25 0.8
Subcutaneous fat 7.82 1000 2500 0.19 0.43 5 0.75

Tumor 3.5 1070 3421 0.495 0.08 1.28 0.925
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When a laser irradiates tumor tissue, including GNR, a photothermal effect is gen-
erated because of light absorption in the GNR, causing the temperature of tumor tissue
to increase. This heat is diffused to surrounding normal tissues through conduction, as
shown in Figure 6a. If the laser is irradiated with a reasonable cooling time, the conducted
heat does not spread widely, as shown in Figure 6b because of the thermal confinement
effect [46]. Heat transfer occurs within a narrow range. Accordingly, in this study, cooling
time conditions were added to numerical analysis to confirm the temperature distribution
of the medium according to various cooling times.
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Table 5 shows the numerical analysis conditions to confirm photothermal therapy
in various situations. The laser diameter was set to 10 mm, which is equal to the tumor
diameter, and the laser profile was set to be top-hat. A previous study [31] confirmed that
the temperature distribution in the medium converged when the laser was irradiated to
the tumor tissue for more than 1000 s. Therefore, the laser irradiation time, which is the
total treatment time, was selected as 120–960 s in 120 s intervals. The laser intensity was
0–2000 mW, and the volume fraction of the injected GNR was divided into four stages from
10−3 to 10−6 at intervals of 10−1 to confirm the temperature distribution under the given
conditions. Finally, the heating and cooling times were set to 15, 20, 30, and 60 s.

Table 5. Geometry of simulation conditions.

Numerical Parameter Case Number Remarks

treatment time (τtot) 120 to 960 s 8 Intv: 120 s
Laser power (Pl) 0 to 2000 mW 21 Intv: 50 mW

Volume fraction of GNPs (fv) 10−3 to 10−6 4 Intv: 10−1

Heating and cooling time (τh/τc) 15, 20, 30, 60 4

The optical properties of GNR were determined using the effective light absorption
area (reff), absorption efficiency (Q), and volume fraction (fv) of GNR in the tumor tissue, as
shown in Equations (16) and (17) [47]. In this study, GNRs with lengths and diameters of
67 and 10 nm, which are known to have the highest absorption efficiency for lasers with a
wavelength of 1064 nm, were used. The absorption efficiency Q of the GNR was calculated
using the discrete dipole approximation method [48]:

µa,np = 0.75 fv
Qa

re f f
, µs,np = 0.75 fv

Qs

re f f
(16)
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re f f =
3

√
3V
4π

(17)

µa = µa,m + µa,np, µs = µs,m + µs,np (18)

Finally, the optical properties of the tumor tissue injected with GNR can be calcu-
lated from the sum of the optical properties of the tumor tissue and GNR, as shown in
Equation (18) [49]. Table 6 shows the optical properties of the entire tumor tissue for the
various volume fractions of the injected GNR.

Table 6. Optical properties of tumor with GNR for various volume fractions.

Volume Fraction of GNR 10−3 10−4 10−5 10−6

Absorption coefficient (µa) (mm−1) 118.419 11.914 1.263 0.198
Scattering coefficient (µs) (mm−1) 6.101 1.762 1.328 1.285

3. Results and Discussion
3.1. Temperature of Tumor and Normal Tissue under Various Conditions

Figure 7 shows temperature changes in tumor and normal tissues for different volume
fractions (fv) of GNR with a laser intensity of 500 mW, total treatment time of 360 s, and
heating and cooling times (τh & τc) of 30 s. In order to confirm the temperature change
inside the tumor tissue and surrounding normal tissue, the temperature change was
confirmed at a depth of 2 mm, the central part of the tumor, and at a depth of 4 mm, a
part of the normal tissue adjacent to the tumor. When fv was 10−3, 10−4, and 10−5, both
tumor and normal tissues showed a similar tendency; when fv was 10−6, the tumor tissue
rose at a lower temperature range because of lower light absorption. Figure 7a shows
the temperature change at the central position of the tumor tissue with a depth of 2 mm
from the surface, and the green shaded area indicates 43–50 ◦C, which is known to cause
apoptosis. When fv is 10−6, this corresponds to a temperature range when apoptosis occurs
between 65 and 190 s. Additionally, as shown in Figure 7b, normal tissue death began at
approximately 70 s after starting treatment, with the thermal damage intensified when
around 50 ◦C was reached after 360 s. Based on these results, the effects of photothermal
therapy over the treatment time were quantified under various conditions by calculating
the apoptosis retention ratio (θ∗A) and thermal hazard retention value (θ∗H,n) over time.
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Figure 8 shows the temperature change of tumor and normal tissues according to
different τh & τc. When the laser intensity was 500 mW, the total treatment time was
360 s and fv was 10−6. The temperature of the tumor tissue showed a smaller increase
when no cooling time was included compared to when a cooling time was implemented
because of the thermal confinement effect. In addition, compared to a cooling time of 60 s,
a time of 20 s corresponds more to the temperature range at which apoptosis occurs in
the total treatment time. Hence, the cooling time giving the optimal therapeutic effect
was confirmed.
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Figure 8. Temperature change for various heating and cooling time (a) tumor tissue (depth: 2 mm); (b) normal tissue (depth:
4 mm).

3.2. Apoptosis Retention Ratio

As described above, photothermal therapy is a treatment technique that increases the
temperature of the tumor tissue and kills the tissue by using a heat source represented by
a laser. As it is important to maintain the temperature range corresponding to apoptosis
between 43 ◦C and 50 ◦C as much as possible, the temperature distribution within the tumor
tissue must be quantitatively confirmed to determine the time rate at which apoptosis
occurs. Accordingly, we identified the apoptosis retention ratio (θ∗A) for different laser
intensities and different volume fractions (fv) of GNR in tumors for each heating and
cooling time (τh & τc).

Figure 9 shows a graph of θ∗A according to the laser intensity and fv for various τh &
τc when the total treatment time was 360 s. The θ∗A showed a maximum value when fv
was 10−6 for all τh & τc. Additionally, the intensity of the laser with the maximum value
of θ∗A was determined, and we showed that the laser intensity from which the maximum
value of θ∗A was derived increased as fv decreased. This is because, as the fv decreases,
light absorption at the tumor tissue decreases, and more energy is required to increase the
temperature to the range corresponding to apoptosis. This result confirms that a specific fv
and laser intensity have an optimal treatment effect for various fv.
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Figure 9. Apoptosis retention ratio (θ∗A) for various volume fraction of GNR (fv) (τtot = 360 s) (a) τh & τc = 15 s;
(b) τh & τc = 20 s; (c) τh & τc = 30 s; (d) τh & τc = 60 s.

Figure 10 shows a graph of θ∗A according to τh & τc and laser intensity for various
treatment times when fv was 10−6. For each treatment time, the τh & τc and laser intensity
showed optimal treatment effects. For example, when the total treatment time was 360 s
when τh & τc were 60 s each, the apoptosis temperature range was reached in more parts of
the tumor compared to at other times. Furthermore, as the total treatment time increased,
the laser intensity with the maximum value of θ∗A decreased. This is because increasing
the total treatment time increases the laser irradiation time, which increases the amount
of heat transferred to the tumor tissue and results in an excessive temperature rise in the
tumor. Therefore, to maintain the apoptosis temperature range, the laser intensity must
be lowered.
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Figure 10. Apoptosis retention ratio (θ∗A) for various heating/cooling time (τh & τc) (fv = 10−6) (a) τtot = 120 s; (b) τtot = 360 s;
(c) τtot = 600 s; (d) τtot = 840 s.

3.3. Thermal Hazard Retention Value of Normal Tissue

When the laser irradiates tumor tissue, light energy is converted into heat energy by
the photothermal effect, and the temperature of the tumor tissue increases. Heat transfer
occurs by conduction to the surrounding normal tissue. Thus, if the tumor tissue reaches a
temperature resulting in apoptosis (between 43 ◦C and 50 ◦C) by adjusting the appropriate
laser intensity and amount of injected GNR, the temperature of the surrounding normal
tissue is 43 ◦C or higher because of heat transfer from the tumor tissue. This may cause
thermal damage. Therefore, the thermal damage of normal tissue from the end of tumor
tissue to 50% of the diameter of tumor tissue was quantitatively confirmed using the
thermal hazard retention value (θ∗H,n).

Figure 11 shows a graph of θ∗H,n according to the laser intensity and volume fraction
of GNR (fv) in the tumor for various heating and cooling times (τh & τc) when the total
treatment time was 960 s. As the laser intensity increased, thermal damage to surrounding
normal tissues increased. This is because, at a higher laser intensity, more heat is absorbed
from the tumor tissue and more heat transfer to the surrounding normal tissue occurs. In
addition, when fv was 10−6, thermal damage was lower than at other volume fractions of
GNR. This is because a smaller fv leads to a smaller amount of heat being absorbed by the
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tumor tissue. As a result, the amount of heat transferred to the surrounding normal tissue
was decreased.
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Figure 11. Thermal hazard retention value of normal tissue (θ∗H,n) for various volume fraction of GNR (fv) (τtot = 960 s).
(a) τh & τc = 15 s; (b) τh & τc = 20 s; (c) τh & τc = 30 s; (d) τh & τc = 60 s.

Figure 12 shows a graph of θ∗H,n according to the laser intensity and heating and cooling
times (τh & τc) for various total treatment times when fv was 10−6. We confirmed that θ∗H,n
increased as τh & τc increased. This is because the cumulative τc is the same over the total
treatment time, but a shorter τc correlates with a shorter irradiation time, thus reducing
the heating time and preventing the high temperature from being reached immediately.
Furthermore, as the total treatment time increased, the value of θ∗H,n increased, as described
in Section 3.2. As the total treatment time increased, the amount of heat absorbed by the
tumor increased, resulting in higher conduction to surrounding normal tissues.
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Figure 12. Thermal hazard retention value of normal tissue (θ∗H,n) for various heating/cooling time (τh and τc) (fv = 10−6).
(a) τtot = 120 s; (b) τtot = 360 s; (c) τtot = 600 s; (d) τtot = 840 s.

3.4. Effective Apoptosis Retention Ratio

As described above, the ultimate goal of photothermal therapy is to maximize apop-
tosis of tumor tissue while minimizing thermal damage to surrounding normal tissue.
Accordingly, in this study, the optimal treatment conditions were identified using the
effective apoptosis retention ratio (θ∗A,e f f ), which can simultaneously confirm the apoptosis
retention ratio (θ∗A) and thermal hazard retention value (θ∗H,n). As it was confirmed from
the results in Sections 3.2 and 3.3 that the maximum value of θ∗A and minimum value of
θ∗H,n were derived when the volume fraction of GNR (fv) in the tumor was 10−6, the final
θ∗A,e f f confirmed the result when the fv was 10−6.

Figure 13 shows a contour graph for θ∗A,e f f according to the total treatment time (τtot),

laser intensity (Pl), and heating and cooling times (τh & τc) when fv was 10−6. As τtot
increased, the Pl showing the optimal treatment effect decreased. This is because, similar
to the previous trend for θ∗A, as the total treatment time increased, the amount of heat
absorbed by the tumor tissue increased, resulting in an excessive temperature rise in the
tumor and surrounding normal tissues. This enables determination of the Pl that derives
the optimal treatment effect according to the total treatment time. For various τh & τc,
better treatment conditions depend on each treatment time.
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Figure 13. Effective apoptosis retention ratio (θ∗A,e f f ) for various total treatment time (τtot) (fv = 10−6) (a) τtot = 120 s;
(b) τtot = 240 s; (c) τtot = 360 s; (d) τtot = 480 s; (e) τtot = 600 s; (f) τtot = 720 s; (g) τtot = 840 s; (h) τtot = 960 s.
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Finally, Table 7 summarizes the Pl, τh & τc, and θ∗A,e f f under the conditions showing
the optimal treatment effect for each treatment time. The τh & τc and Pl showed the
optimal therapeutic effect for each treatment time. Finally, among the numerical analysis
conditions evaluated in this study, when the treatment time was 960 s, the treatment effect
was strongest under the conditions of 350 mW of Pl and 20 s of τh & τc, respectively. This
makes it possible to provide information on the conditions used to derive the optimal
therapeutic effect when actually performing photothermal therapy for skin cancer.

Table 7. Best treatment effect condition and effective apoptosis retention ratio for various treat-
ment time.

Treatment Time (s)
Optimal Treatment Conditions

τh & τc (s) Pl (mW) θ*
A,eff

120 60/60 650 0.50736

240 60/60 500 0.49713

360 30/30 450 0.49589

480 20/20 400 0.51446

600 30/30 350 0.52502

720 30/30 350 0.54085

840 20/20 350 0.55117

960 20/20 350 0.55429

4. Conclusions

In this study, numerical modeling of actual skin composed of four layers contain-
ing squamous cell carcinoma was performed, and quantitative information on various
conditions was obtained by using the Monte Carlo method, which inferred the optimal
photothermal treatment effect for squamous cell carcinoma near the skin layer based on
the effective apoptosis retention ratio.

The numerical modeling results were verified in acrylamide-based phantom experi-
ments. The distribution of light absorption in the medium was derived using the Monte
Carlo method that considers the scattering and absorption of the irradiated laser simultane-
ously. Based on this, the thermal diffusion equation obtained the temperature distribution
of the tumor tissue and surrounding normal tissue. Tumor tissue apoptosis and the amount
of thermal damage to surrounding normal tissue were quantified for various total treat-
ment times, heating and cooling times, volume fraction of injected GNR, and laser intensity
in photothermal therapy.

By calculating the effective apoptosis retention ratio, which is the ratio of the apoptosis
retention ratio to the thermal hazard retention value, was used to determine a condition
that minimizes thermal damage to surrounding normal tissues and maximizes the occur-
rence of apoptosis in the tumor tissue, which is the purpose of photothermal therapy. This
confirmed the conditions for the volume fraction of GNR in the tumor, the laser intensity,
and the heating and cooling time that derive the optimal treatment effect at various treat-
ment times. Through this, this study can be used as a basis for optimal treatment conditions
in photothermal therapy. These results should be validated in in vivo experiments under
the determined conditions.
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Abbreviations

cv Heat capacity [J/kgK]
fv Volume fraction of GNR
F Fluence rate [1/m2s]
g Anisotropy factor
k Thermal conductivity [W/mK]
Pl Intensity of laser [W]
q Volumetric heat source [W/m3]
Q Dimensionless efficiency factor
re f f Effective radius of particle [m]
S Photon’s moving distance per 1 step [m]
t Thickness [m]
T Temperature [K]
V Volume [m3]
W Energy weight of photon [J]
w Weight
Subscripts
a Absorption
c Cooling
h Heating
m Medium
n Normal tissue
np Nano particle
s Scattering
tot Total
x, y, z Notation of direction
Greek symbols
θ Deflection angle [◦]
θA Apoptosis ratio
θ∗A Apoptosis retention ratio
θH,n Thermal hazard value
θ∗H,n Thermal hazard retention value
θA,e f f Effective apoptosis ratio
θ∗A,e f f Effective apoptosis retention ratio
µ Directional cosine
µ′ Direction vector
µa Absorption coefficient [1/m]
µs Scattering coefficient [1/m]
µtot Attenuation coefficient [1/m]
ξ Random number
ρ Density [kg/m3]
τ Time [s]
ψ Azimuthal angle [◦]
Superscripts
+ Next element
− Previous element
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