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A B S T R A C T   

The regulatory role of the Micro-RNAs (miRNAs) in the messenger RNAs (mRNAs) gene expression is well un
derstood by the biologists since some decades, even though the delving into specific aspects is in progress. In this 
paper we will focus on miRNA-mRNA modules, where regulation jointly occurs in miRNA-mRNA pairs. Namely, 
we propose a holistic procedure to identify miRNA-mRNA modules within a population of candidate pairs. Since 
current methods still leave open issues, we adopt the strategy of postponing any decision on the value of the 
module ingredients exactly at the end, i.e. at the moment of biologically exploiting the results. This diverts chains 
of statistical tests into sequences of specially-devised-evolving metrics on the possible solutions. This strategy is 
rather expensive under a computational perspective, so needing implementations on HPC. The reward stands in 
the discovery of new modules, possibly hosting non differentially expressed miRNAs and mRNAs and pairs 
containing genes that currently are considered not targeted. In the paper we implement the procedure on a 
Multiple Myeloma dataset publicly available on GEO platform, as a template of a cancer instance analysis, and 
hazard some biological issues. These results, jointly with the normal manageability of the computations, suggest 
that the discovery procedure may be profitably extended to a wide spectrum of diseases where miRNA-mRNA 
interactions play a relevant role.   

1. Introduction 

MicroRNAs (miRNAs) are small non-coding RNAs, found in plants, 
animals, and some viruses, that can cause mRNA degradation and 
translational inhibition, as well as mediate stimulation of gene expres
sion. Their regulatory mechanisms in development and cellular ho
meostasis are still considered open issues. In particular, this paper 
focuses on the module discovery. According to the biological observa
tion, multiple miRNAs may regulate one message and one miRNA may 
have several target genes conversely [25]. This entails bipartite 
miRNA-mRNA regulatory graphs, denoted modules, as in Fig. 1 that are 
associated with different conditions such as pathologies or histological 
origins [19]. 

The distinguishing features that are used to identify miRNA-mRNA 
pairs are essentially two: binding motif and expression. The former 
represents a rather mechanical feature of the ribonucleic acids, con
cerning small chunks of their primary structure and associated second
ary structure. If they prove appropriate, essentially by complementarity, 
a specific miRNA may bind its mRNA partner. The appropriateness may 
be established algorithmically, but the effectiveness should be proven 

experimentally. Checked effectiveness apart, in this way we may 
compute mRNA putative target genes for any miRNA [10]. For example, 
miRBase has deposited 5071 miRNAs and their target genes from 58 
species [21] up to date. 

The miRNA and mRNA expressions constitute companion strings of 
values that put in relation the regulatory activity of the former with its 
effect on the mRNA in a series of patients. There are full series of 
experimental data that depend on the mentioned conditions [1]. 

1.1. Previous studies 

The bipartite graph in Fig. 1 introduces the co-regulatory problem at 
the core of this paper as an instance of bi-clustering analysis [6]. If we 
consider a data matrix with row headlined by miRNAs and column 
headlined by mRNAs, we must identify optimal pairs of subsets of rows 
which exhibit similar behavior across a subset of columns, and vice 
versa. The main decisions in the way to get a solution concern: i) the 
content of the data in the matrix, and ii) the optimization procedures. 

As for the former, in principle each cell of the matrix reports a dis
tance, in a proper metric, between the crossing elements, so that the 

* Corresponding author. 
E-mail addresses: ghada.shummo49@gmail.com (G. Shommo), apolloni@di.unimi.it (B. Apolloni).  

Contents lists available at ScienceDirect 

Non-coding RNA Research 

journal homepage: www.keaipublishing.com/en/journals/non-coding-rna-research 

https://doi.org/10.1016/j.ncrna.2021.09.001 
Received 26 May 2021; Received in revised form 20 September 2021; Accepted 20 September 2021   

mailto:ghada.shummo49@gmail.com
mailto:apolloni@di.unimi.it
www.sciencedirect.com/science/journal/24680540
http://www.keaipublishing.com/en/journals/non-coding-rna-research
https://doi.org/10.1016/j.ncrna.2021.09.001
https://doi.org/10.1016/j.ncrna.2021.09.001
https://doi.org/10.1016/j.ncrna.2021.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ncrna.2021.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Non-coding RNA Research 6 (2021) 159–166

160

solution emerges from proper sub-grouping of the line and column el
ements. For instance, according to Bryan et Al. [6], data in the cell are 
the correlations between row miRNA and column mRNA, and groups are 
arranged so as to minimize the minimum of each subgroup, if we look for 
an inhibitory effect of miRNAs, under constraints on their sizes. In 
general, the search for the optimal grouping results in a high compu
tational complexity problem which falls in the NP-hard class [12]. 
Hence, the adopted optimality criterion and related optimization algo
rithm play a crucial role to handle feasible procedures. For example, 
Bryan et Al [6]. optimize the above criterion via a BUBBLE bi-clustering 
strategy and the stochastic optimization method denoted as simulated 
annealing (SA) [30]. Liu and Tsykin [18] use binary distances, so that 
the cross elements come into play if they are linked by a binding motif 
and the correlation of their expressions is negative, discarded otherwise. 
Then, maximal bicliques identify modules, where a biclique is a sub
graph of the original bipartite graph such that every vertex of the first 
partition is connected to every vertex of the second one [9]. Other au
thors opt for probabilistic models [20] or for soft computing techniques, 
such as evolutionary algorithms [17] or rough clustering [7], to learn 
approximate solutions of the optimal bi-clustering. 

Finally, other authors adopt a divide et impera strategy, by dividing 
the problem in subtasks. For instance, Jayaswal et Al. [16]. identify 
relevant miRNA clusters and mRNA clusters first, then they look for the 
more significant pairs. We may see it as a three blocks procedure, where 
each block is a separate clustering task ending with the pruning of the 
candidate solutions via statistical tests of the hypothesis “no meaningful 
candidate”, with a conventional significance level α. 

1.2. Our contributions 

Tough complying with the Jayaswal et Al. thread, our strategy 
adopts a holistic approach, as for operational aspects. In fact, we post
pone pruning as latest is possible and base it on dry usability consider
ations. Namely:  

1. unlike the common practice of focusing on only differentially 
expressed miRNAs and mRNAs, we assume all items available in the 
optioned database as candidate elements of the wanted modules.  

2. in place of shrinking sets of candidate items, we maintain all of them, 
but progressively information enrich them with measures that 
denote their fitness with the module discovery goal. 

3. the output of the procedure is a list of modules which is sorted ac
cording to the optimality criteria driving our path to their discovery. 

The idea is that, rather than taking decisions on the basis of the 
partial information available at the end of the single tasks (preprocess
ing included), we maintain the log of the question points via prefera
bility measures of the related options, and take decisions just at the end, 
when all information is available and doubts may be removed. A similar 
strategy is made feasible by the availability of large computational 

resources, so that we may manage in HPC centers large amounts of data 
to get the final decisions. For instance, working with the Multiple 
Myeloma dataset available on GEO platform,1 we maintain alive along 
the procedure 296 × 7325 miRNA-mRNA pairs. As a result, we widen 
the scope where to find out new modules, which in turn lead to consider 
unprecedented pairs. Those pairs join possibly non-differentially 
expressed items that currently are not acknowledged as partners of a 
targeting. Nevertheless, early inspections of disease databases reveal the 
candidate relevance in regulatory phenomena. 

The paper is mainly focused on computational aspects of the pro
posed procedure. Its organization is the following. Section 2 recalls the 
statistical tools used in our procedure. Section 3 illustrates the proced
ure. Section 4 reports its implementation and related numerical results. 
Finally, in Section 5 we discuss the relevance of those results from a 
biological perspective, hazard some specific issues and provide 
forewords. 

2. The involved statistical tools 

Identifying regulatory miRNAs and their target mRNAs is a major 
combinatorial challenge: in fact, a single miRNA regulates multiple 
mRNAs and, on the other hand, several miRNAs co-regulate a single 
mRNA. As mentioned in the Introduction, rather than facing directly the 
combinatorial problem of bi-cliquing, we prefer ordering the candidate 
modules according to some statistics on their components. On their 
basis, we: 1) look for suboptimal solutions that result computationally 
feasible, and 2) enable the user to bargain by himself the exhaustiveness 
of the solutions’ set with their effectiveness. 

2.1. Metrics 

The metric at the basis of the above statistics is a hybrid one, as it is 
based on both binding motif and expression. Namely, 

● We rely on Y × X binary matrices (map matrices) derived from da
tabases and tools on the WEB, where Y denotes mRNAs, X denotes 
miRNAs and cell value is 1 if crossing row and column bind, 
0 otherwise (the mechanical measure).  

● Jointly, we rely on Y × T and X × T matrices on the WEB, where T 
spans the expression of the row headline with patients. These values 
are floating point numbers that have been properly normalized ac
cording to standard steps, for instance those available in NCBI 
platform.2 

From the first matrix we derive a partitioning tree metric, where at 
the node k, seen as binary vectors, two rows (or two columns) fall in the 
same partition if the respective k-th bits coincide. The iterated appli
cation of this rule leads to a tree where on node h rows are located 
having the progressively involved h bits coinciding. 

Then,  

● Individually, from ⋆ × T matrices we derive:  
s1 an early similarity measure si,j between rows {i, j} by simply 

considering their distances, possibly in norm L2 – Euclidean dis
tance, or in norm L1 – Manhattan distance.  

s2 a similarity significance measure σi,j between two rows {i, j} as 1 
− pvalue of the linear regression of row i on row j (or vice-versa, 
since pvalue is a symmetric function of the two rows).3 

● Jointly, from Y × T and X × T matrices we derive a new Y × X sim
ilarity matrix Q, where cell {h, k} reports: 

Fig. 1. Bipartite miRNA-mRNA graphs hosting modules aka the biclicque 
emphasized in red. 

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi.  
2 https://www.ncbi.nlm.nih.gov.  
3 http://reliawiki.org/index.php/Simple_Linear_Regression_Analysis. 
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s3 σ̃h,k = 1− the pvalue of the regression of the mRNA headlining the 
h-th row of the first matrix on the miRNA headlining the k-th row 
of the second matrix. 

Compositions of the above distance/similarity measures are at the 
basis of the clustering procedures used in our search path for modules. 

A special mention we do to our implementation of Hausdorff dis
tance [2, Ch. II]. By definition, the Hausdorff distance dH(A, B) is 
computed between two subsets A and B respectively of Y and X. In our 

case, the subsets are clusters of mRNAs and miRNAs, respectively, so 
that the distance is defined as 

dH(A,B) = max
{

maxy∈Ad(y,B), maxx∈Bd(A, x)
}

(1)  

where d(y, B) = minx∈Bd(y, x), d(A, x) = miny∈Ad(y, x), min and max are 
the usual minimum and maximum operators over sets, respectively, and 
the external maximum in (1) is carried out to take into account the non- 
symmetry of the two operators maxy∈A{minx∈Bd(y, x)} and 
maxx∈B

{
miny∈Ad(y, x)

}
. With reference to Fig. 2-left, dH(A, B) is the 

length of the longest double arrow (the blue one). Moreover, differently 
from what represented in the above figure, in our implementation d(y, x) 
is the Euclidean norm of the difference between y and its linearly 
regressed value ̃y over x. Namely, with reference to the set of expression 
values x relative to a given miRNA and the corresponding set of 
expression values y relative to a given mRNA, we compute the linear 
regression function ℓ of y over x, then we compute the regressed value 
ỹi = ℓ(xi), where i ranges over the joint indexes of the components of y 
and x . Whenever necessary, we denote this distance as dl. With this 
notation, dl(y,x) = ∣y − ỹ|2. In Fig. 2-right ỹi − yi is represented by the 
double arrow in orange. 

2.2. Algorithms 

We implemented three clustering procedures: 

Fig. 2. A sketch of the Hausdorff distance compu
tation in our implementation. Left picture: bullets 
→ elements of set A, rhombuses → elements of set B; 
blue dashed lines → minimal distances of bullets 
from the set B, red dotted lines → minimal distances 
of rhombuses from the set A; thick double arrows 
Maximal distances of A from B (in blue) and of B 
from A (in red). Right picture: points → experi
mental (x,y) pair; line → their regression line; or
ange double arrow → the difference ỹi − yi relative 
to the pair of components (xi, yi).   

Fig. 3. The flow chart of the proposed procedure.  

Fig. 4. The elbow graph to identify a suitable number k for clustering miRNAs.  

Table 1 
miRNA clusters (miXX) and mRNA clusters (mrYY) generated by our procedure and their sizes.  

cls_name mi0 mi1 mi2 mi3 mi4 mi5 mi6 mi7  
cls_size 4 32 23 5 58 20 23 130  

cls_name mr0 mr1 mr2 mr3 mr6 mr7 mr9 mr10 mr11 
cls_size 7 3925 1244 8 60 326 52 34 38 
cls_name mr12 mr13 mr14 mr15 mr16 mr17 mr18 mr19  
cls_size 31 1397 14 64 28 81 5 8   
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C1 Hierarchical divisive clustering [23]. We use a very elementary 
implementation whose dendrogram results in a binary tree. 
Starting from a set of q ≤ 2m binary strings of fixed length n, we 
may split it in n different ways according to the value the ith bit, 
for i ∈ {1, …, n}. Iterating the procedure on each partition (son) 
of the split we may come to at most m partitions containing a 
single string. We may decide stopping the partitioning when the 
son meets some conditions, for instance its size is less than a 
threshold, and consider it a cluster. Besides these conditions, the 
quality of the cluster depends on the selection of the further 
splitting bit of a son. In absence of ancillary information the se
lection criterion is normally related to entropic properties of the 
questioned son and its prongs. In principle we should toss this 
criterion on each splitting bit; normally we test only on a subset of 
them. Random forest [27] is an ensemble of these dendrograms 
whose results are properly merged.  

C2 Agglomerative clustering [33]. The most familiar algorithm 
within this family is the k-mean algorithm, where, starting from k 
more or less random attractors as their centers, clusters pro
gressively grows and update their centers in a competitive way (a 
new point is aggregated to the closest center (the mean) and 
updates its value). Many variants concern the updating rule; in 
our method we implement the k-medoid clustering, where 
medoid plays the same role of mean, but refers to an actual 
element x of the cluster χ, the one which minimizes the sum of 
distances from the others. In formulas: 

xmedoid = arg miny∈χ

∑|χ|

i=1
d(y, xi). (2)    

C3 Hausdorff linkage [3]. In a very essence, we use the Hausdorff 
distance to rank the links between miRNA and mRNA clusters in a 
pair. 

3. The holistic procedure 

Fig. 3 sketches our procedure. It consists of three phases, pre-pro
cessing, individual clustering and module detection, which progressively 
exploit the mentioned matrices Y × X, Y × T and X × T derived from the 
WEB. 

3.1. Pre-processing 

For given pathology, we assess the Y × X matrix starting from the 
miRNA collection and companion mRNA collection available on the 
NCBI website and searching for targets checking which item of the latter 
is a target of one of the former using mirWalk database available online 
[11]. Y × T and X × T are companion matrices reporting properly 
normalized mRNA and miRNA expressions, respectively, of a set of pa
tients suffering the questioned pathology at a different level. 

As mentioned in the introduction, we consider all miRNAs and 
mRNAs at the basis of the experimental data. However, for computa
tional reasons we may downsize their number. We do it for mRNAs by 
modulating the threshold on the p_value of their differential expression, 
where higher values than the conventional 0.05 release higher numbers 
of items. 

3.2. Individual clustering 

This phase is devoted to identify relevant clusters, individually 
within a mRNA dataset and a miRNA dataset. We divide this task in two: 
i) preparing ingredients for a good metric and ii) assembling the metric 
and exploiting it to identify the clusters. Ta
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● Preparing ingredients. Our goal is to cope with the two ways edges 
sketched in the bipartite graph of Fig. 1. Hence we look for Y clusters 
that collect mRNAs that have common targeting miRNAs (co-tar
geting), with high frequency, and close expression numbers (co- 
expression) – analogously for X clusters. 

The co-targeting is determined by the dendrograms, let’s call them 
trees, in point C1. At their completion, in a terminal node (a leaf) we find 
mRNAs that are targeted by a same subset of miRNAs. The splitting bit, i.e. 

the miRNA column in the Y × X separating mRNA rows whose cross cell in 
the table is labeled by 0 from those whose cell label is 1, is established at 
each son split by an expression homogeneity criterion. Namely, let ti be the 
i-th row of the Y × T matrix, i.e. the expression values of the i-th mRNA. 
Assume that a son Q in the tree contains mRNAs {y1, …, ym} and its prongs 
P1, P2 after split contain mRNAs {y1, …, yk} and {yk+1, …, ym}, respec
tively. We assume as non-homogeneity measure ω(A) of set A the quantity 

ω(A) =
∑

i∈|A|

s2
i,∗ (3)  

where s is the similarity measure mentioned on point s1, index * points 
at a dummy row representing the average of the mRNA rows in A and |A| 
lists the indexes of those rows.4 The homogeneity criterion sorts the 
candidate bits bks (all bits but the ones used along the branch ending 
with the questioned node) via the differential homogeneity measure 
Δω(S, bk) given by 

Δω(Q, bk) = ω(Q) − ω(Pk1 ) − ω(Pk2 ) (4)  

where we further index the prongs with k to relate them to the splitting 
bit. Moreover, in order to limit the computational load we adopt the 
strategy of considering only a random subset of the candidate bits (for 
instance, with cardinality order of the square root of their number, ac
cording to Ref. [32]). The bit with highest Δω is used to split the son Q. 

At the end of the procedure, that occurs when all candidate prongs 
have cardinality less than a threshold τ, we remain with a set of leaves 
that we may handle as the results of an unsupervised clustering. Actu
ally, Xiao and Segal [32] revisited this procedure as a multivariate 
regression tree [8] within the CART family [5], where Y × X rows or 
columns are used as independent variables and the expressions tis as 
dependent variables. The latter does not supervise the clustering; rather, 
tis feed an unsupervised clustering in line with [28], where the authors 
introduce a dummy target of the regression algorithm that results in a 
homogeneity measure. 

Finally, the drawbacks deriving from limiting the number of candi
date splitting bits is relieved by a huge repetition of the procedure 
generating multiple trees depending on the sampled candidate-bit- 
subsets. This is a usual technique denoted as random forest. Parameters 
of the obtained forest are:  

1. the threshold τ to the size of the prongs  
2. the size μ of the candidate subsets  
3. the number ν of the trees.  

● Final clusters The similarity measure through which to cluster the 
miRNAs and the mRNAs comes from a synthesis of the random 
forest results plus a further contribution from the item expres
sions. Namely:  
– on the one hand we merge the leaves of the trees by the formula 

Fig. 5. Histograms of Hausdorff distances dH and distances dl in our case study. The former refers to all miRNA-mRNA clusters, the latter to a down sample of the 
miRNA-mRNA pairs. The distances have been divided by 

̅̅̅
n

√
, where n = 60 is the number of the case patients. 

Fig. 6. Synopses of the Hd distances. Upper: the Hd landscape over the cluster 
pairs. Center: Marking the closest cells of Table 2: gray circles → small distance 
cells; red circles → smallest distance within the gray cell rows; blue squares → 
the 9 smallest distances according to the landscape on the bottom. Lower: same 
as on the upper but with reference to a normalized Hd. 

4 Thus ω(A) is the sum the trace elements of the covariance matrix of those 
rows. 

G. Shommo and B. Apolloni                                                                                                                                                                                                                  



Non-coding RNA Research 6 (2021) 159–166

164

ψ(x1,x2)=
1
ν
∑ν

h=1
δh(x1,x2) ​ where ​ δh(x1,x2)

=

{
1 if ​ (x1,x2) ​ belong ​ to ​ a ​ same ​ leaf ​ of ​ the ​ h − th ​ tree
0 otherwise. (5)    

– on the other hand we enrich this measure with the significance of the 
pair. Namely, we multiply ψ(x1, x2) by the similarity measure σ1,2 
defined in point s2. 

In this way, we obtain for both Y × T and X × T a similarity matrix W 
whose cell Wi,j = ψ1(xi, xj)σi,j. This matrix is at the basis of the k-medoid 
clustering recalled in Section 3. It is an unsupervised clustering algo
rithms that requires, to be implemented, the setting of the number c of 
clusters to be identified. We establish this number through a common 
elbow procedure.5 

3.3. Hausdorff linkage 

At the end of the second phase, we are left with individual clusters 
whose elements are gathered together because both are related to each 
other via co-expression and are intertwined by elements of the com
plementary side of the graph in Fig. 1. To link clusters of one side to 
those of the other one we may rely on distance/similarity measures, such 
as σ̃h,k defined in point s3, or dl defined on page 7, between each pair of 
elements of each pair of clusters. We opted for the last measure which 
proved to be more effective. To wrap-up dl on a pair of clusters we use 
the Hausdorff distance in the way we mention in Section 2. This distance 
is used as the linkage between the clusters, so that the sorting of the 
cluster pairs according to it denotes a preference direction for analyzing 
candidate modules. We start from the closest pairs (according to this 
distance) and move ahead until this analysis provides interesting results. 

As anticipated since the abstract, we do not proceed by acceptation 
tests, decreeing which one passes them and which one does not. Rather 
we assemble a set of modules that may be huge in number, since we do 
not waste anything. Then we provide a metric according to which we 
move from those that we expect to be more interesting to analyze toward 
the less interesting ones. The interest threshold is up to the user. 

4. Implementing the holistic procedure 

Implementing the procedure requires feeding the data matrices, fine 
tuning some parameters and formatting the results. 

4.1. The datasets 

We focus on the Multiple Myeloma data available on the GEO page 
GSE16558.6 

Namely mRNA and miRNA expression profiles come from the 
collection GPL8965, series GSE16558 referring to some different levels 
of Myeloma pathology. This series gathers:  

● mRNA expression profiles obtained by using Affymetrix Gene 
Chip1.0 ST, in number of 33297. The expressions have been collected 
on 60 patients plus 5 control patients. Data normalization is carried 
out through: Robust multi-array (RMA) background correction, 
quantile normalization, median polish algorithm [15].  

● companion miRNA expression profiles obtained using TaqMan low 
density arrays, in number of 365. The expressions have been 
normalized using small-nucleolar RNAs, RNU44 and RNU48, as 
housekeeper, and delta CT method [21]. 
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5 https://bl.ocks.org/rpgove/0060ff3b656618e9136b.  
6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16558. 
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From the above mRNAs we drew 7325 loosely differentially expressed 
profiles using NCBI GEO2R analysis tool [31] with a p_value = 0.1. As 
for miRNAs we used all profiles in principle, given their short number. 
However, their number reduces, because only 330 appear in the mir
Walk database we used to find their targets. 

From these profiles we drew a Y × X matrix having dimensions 7325 
× 296, because some columns result to be empty according to the above 
database. We remark that in this way we scale up of a factor higher than 
20 with respect to the analogous matrix restricted so the sole 0.05 
differentially expressed items. 

4.2. Parameters 

Willing to avoid the computational complexity of an exact solution of 
the biclicque problem, our procedure provides approximate solutions, 
whose success depends on the tuning of some operational parameters. 
Namely, we are called to establish the following parameters. 

As for level 1 clustering:  

1. threshold τ. We established τ = 10 to threshold the size of the leaf of 
the trees of the random forest. We establish this value as a compro
mise between the gathering power of the leaf and its significance as 
for number of splits, hence of miRNA-mRNA interactions.  

2. numcov μ. We establish μ to be equal the square root of the length of 
the binary strings to be split, hence 85 for mRNAs and 17 for miR
NAs. It derives from a compromise, again, between computational 
loads and exhaustiveness of the search for the optimal splits.  

3. numtrees ν. The value ν = 100 is a way of further relieving the 
possible drawbacks coming from an inadequate value of μ. 

As for level 2 clustering:  

4. numclsters k. This parameter is a typical plague of agglomerative 
clustering. Establishing the number k of clusters is a problem of 
complexity comparable with the one of the whole clustering task. We 
decided to adopt an elbow method [4] to override this impasse. 
Namely, we adopted the clustering distortion as a fitness measure of 
a given k selection, where distortion is measured as the sum of 
squared distances of samples to their closest cluster center. Then we 
graph the trend of this measure with k and loosely identify the elbow 
of the graph (see Fig. 4). In this way we decided to choose k = 8 for 
miRNA clusters, and k = 20 for mRNA clusters, that is around twice 
the elbow point, to favor a meaningful split of the huge dataset. 

4.3. Numerical results 

From a dry computational perspective, our results consist of:  

1. A set of mRNA clusters and miRNA clusters as in Table 1. Each cluster 
is a set of items as grouped by the k-medoid algorithm. Hence the 
items are close one another according to the similarity measure σ and 
intertwined by common regulatory effects enhanced by the random 
forest. 

As we may see from the table, the sizes of the mRNA clusters are 
quite different. Per se, this is not a drawback, but simply an image of the 
data. We removed from our considerations 3 clusters composed of a 
single item, since not interesting for our purposes.  

2. A Hausdorff distance matrix between the clusters of the two (mRNA 
and miRNA) families (see Table 2). 

Looking at the histograms of these values in Fig. 5 left, we clearly 
identify two groups of (rescaled) distances, the ones below 0.030, let’s 
call them small distances, and the ones up this threshold, the large 
distances. These groups are definitely separated, as a sharpening of the 

source histogram of the distances between the single miRNA-mRNA 
pairs represented on the right of the above graph. 

Moreover, the 3D plot of the values of Table 2 highlights that the 
difference is made by the miRNA hand of the pairs (see Fig. 6_upper).  

3. A sorted list of modules, as an immediate synthesis of the above 
matrix. Fig. 6_center marks with gray circles the modules with dis
tance less than 0.25. They refer to miRNA clusters n◦ = 3 and 5. 
Inside them, red circles mark the three modules with lowest distance, 
that will be invested by further considerations under a biological 
perspective in the next section. 

Actually, the notion of distance could be further elaborated. In 
Fig. 6_lower we represent an analogous 3D plot where we normalize the 
Hausdorff distance by a factor taking into account the width of the 
compared clusters. Namely, we assume this factor as the inverse of the 
square root of the number of involved distances between miRNA-mRNA 
pairs. With this normalization the Hausdorff distance landscape 
changes, and we mark with blue square the 9 closest pairs in 
Fig. 6_center. 

5. Discussion 

To have an early evaluation of the obtained results, in Table 3 we 
considered the nine red-circled modules of Fig. 6_center (the closest 
modules), jointly with nine modules showing the highest Hausdorff 
distance (the furthest modules), and checked some elementary statistical 
properties. 

As mentioned in the introduction, modules are a way of discovering 
joint regulatory actions of miRNAs on groups of mRNAs, like for the 
cliques in Fig. 1. To this aim we exploit the joint information of binding 
motif and expression. Namely, we use the Y × X map matrix and 
expression associations of miRNA pairs and mRNA pairs to separately 
group the two genomic players into clusters. Then we look for the above 
cliques by associating clusters from the two groups on the basis of their 
Hausdorff distance computed over the expression associations of mixed 
miRNA-mRNA pairs. 

Willing to check the effectiveness of this procedure, a first indicator 
we adopted is the rate of targeted pairs inside a module. Looking at the 
more crowded modules, namely the cluster pairs ({2, 7}, {2, 1}, {2, 13}) 
among the closest modules and ({4, 14}, {4, 3}, {4, 0}, {1, 11}) among 
the furthest ones, we reckon a high rate of targeted pairs, that is 
generally higher in the closest module (excluding module ({2, 1}) that is 
over-sized). Rather, our attention is drawn by the small modules of the 
first group (namely the groups ({3, 3}, {3, 18}, {3, 19}) that are 
populated by an almost vanishing number of targeted pairs and no 
differentially expressed miRNAs. The first feature may pave the way to 
the discover of new miRNA targets, by calling either for indirect tar
geting instances, like those mentioned by Plotnikova et Al. [26], or for 
other binding mechanisms, like the combinatorial binding [24] that 
haven’t yet been considered. The second features call for exploration of 
regulatory phenomena that are normally omitted. Though with a lower 
degree, these features characterize also the intermediate modules ({5, 
3}, {5, 18}, {5, 19}) within the closest modules, but not the analogous 
modules of the second group. 

To support these hints we mention the relations of the mRNAs 
GEMIN5 and EXOC8 in relation with the miRNAs hsa-miR-584d, hsa- 
miR-99a-5p and hsa-miR-145-5p, respectively in the closest modules {3, 
19}, {5, 19} and the twelfth furthest {4, 19} module. While the sole 
targeting of both genes in the map matrix Y × X is uniquely declared on 
the part of hsa-miR-145-5p, which per se is not differentially expressed, 
biological evidence shows a regulatory interaction between those genes 
and the miRNA of the closest modules. In fact:  

1. A study on CD2+ T lymphocytes has shown that the gene GEMEN5 
was significantly differentially upregulated, while hsa-miR-584d and 
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hsa-miR-99a-5p were differentially upregulated and downregulated 
respectively [13].  

2. An analogous study has shown that miR-99a was strongly down- 
regulated in breast tumor and EXOC8 was significantly up- 
regulated [22].  

3. MalaCards Disease Associated database [29] and HMDD miRNA 
Disease associated database [14] respectively denote, though sepa
rately, that breast cancer is a common disease for both the two genes 
and the three miRNAs. 

In conclusion, by adopting a holistic strategy, in this paper we 
introduce a procedure to discover new miRNA-mRNA interactions that 
would be omitted in the common literature. The procedure derives from 
a general strategy and uses standard tools that are properly devised in 
order to exploit new metrics to be implemented on HPC utilities; the 
latter are applied to standard repositories of biological data. This work 
has been carried out mainly from a data analytics perspective. So, while 
further elaborations from a biological perspective are in order to 
enhance the effectiveness of the procedure, the transversality of the 
diseases to which the discovered interactions refer envisages its suit
ability in a wide spectrum of pathologies where miRNA-mRNA in
teractions play a relevant role. 
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