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Direct reciprocity and model-
predictive rationality explain 
network reciprocity over social ties
Fabio Dercole   , Fabio Della Rossa    & Carlo Piccardi   

Since M. A. Nowak & R. May’s (1992) influential paper, limiting each agent’s interactions to a few 
neighbors in a network of contacts has been proposed as the simplest mechanism to support the 
evolution of cooperation in biological and socio-economic systems. The network allows cooperative 
agents to self-assort into clusters, within which they reciprocate cooperation. This (induced) network 
reciprocity has been observed in several theoreticalmodels and shown to predict the fixation of 
cooperation under a simple rule: the benefit produced by an act of cooperation must outweigh the cost 
of cooperating with all neighbors. However, the experimental evidence among humans is controversial: 
though the rule seems to be confirmed, the underlying modeling assumptions are not. Specifically, 
models assume that agents update their strategies by imitating better performing neighbors, even 
though imitation lacks rationality when interactions are far from all-to-all. Indeed, imitation did not 
emerge in experiments. What did emerge is that humans are conditioned by their own mood and that, 
when in a cooperative mood, they reciprocate cooperation. To help resolve the controversy, we design a 
model in which we rationally confront the two main behaviors emerging from experiments—reciprocal 
cooperation and unconditional defection—in a networked prisoner’s dilemma. Rationality is introduced 
by means of a predictive rule for strategy update and is bounded by the assumed model society. We 
show that both reciprocity and a multi-step predictive horizon are necessary to stabilize cooperation, 
and sufficient for its fixation, provided the game benefit-to-cost ratio is larger than a measure of 
network connectivity. We hence rediscover the rule of network reciprocity, underpinned however by a 
different evolutionary mechanism.

Cooperation among self-interested agents is a longstanding and still debated puzzle in biology and social sciences, 
with countless contributions since R. Axelrod, W. D. Hamilton, and R. L. Trivers’ seminal works1,2 (see ref.3 for a 
recent review on human cooperation); the topic has also received attention in several fields of engineering4.

The standard modeling framework is evolutionary game theory (EGT)5–7, in which a game describes the inter-
action among pairs (or a larger groups8) of self-interested agents in a population, a given set of behavioral strate-
gies is confronted, and an evolutionary process links the obtained payoffs to reproduction and death in biology or 
to strategy update in socio-economic systems. The paradigmatic game used to study the evolution of cooperation 
is the prisoner’s dilemma (PD), the two-player-two-option interaction in which a cooperator (option C) provides 
a benefit b to the opponent at a cost <c b to herself, whereas a defector (option D) provides no benefit at no cost. 
The benefit-to-cost ratio, or PD return =r b c/ , is often used to parameterize the game, taking =c 1 as monetary 
unit (see SI note 1 for other parameterizations). Compared to other social dilemmas, the PD is considered the 
worst-case for the evolution of cooperation5–7 (SI note 2).

The standard way to test whether a cooperative strategy (strategy C) has any chance to evolve, is to confront it 
with the benchmark strategy ‘unconditional defection’ (strategy D; agents who always defect) in playing the PD 
under one or a few evolutionary processes. The three different issues to be discussed are: the invasion of the strat-
egy, i.e., the spreading of cooperators (C-agents, or C’s) in a population dominated by defectors (D-agents, or D’s); 
its persistence, i.e., the long-term stabilization, fluctuating or not, of C’s; and its fixation, i.e., the convergence to 
the state all-C. For example, it is well known that when the PD is played in large and well-mixed— unstructured— 
populations, there is no hope for the strategy ‘unconditional cooperation’ (agents who always cooperate) against 
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the benchmark D-strategy. Defecting gives the largest payoff regardless of what the others are doing; thus, without 
any specific incentive to cooperation, C’s cannot invade under any reasonable evolutionary process and disappear 
if initially present in the population.

Traditional incentivizing mechanisms9 either make cooperation conditional—such as reciprocal altruism1,2 
(also known as direct reciprocity), the establishment of reputations10 (also known as indirect reciprocity), mech-
anisms of kin11 or group12 selection (or other forms of assortment13,14), and the consideration of social15,16 and 
moral17 preferences—or change the rules of the game, as by introducing optional participation18,19 and punish-
ment of antisocial behaviors20,21. All these mechanisms add degrees of strategical complexity, either in terms of 
players’ cognitive abilities and/or information flows, or due to extra options in the underlying game.

Starting with M. A. Nowak and coauthors’ influential papers22–24, the fact that interactions in real populations 
are structured according to a network of physical or social contacts has been proposed as the simplest mecha-
nism—requiring no strategical complexity—to explain cooperation. It has been named network reciprocity 
because theoretical models show that if the network is far from all-to-all (technically sparse, i.e. with average 
degree 〈 〉k —the average number of neighbors—significantly lower than the number N of nodes), it allows C-agents 
to self-assort into clusters within which they cooperate. That is, the network induces mutual cooperation between 
C’s, even with no (direct) reciprocity built-in in their strategy (Fig. 1). More specifically, the original model of 
network reciprocity works as follows24. In large regular networks (where each node has k neighbors), driven by an 
imitative evolutionary process (agents imitate better performing neighbors, see SI note 3), and in the limit of weak 
selection (the game payoff marginally impacts the individual performance, see SI note 4), unconditional C’s can 
invade unconditional D’s and fixate under a simple condition: the PD return r must exceed the connectivity k. 
This condition has been generalized to non-regular networks25,26, essentially requiring r to exceed the average 
degree 〈 〉k .

Network reciprocity has been confirmed in several other models27–43 (with a few exceptions, see, e.g., ref.44). In 
contrast, the experimental evidence among humans is controversial (see ref.3 for a review). Some authors45–50 
questioned network reciprocity as a mechanism supporting human cooperation, because experiments on several 
networks (including a few impressively large regular and non-regular sparse networks45,47) gave low levels of 
cooperation, similar to those observed with all-to-all interaction. However, most of these experiments failed to 
satisfy the condition > 〈 〉r k , and more recent experiments satisfying the condition showed higher levels of coop-
eration, in accordance with the theoretical prediction51,52.

There is nonetheless another argument fueling the apparent mismatch between theory and practice. While 
all models confirming network reciprocity assume an imitative process of strategy update, the in-depth analysis 
of some of the experiments showed that human subjects did not take decisions by comparing with neighbors’ 
payoffs46,50. Imitation indeed lacks rationality when interaction patterns are limited and possibly heterogeneous: 
Why should we copy a better performing neighbor whose neighborhood might be considerably different—in size 
as well as in composition—from ours? Especially in heterogeneous networks (networks encompassing nodes with 
very low and high degree), imitation may turn counterproductive (see Fig. 1, where agent j reduces her payoff by 
copying i). Not surprisingly, by changing the rule for strategy update from imitation to ‘best response’—the sim-
plest, though myopic, rational rule of doing what is best for ourself in the next game round—network reciprocity 
no longer works53, as unconditional defection dominates the PD in any network.

In conclusion, the rule > 〈 〉r k  of network reciprocity apparently works, but the underlying theoretical justifi-
cation seems not. To help resolving the controversy, we design a model that shows network reciprocity, while 
being more adherent to the common rationale and to the available experiments than previous models based on 

Figure 1.  Network reciprocity in regular and non-regular networks. (a) A cluster of 4 unconditional C’s 
surrounded by unconditional D’s in a square lattice with periodic boundary conditions. The payoff (per game 
round, obtained by each agent by playing a PD with all neighbors and summing up outcomes) of C’s is 
π = −r2 4i ; that of the D’s at the boundary of the cluster is π = rj . C’s do better than D’s (π π>i j) if >r 4, so 
that, under imitation update, C’s remain such and boundary D’s change to C (e.g., j copying i), reducing 
however their payoff to r − 4. (b) A cluster of ki C’s protected from kj D’s ( >k k, 2i j ; ki and kj are the degrees of 
nodes i and j). The payoff of the C-agent i is π = − −r k k( 1)i i i; that of the D-agent j is π = rj ; π π>i j if 

> + −r k1 2/( 2)i , so that, under imitation update, i remains C and j drastically reduces her payoff when 
copying i.
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imitation update. Before describing our model, let us be more precise on what we mean by the fact that an EGT 
setup, whether theoretical or experimental, shows network reciprocity. We think it is worth to conceptually sep-
arate the network from the, possibly induced, reciprocity. The network is the mechanism limiting agents’ interac-
tions. Whether this mechanism does enhance mutual cooperation—reciprocity—or not, with respect to the case 
of all-to-all interaction, evidently depends on the setup details. For example, the answer is ‘yes’ for the PD played, 
under > 〈 〉r k , by unconditional C’s and D’s in models based on imitation; ‘no’ if the update rule is changed to best 
response. In other words, we say that the EGT setup shows network reciprocity if a condition qualitatively similar 
to > 〈 〉r k  holds true, i.e., if cooperation invades, persists, or even fixates in the population, provided the game 
return is sufficiently large relative to a measure of network connectivity. In this line of thinking, network reciproc-
ity is evidently an outcome of the EGT setup, not a mechanism built-in in the setup itself.

We do not aim at fitting any of the available experiments. Actually, what we take from them is the pairwise PD 
interaction, mostly used, and three general emerging facts. The first is that humans are conditioned by their current 
‘mood’ to be cooperative or defective; the second is that, while in the C-mood, they tend to reciprocate cooperation; 
the third is that they defect rather unconditionally while in the D-mood. This evidence justifies our assumption of 
two strategies, a C-strategy implementing a form of direct reciprocity, and the benchmark D-strategy. We imple-
ment direct reciprocity by giving C-agents a temporary exit option18,54 toward neighboring defectors, so to reduce 
exploitation risk. As in the famous tit-for-tat strategy, traditionally used to model direct reciprocity2, C’s cooperate 
with neighbors known to cooperate. However, they do not retaliate for defection; rather, they abstain from playing 
for a few rounds; eventually, they forgive defection and go back playing to seek cooperation, i.e., they poll previous 
exploiters for a change of mood. Abstention has no cost and gives no benefit to both opponents of the interaction, 
and we assume it can be distinguished from defection. This is because we imagine interactions taking place in a 
physical or virtual space in which one notes whether the opponent shows up or not, though identities might not be 
disclosed. This means that, by abstaining, an agent communicates her C-mood to the opponent, provided the latter 
shows up. At the same time, abstention provides no information on the opponent’s mood.

The rule for strategy update is where we embed rationality in our model. Following the standard EGT tenet of 
selfishness, we extend the best response rule to the prediction of future incomes over a multi-step horizon of 

≥h 2 future interactions. The prediction is based on our model, that sets the rules of the society and that is 
assumed to be common knowledge to all agents. The only further available information directly comes from the 
pairwise interactions. No access is given to neighbors’ payoffs and connectivity. Each agent revises her current 
strategy from time to time, independently of others, in accordance with a rate δ assumed uniform across the pop-
ulation. Technically, δ is the probability of strategy update after each game round; 1/δ measures the agents’ ‘inertia’ 
to change (the average number of rounds between two consecutive updates by the same agent). When revising the 
strategy, an agent computes the cumulated income expected from using the C and D strategies over the predictive 
horizon, and selects the best one up to the next update. Because of the limited information, the prediction cannot 
account for changes in the neighbors’ strategies. This limits the horizon to a few rounds under a relatively slow 
strategy update (small δ); because of the short horizon, no discount of future incomes is adopted.

Based on the update rate δ, we set the measure for direct reciprocity. We say that ‘normally’ reciprocating 
C-agents are those who, at each round of an abstention period, decide whether to go back playing in accordance 
with the expectation that the neighboring defector has revised her strategy. ‘Super/sub’-reciprocating C’s abstain 
for longer/shorter periods, 〈 〉a  on average. They do so by intentionally under/over-biasing their neighbors’ update 
rate to δ δ= − d(1 )d , where −100d% is the negative/positive bias. Parameter d modulates the strength of direct 
reciprocity, from no reciprocity at δ= = − −d d (1/ 1)min , yielding δ = 1d  and the unconditional C strategy, to 
extreme reciprocity at = =d d 1max , yielding δ = 0d  and C’s who definitely break connections with defecting 
neighbors; =d 0 is the unbiased case of normal reciprocity. Correspondingly, we say that direct reciprocity is 
super/sub-normal if d is positive/negative.

We close this introduction by anticipating that this particular form of direct reciprocity is not crucial for our 
results. We use it because we consider abstention, whether possible, more connatural to the cooperative mood 
than retaliation. This issue is addressed in the discussion, where we further comment on the novelty and scope of 
our model. Overall, the model-predictive rule for strategy update is the new key element, that we use to describe 
a rational decision making. Further details on the model’s implementation are given in the Methods. The model 
parameters are summarized in Table 1.

Parameter Description
Reference 
values Other values

N network size 1000 —

r PD return [1, 6] [20, 60] in Fig. S2e

δ rate of strategy update 0.05 0.025, 0.1 in Fig. S3 (right)

h predictive horizon 2, 3, 4, 5 —

d direct reciprocity ( δ= − −d (1/ 1)min ; =d 1max ) 0 (normal) 1/2 (super), −1 (sub) in Fig. S3 (left)

δ δ= − d(1 )d reciprocity-biased update rate 0.05 0.025, 0.1 in Fig. S3 (left)

〈 〉a average length of abstention periods 4.56 6.90, 2.91 in Fig. S3

Table 1.  Model parameters (first part) and related quantities (second part).
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Results
Our main result is that cooperation fixates in our model starting from any cluster of at least two C-agents, pro-
vided that the PD return r is larger than a fixation threshold Rfix that increases with the maximal degree kmax in the 
network. The threshold Rfix is derived analytically and is very conservative. It represents the worst-case with 
respect to the position of the initial C’s in the network. In practice, the fixation threshold is more related to the 
network’s average degree 〈 〉k . This is shown numerically in Fig. 2, in which the actual threshold rfix is identified by 
averaging over many simulations, and shown to increase by doubling the average degree from 4 to 8 in several 
network structures (planar lattices; single-scale: networks with narrow degree distribution; scale-free: broad 
degree distribution; see Sect. Numerical results for further details). We hence rediscover the rule of network rec-
iprocity over social ties, explained however by direct reciprocity and model-predictive rationality.

Secondary results of our model, proved analytically and quantitatively confirmed numerically, are listed below.

	 1.	 Direct reciprocity ( >d dmin) is essential for the evolution of cooperation. Moreover, the stronger is 
reciprocity (larger ∈d d d( , )min max ), the better is for cooperation, in the sense of a reduced fixation 
threshold.

	 2.	 The multi-step prediction ( ≥h 2) is essential as well, and extending the horizon (larger h) helps 
cooperation.

	 3.	 Cooperation can invade, even starting from a single C-agent. With a single C, the fixation granted by the 
threshold Rfix occurs with a probability that grows from 1/2 to 1 with the degree of the initial C. This is 
particularly interesting, as models based on imitation update require a significant initial fraction of C’s to 
stabilize cooperation (the issue is further addressed in the Discussion).

	 4.	 The degree heterogeneity of the network does not help cooperation, unless the initial C’s occupy the 
network’s hubs (Fig. 2: compare the same networks under the two types of placement—random and 
degree-rank—of the initial C’s). Both these effects turned out to be rather limited, in agreement with 
experimental observations47,48, while in sharp contrast with the theoretical predictions based on imitation 
update.

Analytical results.  In this section we present the properties of our model’s dynamics that we proved ana-
lytically (some of the proofs are reported in the Supplementary Information). We preliminary consider the case 
of an infinite predictive horizon. Although lacking sense in our model (because predictions do not account for 
changes in the neighbors’ strategies, see Introduction), it allows to derive a simple condition for the fixation of 
cooperation. We prove (in SI Sects S1–S6) that when a C-agent with degree k and kC C-neighbors (known from 
past interactions) revises her strategy according to an infinite horizon, she remains C (because she expects a loss 
in changing to D) if and only if
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∞PCD is the probability (computed in SI Sect. S2) that a C-agent who remains C forever will get exploited in a 
far-future interaction by a D-neighbor who remains D forever. It only depends on the reciprocity-biased update 
rate δd and increases from zero to one with δd (SI Fig. S8).

Similarly, the D-to-C strategy change (expected gain in changing to C) occurs under the same condition (1). 
The harshest condition in (1), i.e., the one for =k kmax and =k 1C , hence gives the threshold Rfix of our main 
result, in the case of an infinite horizon:
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With a finite horizon of h future interactions, the conditions governing strategy update are more complex. In 
SI Sects S4 and S5, we compute the gains π∆ h

C  and π∆ h
D (positive for a gain; negative for a loss) respectively pre-

dicted by a C and a D for changing strategy. The resulting expressions are reported in the Methods. Given a C and 
a D with identical neighborhoods (including ≥k 1C  C’s), the r-threshold for a C to remain C and that for a D to 
change to C are different. Typically, the former is lower, because the C-neighbors of a C more likely cooperate in 
the near future than the C-neighbors of a D.

Not surprisingly, for =h 1 (best response update) we have π∆ > 0C
1  and π∆ < 0D

1  independently of the PD 
return r and of the neighborhood’s composition, so that defecting assures the highest payoff. However, for any ≥h 2 
and provided the agent has a C-neighbor ( ≥k 1C ), the expected gains π∆ h

C  and π∆ h
D depend linearly on r, respec-

tively decreasing and increasing with positive and negative values at =r 1. This shows the existence of the threshold 
Rfix, an upper bound of which is provided in SI Sect. S7 by considering the network’s node with maximal degree.

Finally, in SI Sect. S8, we further analyze the role of the predictive horizon. Under a condition on r more 
restrictive than (1), the expected gains π∆ h

C  and π∆ h
D depend monotonically on h, respectively decreasing and 

increasing to the negative and positive infinite-horizon limits. For intermediate r, π∆ h
C  (resp. π∆ h

D) first increases 
(decreases) with h up to a positive (negative) extremum, then decreases (increases) to the negative (positive) 
infinite-horizon limit.

Despite the system’s complexity, the above results have the following consequences, that include our secondary 
results.
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	 (i)	 The state all-C is an equilibrium of our model (or better an absorbing state of the Markovian dynamics) 
under a requirement on r that is much milder than the fixation threshold (see condition (1) with =k kC ).

	(ii)	 The state all-D is always an equilibrium (see condition (1) with =k 0C ), though a coordinated switch to C 
by a small cluster of players (not considered in our model) can give a payoff gain.

	(iii)	 Isolated C’s ( =k 0C ) change to D as soon as they revise their strategy. This does not mean that cooperation 
cannot start from a single C-agent, since D-neighbors could change to C before the isolated C changes to D.

	(iv)	 Indeed, a D player connected to an isolated C can change to C, provided r is sufficiently large (see condi-
tion (1) with =k 1C ).

	(v)	 Secondary result 1: direct reciprocity ( >d dmin) is necessary for the evolution of cooperation. With no 
reciprocity ( =d dmin), the C-strategy is unconditional (δ = 1d  and =∞P 1CD  in (1)) and D is the well-

Figure 2.  Invasion, persistence, and fixation of cooperation under direct reciprocity and model-predictive 
rationality. Panels show the level of cooperation reached in 104 game rounds starting from 1% inital C’s on 
different network structures (left: average degree 〈 〉 =k 4; right: 〈 〉 =k 8) as a function of the PD return r. Solid 
lines show the average fraction over 100 random initializations (random placement of the initial C’s in planar 
lattices; network generation and random placement of the initial C’s for random—single scale and scale free—
networks; the average % of isolated initial C’s is reported). Dots show the outcome of single simulations (only 
for < <r r rinv fix, i.e., only if some of the outcomes lie in the open interval (0, 1)); transparency is used to show 
dots accumulation. Colors code the predictive horizon h, from 2 to 5, and the corresponding upper bound Rfix 
to the threshold Rfix is reported. Model parameters: reference values in Table 1. See Sects S11 and S12 for further 
details on networks and numerical simulations.
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known best option for any r. Moreover, as ∞PCD gets smaller together with δd, a stronger reciprocity (larger 
∈d d d( , )min max ) makes the fixation threshold (2) milder.

	(vi)	 Secondary result 2 (first part): the multi-step predictive horizon ( ≥h 2) is necessary for cooperation, 
because of the above discussion on π∆ C

1 and π∆ D
1.

	(vii)	Secondary result 2 (second part): increasing the horizon h reduces the threshold Rfix. Indeed, if =r Rfix for 
a given h, the node with maximal degree gives either π∆ = 0h

C  and π∆ > 0h
D  or π∆ < 0h

C  and π∆ = 0h
D , 

depending on the composition of its neighborhood. By the behavior of π∆ h
C  and π∆ h

D described above, the 
former decreases while the latter increases by adding one prediction step. With +h 1 steps, then, all C’s 
remain C and all D’s changes to C when revising strategy, so that r is above threshold.

	(viii)	The inertia to change also helps cooperation, in the sense that, for a given direct reciprocity d, a lower 
update rate δ gives a lower biased rate δd (longer abstention periods, on average), and hence a smaller ∞PCD 
and a milder fixation threshold (2).

	(ix)	 Secondary result 3: our main result probabilistically holds also starting from a single C in the network, 
provided her degree k is not too small. With >r Rfix, the probability that a D-neighbor changes to C before 
the initial C changes to D goes as − +k1 1/( 1) for small δ (shown in SI Sect. S9).

	(x)	 Secondary result 4 (first part): according to condition (1) and the fixation threshold (2), and given the 
network size N, cooperation is favored in homogeneous (regular or single-scale) sparse networks, because 
of the low maximal degree, compared to dense or heterogeneous networks. However, keeping the same 
average degree, heterogeneous networks have more low-degree nodes compared to homogeneous ones, so 
that, while isolated C’s might have higher chances to change to D (see point (ix)), their D-neighbors change 
to C, with similar probability, under milder returns (condition (1)). Overall, network heterogeneity should 
facilitate the invasion of cooperation and make fixation more demanding, provided the initial C’s are 
placed at random.

	(xi)	 Secondary result 4 (second part): the comment at point (ix) and two simple examples in Fig. 3 suggest that 
network heterogeneity helps cooperation if C’s initially occupy the network’s hubs. Essentially, low-degree 
D’s connected to a C change to C under a mild requirement on r (low ratio k/kC in (1)). However, to have 
many low-degree D’s connected to few initial C’s, we need high-connected C’s. Hence, especially starting 
at low levels of cooperation, degree heterogeneity and the placement of the initial C’s in the network’s hubs 
together reduce the requirement on r to fixate cooperation. Compared to imitation update (in which C-hubs 
need a significant fraction of C-neighbors to persist), our predictive strategy update allows the formation of 
C-clusters even starting from isolated C-hubs, who pay (or better invest in) the initial cost of exploitation. If 
however most of the hubs are D’s, network heterogeneity turns harmful to cooperation (see point (x)).

Numerical results.  To quantify the analytical results, we have run many numerical simulations on several 
networks of =N 1000 nodes: ring and planar lattices, single-scale (Watts-Strogatz model with full rewiring) and 
scale-free (Barabási-Albert model) random networks, and the complete (all-to-all) network. The results for 1% 
initial fraction of (normally reciprocating, =d 0) C’s on planar 4- and 8-neighbor lattices and on random net-
works with average degree 〈 〉 =k 4 and 8 are reported in Fig. 2. See SI Fig. S1 for 50% initial C’s and S2 for a 
degree-4 ring lattice (a ring of nodes each connected to the 4 nearest nodes in the loop) and the complete net-
work; see also SI Fig. S3 for the case of super/sub-normal reciprocity (d positive/negative) and for different values 
of the update rate δ. For random networks, we have separately simulated the random placement of the initial C’s 
and the placement according to degree-ranking.

Figure 3.  Direct reciprocity and model-predictive rationality in regular and heterogeneous networks. Consider 
(a) the ring ( =k 2 for all nodes) and (b) the star network (〈 〉 k 2 for large N) in the infinite-horizon limit. The 
ring- ∞Rfix  is given by (1) with =k k/ 2C  and a single D drives the population to all-D if < ∞r Rfix . The star- ∞Rfix  is 
much higher, because the ratio k/kC peaks at N − 1 for the central node with only one C-neighbor. However, if 
the central node is a C, the D-leaves will change to C under the weakest requirement on r ( =k k/ 1C  in (1)) and 
there are high chances that this occurs before the central node revises her strategy. (The probability that a D-leaf 
revises before the central node is given by the formula at point (ix), in which k is replaced by the number of 
D-leaves.) If the number kC of C-leaves raises to satisfy condition (1), the population then evolves to all-C, and 
this occurs with probability higher than 1/2 starting with no C-leaves and r equal to the ring- ∞Rfix  (the 
probability goes as 1/2 + 1/(2N) for small δ, see SI Sect. S9). That is, on average, the isolated central C drives the 
star to all-C under a milder condition on r w.r.t. the ring with some initial D’s.

https://doi.org/10.1038/s41598-019-41547-w
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The simulations confirm that cooperation is able to invade, persist, and fixate in any network, provided the 
PD return r is large enough. For any combination of network structure, initialization, and model parameters, the 
simulations starting from 1% initial C’s identify two thresholds on r: a lower threshold rinv above which, on aver-
age, cooperation invades and persists; an upper threshold rfix above which cooperation always invades and fixates. 
For r between rinv and rfix, the average asymptotic fraction of C’s (solid lines) is not representative of the level of 
cooperation one should expect in a single simulation (dots), as cooperation disappears/fixates in most of the cases 
(see dots at fractions 0 and 1) and typically settles at low C-levels (below 20%) in the rest of the cases. A deeper 
analysis of the simulations of Fig. 2 not ended in all-C or all-D (the dots in the open interval (0, 1)) indeed reveals 
that most of dots above 0.2 denote simulations that converge to all-C on a longer timescale, whereas dots below 
0.2 typically represents simulations ending in a nontrivial stalemate—an equilibrium different from all-C and 
all-D—or showing long-term fluctuations (see SI Sect. S10 for examples of nontrivial stalemates and fluctuations 
in the simple network of Fig. 1b; Sects S11 and S12 for further details on networks and numerical simulations).

Note that the threshold rfix is much smaller than the theoretical Rfix of our main result (see the average 〈 〉Rfix  
over the simulations of a given type in Fig. 2, where Rfix is the upper bound to Rfix derived in SI Sect. S7). This is 
due to the stochastic effect described at point (ix). Essentially, even if some of the C’s initially need a higher r to 
remain C, by the time they revise their strategy the r-gap could have vanished because of D-to-C changes in the 
neighborhood. This overcompensates the opposite effect due to the fact that Rfix is computed starting from a clus-
ter of two C’s, whereas initial C’s are most often isolated (except for scale-free networks with 
degree-rank-C-placement, because hubs are likely connected among themselves; see the average % for each panel 
in Fig. 2). Starting with random pairs of connected initial C’s indeed results in lower rinv and rfix (shown in SI 
Fig. S4).

As expected from the arguments at points (vii) and (x), the thresholds rinv and rfix decrease if the horizon h 
is extended and increase with the network’s average degree, given all other details (Fig. 2: compare the different 
colors within each panel and left vs right panels). Both effects are weakened, as expected, starting from higher 
initial C-levels (shown in SI Fig. S1).

Degree heterogeneity also works as theoretically predicted. It works against the fixation of cooperation under 
random placement (Fig. 2: compare single-scale and scale-free networks and note the significantly higher rfix in 
the latters; rinv is slightly lower, as predicted at point (x)). The effects are again weakened starting from higher 
initial C-levels (SI Fig. S1). Placing the initial C’s in the network’s hubs does favor cooperation, both in terms of 
invasion and fixation (Fig. 2: compare single-scale and scale-free networks under degree-rank-C-placement and 
note the lower rinv and rfix in scale-free networks; also note that the type of placement is irrelevant for single-scale 
networks). The effect is however moderate.

Finally, we have checked the robustness of the above results with respect to a different type of scale-free net-
work (with tunable transitivity, Holme-Kim model, see SI Fig. S5), and by limiting the agents’ computational skills 
and rationality (see SI Figs S6 and S7, respectively).

Discussion
We have designed and analyzed an EGT model to validate two specific hypotheses: (1) that reciprocal cooperation 
can evolve on social networks, against unconditional defection, under a process of strategy update that rationally 
pursues the individual interest; and (2) that this EGT setup shows network reciprocity. Our motivation originates 
from a mismatch between theoretical predictions and experiments with human subjects. Network reciprocity—
the beneficial effect on cooperation possibly emerging when agents’ interactions are limited by a sparse network 
of contact—has been theoretically investigated with models based on imitative processes of strategy update, with 
the result that cooperation has better chances to fixate, the fewer are, on average, the connections between the 
agents. This ‘rule’ of network reciprocity, precisely the condition > 〈 〉r k , where r is the economic return of the 
game interaction and 〈 〉k  is the network’s average degree, is consistent with all available experiments45–47,51,52,55–58, 
in which however the subjects’ behavior proved incompatible with the assumed imitation process. Indeed, when 
the interaction is far from all-to-all, imitating a better performing neighbor gives no guarantee to increase our 
own payoff, and models implementing the simplest rational rule to do what is best for us in the next interaction—
the best response update—show no network reciprocity53. Our results reconcile the mismatch, showing network 
reciprocity in an EGT setup that is more adherent to the common rationale and to the behavioral traits emerging 
from experiments.

Our model does not specifically describe any of the available experimental setups. The link to the experi-
ments is in the choice of the two strategies we confront: a C-strategy implementing a form of direct reciprocity 
and the benchmark D-strategy of unconditional defection. The analysis of some of the experiments (in which, 
as a rule of the experiment, subjects take one decision per game round to cooperate or defect with all neighbors) 
indeed revealed three general facts45,47,48,50: the first is that subjects’ behavior is typically biased by previous deci-
sions (cooperation being more/less likely in subjects who cooperated/defected in the previous round), so that a 
cooperative or defective ‘mood’ can be identified. The second is that, while in the C-mood, subjects reciprocate 
cooperation (cooperation being more/less likely the higher/lower was the number of cooperating neighbors in 
the previous round); third, subjects in the D-mood defect rather unconditionally.

The main novelty of our model is the predictive rule for strategy update, that extends the best response rule 
to an horizon of future interactions. It is a modeling assumption intentionally not grounded on experimental 
evidence; it is our way to introduce rationality in the model. Identifying the update rule from experiments is in 
any case a difficult task46,48,50,57 and, somehow, an ill-posed problem. The neat distinction between strategies and 
strategy update is actually pertinent to models only; e.g., the observed moody behavior has been also described as 
a unique strategy conditioned by the agent last decision48. Moreover, different subjects can use (or learn) different 
rules and the result is likely to depend on the experimental setting. Although the average rates at which subjects 
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changed between the C and D moods have been estimated from data45–48,50, and turned out independent on the 
network structure46, this does not unveil the decision-making process.

Note that the novelty is not strictly in the use of a non-imitative, also called innovative, rule for strategy update, 
as the best response is itself innovative. Moreover, there has recently been a growing interest for innovative 
rules59,60 and for the coexistence61 and competition62 between imitative and innovative rules. So far, however, no 
innovative update showed any significant network effect on cooperation53,59, at the point that network reciprocity 
is often considered a feature of imitative dynamics only61. The novelty is hence to show network reciprocity under 
an innovative evolutionary process.

The way in which we implement direct reciprocity—allowing C’s to selectively abstain from playing the PD with 
D-neighbors—also brings some novelty. Optional participation is known to relax social dilemmas when a base-
line payoff is granted to loners19,63,64. However, abstention has often been considered an independent strategy63–65,  
or a probabilistic option for both C’s and D’s66, rather than an option for cooperators to lower exploitation risk 
(as proposed in ref.19 in a non-evolutionary setting). This is the option that makes abstention a form of direct 
reciprocity. Differently from previous models, we assign no payoff to such an option. We prefer abstention rather 
than retaliation—cooperators defecting exploiters—because this is more connatural to the C-mood. Although 
there is typically no difference in a single round (because both abstention and mutual defection give no payoff), 
abstaining C’s communicate their mood to exploiters, who will take it into account when revising their strategy. 
This is because we assume that agents who agree to play see whether the opponent agrees or abstain, whereas 
abstaining agents get no information. Of course our model does not represent situations in which the interaction 
is blind and agents only see their own payoff.

Direct reciprocity deserves another comment. It requires repeated interactions among the same agents, as well 
as cognitive abilities to recognize individuals and remember past interactions. Originally1,2, it has been studied in 
iterated games, i.e., (non-evolutionary) games involving only two players (rather than a population of two types 
of players) who know the probability >w 0 of a next interaction. In EGT, there are two ways in which one can 
study direct reciprocity: either the single game round consists of an iterated game between each pair of neigh-
bors—an option allowing direct reciprocity in any network, so far investigated in the socio-economic context 
under imitative strategy update32,67—or the single game is one-shot, but agents repeatedly interact on a static (or 
slowly changing) sparse network, as we do. Indeed, the unchanging network grants a next round, while the spar-
sity of the connections makes cognitive tasks affordable. Of course hubs need more resources than leaves, but this 
is typically built-in in the socio-economic structure of the society.

The other elements of our model are rather standard (see Methods for full detail). We now discuss our results 
and their scope in the light of previous theoretical and empirical work. First of all, the interplay between direct 
and network reciprocity has been already addressed32,67 with models that, in the socio-economic context, are 
however based on imitative strategy update. The general result is that direct reciprocity in the C-strategy favors 
cooperation in synergism with the population structure, the latter being defined by a network32 or through assor-
tative encounters67. Our model confirms the role of direct reciprocity in triggering the positive network effect on 
cooperation, and does it under a rational process of strategy update.

We actually show that direct reciprocity, or some other mechanism supporting cooperation (see the 
Introduction), is necessary to rationally avoid the dominance of defection in a networked PD, and hence to see 
any network effect. Focusing on direct reciprocity, we expect similar results by rationally confronting uncon-
ditional D with any reciprocating form of conditional cooperation. To test this claim, we have run preliminary 
simulations on the famous tit-for-tat strategy2 (traditionally used to model direct reciprocity, including refs32,67). 
Worth of note is that our model highlights a double role of static and sparse networks of contacts. Not only these 
are the structures that favor cooperation according to our model, but these are, as well, the structures that make 
our model feasible, because the cognitive tasks required by both direct reciprocity and model-predictions scale 
with the size of the agent’s neighborhood. We did use our model on a large complete network as well, but we did 
it for benchmarking purposes, to set the case to compare with in looking for network effects.

Should we then expect to see a decline of human cooperation in real-world socio-economic systems that are 
arguably getting more and more connected? This seems to be the take-home message from network reciprocity, 
that our model even made more convincing. Models and experiments showing network reciprocity were however 
designed to isolate the effect of static network of contacts. In real-world systems, other mechanisms can support 
cooperation despite the high interconnection, such as cultural, economic, and political agreements, or punish-
ment mechanisms; the latter, in particular, has been recently shown to inhibit the network effect in experiments52. 
Moreover, real-world networks are often dynamic. In particular, adaptive networks, in which agents can cut links 
and establish new ones as a result of the game interaction, proved to be cooperation promoters, with both theoret-
ical support65,68,69, however based on imitation update, and empirical evidence70–72 (see ref.73 for a review). Note 
that allowing C-agents to cut links with exploiters and seek for new cooperators is an exit option18,54 similar to the 
one we use; we have a static topology of connection, but links are temporarily inhibited. Interestingly, adaptive 
rewiring can be feasible even in medium-large neighborhoods, as, e.g., random rewiring does not involve intense 
cognitive tasks. It would be then interesting to study adaptive rewiring under model-predictive update, to see 
whether it supports the evolution of cooperation in dense networks.

Two aspects on which our results significantly differ from those obtained with imitative update concern the 
invasion potential of cooperation and the role played by the degree heterogeneity of the network. About the first 
aspect, we have shown (analytically and quantified numerically) the existence of a threshold on the game return r 
(scaling with the network connectivity) above which cooperation has high chances to fixate starting from a single 
C-agent, i.e., chances of the order − +k1 1/( 1) at a low rate of strategy update, where k is the degree of the initial 
C (see analytical result (ix)). This is different from what is granted by imitative update under the condition 

> 〈 〉r k , i.e., the fixation probability—the probability that cooperation fixates starting from a single randomly 
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placed C—being larger than 1/N in a network with N nodes, 1/N being the fixation probability under a totally 
random process of strategy update. When > 〈 〉r k  is weakly satisfied in a large network, cooperation almost surely 
disappears starting from a single C (probability 1 − 1/N). To have higher chances of fixation, a significantly larger 
r is typically required and, especially when selection is strong (SI note 4), cooperation cannot invade anyhow. 
Consider, e.g., a single C in the lattice of Fig. 1a. If selection is strong, the C most likely imitates a D-neighbor as 
soon as she revises her strategy, whereas D-neighbors do not imitate the C. The probability of invasion—to go 
from one to two C’s—is negligible after each game round, whereas the C sooner or later switches to D. We hence 
conclude that imitative strategy update does not support the invasion of cooperation. Not surprisingly, most 
theoretical studies based on imitation27–43 consider random initial conditions with 50% C’s (33% in ref.53). We 
have, e.g., tested unconditional C against unconditional D playing the PD under the pairwise comparison imita-
tion rule with strong selection (the one used in the majority of the above mentioned works; see SI notes 3 and 4). 
Starting from 1% initial C’s on the same network structures of Fig. 2, cooperation systematically disappeared up 
to r = 5000, except for scale-free networks with degree-rank-C-placement (where C-hubs are known to form 
clusters) in which we found invasion only for r larger than 20.

About network heterogeneity, our model helps to clarify another mismatch between theory and experiments. 
From the theoretical side, a considerable effort has been devoted to identify the network structures that best favor 
the evolution of cooperation (unconditional C against unconditional D) under imitative update27–29,31, with the 
general answer that, for given (sufficiently small) average connectivity, heterogeneous networks—e.g., scale-free 
networks—do better than homogeneous networks—lattices and single-scale networks. Indeed, a C-hub (individ-
ual i with degree 〈 〉k ki ) with a significant fraction (say 50%) of C-neighbors is copied by a low-connected 
D-neighbor j under a mild requirement on the PD return r (payoff per game round: π = − −r k k( 1) /2i i i; π = rj  
if j has no other C-neighbors). C-hubs can then build C-clusters, whereas this requires higher returns in homoge-
neous networks (ki, 〈 〉k kj ). On the contrary, the network structure played a marginal role in experiments47,48, 
as well as in our model. Our results show two weak opposite effects of network heterogeneity on the fixation of 
cooperation, depending on whether the initial C’s are placed randomly in the network or according to the degree 
rank. In the first case, especially starting at low initial level of cooperation, the network’s hubs are most likely D’s 
and their low-connected D-neighbors require high returns to change to C, provided they have a C-neighbor. In 
contrast, C-hubs attract low-connected D-neighbors in changing to C under mild game returns. Under a slow 
strategy update, the number of C-neighbors of a C-hub can raise, while the hub pays the cost of building the clus-
ter. In other words, initially isolated C-hubs invest in the future establishment of cooperation. Moreover, hubs are 
likely connected among themselves, so that placing the initial C’s in the network’s hubs forms clusters of C’s that 
mitigate the investment. Network heterogeneity therefore turns beneficial to cooperation under this strategic 
placement of the initial C’s.

We conclude by going back, once more, to the two key elements of our model: direct reciprocity and the 
model-predictive strategy update. The first is taken because of the empirical evidence, the second is assumed to 
rationally drive evolution by self-interest. Both proved necessary to sustain cooperation and to show network 
reciprocity. Under the rational tenet of selfishness, we claim that a mechanism supporting cooperation, direct 
reciprocity in the first place, and a predictive horizon that goes beyond the next interaction are the two neces-
sary and sufficient ingredients to explain cooperation over social ties. Besides their conceptual value, we believe 
our findings can inspire further experimental work. Our model-predictive strategy update is not an easy one to 
imagine in real-world networks, because of the nontrivial cognitive tasks involved and because humans might 
not be as rational as we assume. However, we believe it could approximatively emerge as the result of an intuitive, 
rather than computational, human behavior. Indeed, our results proved to be robust to significant error rates in 
computing model-predictions and to significant degrees of irrationality (see Numerical results). But most impor-
tantly, we envisage the design of new experiments. For example, to confirm that humans do have a C or D mood, 
it is important to allow them to temporarily abstain from playing with specific neighbors, to avoid confounding 
risk-avoiding defections with a D mood. Allowing independent actions for every neighbor, as we partly do by 
means of our abstention mechanism, is also important, e.g., to identify a mix of C and D as the absence of a mood. 
This definitely poses experimental challenges70, and it has been recently shown to enhance cooperation in static 
networks74.

Methods
The model.  We consider a connected static network of N nodes, each occupied by an agent of the population. 
The pairwise game interaction between agents proceeds in discrete rounds. At each round, each agent is a C or a 
D strategist (C or D agent), she accordingly plays the game with all her neighbors, and collects payoffs. After each 
round, each agent independently decides whether to revise her strategy with probability δ, assumed, for simplic-
ity, uniform across the population (the process of strategy update is further detailed at the end of this section).

In each game interaction, C-agents have two options, abstain from playing (option A) or cooperate (option 
C); by abstaining, they do not see the opponent’s choice; D-agents always play and defect (option D). If both 
opponents agree to play, the game is a PD (with return r); otherwise no one gets or looses anything, resulting in 
the following payoff matrix:

	 (3)
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The matrix gives the payoffs for the row agent; those for the column agent are given by the transposed matrix. 
The shading of the first row indicates that those zero payoffs are indistinguishable by an abstaining C-agent, 
whereas, a D-agent (third row) is able to distinguish between abstaining C and D neighbors.

The abstention mechanism implements a form of direct reciprocity between C-agents. After getting exploited 
by the neighbor j, the C-agent i decides to abstain at the next game round with the probability 1 − δ that j has not 
revised strategy. Similarly, after t − 1 consecutive abstentions, i opts for another one with the probability (1 − δ)t 
(vanishing for increasing t) that j has not revised since having exploited i. This is the behavior of ‘normally’ recip-
rocating C-agents (normal reciprocity). ‘Super/sub’-reciprocating C’s abstain for longer/shorter periods, on aver-
age (super/sub-normal reciprocity). They formally behave as normally reciprocating ones, but base their decisions 
on the under/over-biased update rate δd defined in (1), where −100d% is the negative/positive bias, also assumed 
uniform across the population. Parameter δ∈ = − − =d d d( (1/ 1), 1)min max  modulates the strength of direct 
reciprocity: no reciprocity at =d dmin; sub-normal reciprocity for ∈d d( , 0)min ; normal reciprocity at =d 0; 
super-normal reciprocity for ∈d d(0, )max ; extreme reciprocity at =d dmax (the extreme cases =d dmin and 

=d dmax are considered unadmissible in our model). The resulting distribution of the length a of abstention 
periods, i.e., the probability of a consecutive abstentions followed by a cooperation, is
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It is graphed in Fig. 4 for different values of the reciprocity-biased update rate δd, together with the 
δd-dependence of its mean.

We implement our model by endowing each agent i with the set of probabilities pij’s, = …j N1, , , that i will 
agree to play with j at the next game round. Initially, = =p p 1ij ji  if i and j are neighbors, while = =p p 0ij ji  
otherwise; the ×N N  matrix =P p[ ]ij  hence defines the network topology. At each round, the i j( , ) PD interac-
tion takes place with probability pijpji, i.e., only if both players agree to play. When the C-agent i gets exploited by 
neighbor j, she sets δ= =p pij d1 . If i decides not to play with j at the next round, pij is updated to 

δ= − −p 1 (1 )d2
2; after t − 1 consecutive abstentions, the probability to play at the next round is

δ= − − ≥p t1 (1 ) , 1, (5)t d
t

i.e., the probability (increasing to one with t) that j has revised at least once since having exploited i. As soon as i 
decides to play, pij is reset to p1 if j defects again, otherwise it is set to =p 10  to reciprocate cooperation. D’s always 
have =p 1ij  toward all neighbors. We therefore implement a static network topology with dynamic weights (the 
probabilities pij) associated to the connections.

Strategy update is asynchronous75, with rate δ ∈ (0, 1) (per game round) uniform across the population, i.e., 
after each game round (also following the update of the probabilities pij), each individual independently decides 
whether to revise her strategy with probability δ. C’s who revise compute the payoffs they expect to collect if 
remaining C, π h

CC, or behaving as D, π h
CD, over the next h rounds, and change to D if the expected gain 

π π π∆ = −h h h
C CD CC is positive. Similarly, D’s who revise compute their expected collected payoff πh

DC and πh
DD and 

change to C under a positive expected gain π π π∆ = −h h h
D DC DD. Future payoffs are not discounted because of the 

short predictive horizon h (see Model parameters below). When changing to D, the C-agent i sets =p 1ij  toward 
all neighbors. When changing to C, D-agent i sets δ= =p pij d1  toward her D-neighbors, to possibly avoid being 
exploited at the next round. Note that, by construction, either =p 1ij , or =p 1ji , or both.

The payoff predictions are computed assuming that neighbors behave according to the model society here 
described. The information available to agent i on her j neighbor’s state (strategy and probabilities pji’s) only comes 
from the pairwise interactions and is summarized in the sets of probabilities pij’s and pji’s. Indeed, for agent i, 
remembering the last i j( , ) PD interaction, i.e., when it took place and the outcome, is equivalent to update both 
sets of probabilities, according to the assumed abstention mechanism. For the revising C-agent i, <p 1ij  implies 
that j exploited i at the last i j( , ) PD interaction; otherwise =p 1ij  and i and j both cooperated at the last round if 

Figure 4.  The statistics of abstention periods. (a) The distribution Prob(a) of Eq. (4). (b) The mean 〈 〉a  of the 
distribution as a function of its parameter δd.
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=p 1ji  or j did not play because exploited by i at the last i j( , ) PD interaction if <p 1ji . Agent j is considered a D 
in the first case, even though she might have changed to C since i and j last played the PD; j is correctly considered 
a C in the second case. For the D-agent i, <p 1ji  implies i exploited j at the last i j( , ) PD interaction; otherwise 

=p 1ji  and i and j both defected at the last round. In both cases, agent j is correctly identified as C and D, respec-
tively. Thus, only D-agents have full information on their neighbors’ state, whereas C-agents can underestimate 
the number of their C-neighbors.

Payoff predictions are accordingly computed in SI Sects S4 and S5, disregarding, for simplicity, possible 
changes in the neighbors’ strategies. To this end, two probabilities are first computed in SI Sects S2 and S3 for the 
revising C-agent i, with =p pij tij

 for some integer tij, to play the PD with the neighbor j, with =p pji tji
 for some 

integer tji: the probability P t( )t
ijCD , ≥t 1ij , to play with the D-neighbor j at round t of the predictive horizon; and, 

similarly, the probability P t( )t
jiCC , =t 0ij , ≥t 0ji  to play with the C-neighbor j. They can both iteratively be com-

puted with the following recursions:
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Model parameters.  The model parameters are summarized in Table 1, together with their reference values 
and the perturbed values used in the numerical analysis. The size N and the matrix =P p[ ]ij  define the network 
of the agents’ connections; parameters r, δ, h, and d set the dynamics of our model; 〈 〉a  and δd are derived quanti-
ties. Though we do not have a closed formula for 〈 〉a  as a function of δd, there is a one-to-one correspondence 
(graphically expressed by Fig. 4b) between the two quantities. Either d, δd, or 〈 〉a  can therefore be used as a model 
parameter, the other two being accordingly derived for any given δ.

We consider a slow strategy update (small δ), compared to the discrete time of game rounds. This allows to 
disregard the neighbors’ updates in computing the payoff predictions over relatively short predictive horizons. In 
our simulations we have limited the product δh—upper bounding the neighborhood fraction possibly subject to 
change within the horizon—to 0.3 (e.g., δ = .0 05 and ≤h 5 in our reference setting of Fig. 2).

We consider significant cases of super- and sub-normal reciprocity: =d 1/2 and = −d 1 corresponding to a 
−50% and +100% bias of the update rate used in the statistics of the abstentions. The corresponding average 
lengths 〈 〉a  of abstention periods is reported in Table 1.

Networks structures and numerical simulations.  See Numerical analysis. See SI Sects S11 and S12 for 
further details.
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