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Abstract

Multiscale signal processing techniques such as wavelet filtering have proved to be particu-

larly successful in predicting exon sequences. Traditional wavelet predictor is domain filter-

ing, and enforces exon features by weighting nucleotide values with coefficients. Such a

measure performs linear filtering and is not suitable for preserving the short coding exons

and the exon-intron boundaries. This paper describes a prediction framework that is capable

of non-linearly processing DNA sequences while achieving high prediction rates. There are

two key contributions. The first is the introduction of a genomic-inspired multiscale bilateral

filtering (MSBF) which exploits both weighting coefficients in the spatial domain and nucleo-

tide similarity in the range. Similarly to wavelet transform, the MSBF is also defined as a

weighted sum of nucleotides. The difference is that the MSBF takes into account the varia-

tion of nucleotides at a specific codon position. The second contribution is the exploitation of

inter-scale correlation in MSBF domain to find the inter-scale dependency on the differences

between the exon signal and the background noise. This favourite property is used to sharp

the important structures while weakening noise. Three benchmark data sets have been

used in the evaluation of considered methods. By comparison with four existing techniques,

the prediction results demonstrate that: the proposed method reveals at least improvement

of 4.1%, 50.5%, 25.6%, 2.5%, 10.8%, 15.5%, 11.1%, 12.3%, 9.2% and 2.4% on the exons

length of 1–24, 25–49, 50–74, 75–99, 100–124, 125–149, 150–174, 175–199, 200–299 and

300–300+, respectively. The MSBF of its nonlinear nature is good at energy compaction,

which makes it capable of locating the sharp variations around short exons. The direct scale

multiplication of coefficients at several adjacent scales obviously enhanced exon features

while the noise contents were suppressed. We show that the non-linear nature and cor-

relation-based property achieved in proposed predictor is greater than that for traditional fil-

tering, which leads to better exon prediction performance. There are some possible

applications of this predictor. Its good localization and protection of sharp variations will

make the predictor be suitable to perform fault diagnosis of aero-engine.
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1 Introduction

Recent advancement in high-throughput analysis, such as next-generation sequencing, has

resulted in the development of computational techniques for the rapid prediction of exons in

DNA sequences. Although great progress has been made in the development of exon predic-

tion algorithms, the challenge of determining the lengths and locations of short exons urgently

needs to be solved [1–3]. The main difficulty in predicting short exons is that the intrinsic

properties, such as codon biases, are harder to determine [3,4]. To date, there is no consensus

about the definition and classification of short exons. Saeys et al. thought that the exons with

lengths of<200 base pair (bp) might be considered small [2]. Recently, two independent stud-

ies by Irimia et al. [5] in Cell and by Li et al. [6] in Genome Research defined one class of short

exons called microexons and uncovered the features regulating the inclusion of these microex-

ons. Irimia et al. reveal that the regulation of microexons (defined as exons with lengths of

3–15 bp) is highly dynamic during neuronal differentiation and the inclusion of these micro-

exons can modulate the function of interaction domains of proteins involved in neurogenesis

[5]. In another study, Li et al. demonstrate that microexons (defined as exons with lengths of

�51 bp) exhibit a high level of sequence conservation and they may possess brain-specific

functions [6]. Thus, knowledge pertaining to short exons in genomes is very important for

understanding the functioning of proteins and the life processes. Therefore, the challenge of

determining the lengths and locations of short exons urgently needs to be solved. In another

work [7], we have briefly outlined the intrinsic advantages and limitations of the existing meth-

ods for predicting exons. In this paper, we focus on the development of a spectral analysis tech-

nique for finding exons in eukaryotic DNA sequences, as described below.

The discrete nature of DNA information has been driving a surging interest in the applica-

tion of the principles of spectral analysis to develop efficient exon-prediction techniques. Spec-

tral analysis techniques are attractive because they are easy to implement, entail reduced

computational complexity, and mostly do not require any training of the genomic data [8–10].

In the spectral analysis of DNA sequences, the three-base periodicity (TBP) exhibited by exons

is a good discriminator of coding potential. The determination of TBP due to codon usage bias

is built upon the phenomenon that exon regions have a prominent power spectrum peak at

frequency f = 1/3 [8,9]. Numerous advanced exon-finding algorithms have been developed by

tracking the strength of TBP along a DNA sequence [3, 4, 7–21]. Such methodologies have a

strong mathematical basis, including Fourier transform measures [8, 11–12], digital-filter-

based methods [10,13], wavelet-based techniques [3,7,14–18] and other analysis tools [9].

Wavelets have proved highly successful in the manipulation and analysis of biomedical signals

[22–28]. Among exon-finding methods, wavelet-based techniques are said to be distinctive.

The examination of local variations in scale of the multiscale transform data of the sequence

makes the wavelet predictor more powerful. Traditionally, the base idea of wavelet predictor,

such as the modified Gabor-wavelet transform (MGWT) [14] and the wide-range wavelet win-

dow (WRWW) [18], is to computes a weighted sum of nucleotide values over a large neigh-

bourhood at different scales. Although wavelet-based methods yield good predictions, they do

not perform well in preserving the short exons and the exon-intron boundaries due to their

linear nature. The multiscale bilateral filtering (MSBF) methods have been widely used in

medical image processing field [29–31]. The nonlinear regularization of MSBF makes it an

excellent solution for enhancing the high frequency structures and suppressing image noise. In

this paper, we will follow the MSBF based strategy inspired from the one previously used in

the analysis of image information to predict exons.

Our intuition is that nucleotides in the codon position p(p = 1,2,3) are close to each other

not only if they occupy nearby spatial locations but also if they have some similarity at the
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reading frame p. For this purpose, we propose a genomic-inspired MSBF that can incorporate

domain and similarity by means of multiplication. Like traditional wavelet predictor, a domain

filtering named B-spline wavelet transform is designed to extract TBP by weighing nucleotide

values with complex coefficients. Similarly, we define range filtering, which measures similar-

ity by counting the sum of difference for variable sequence coverage. Another object of this

paper is to investigate the inter-scale correlation (or multiscale products) information in

MSBF domain and its application to exon prediction. We formulate the problem of investigat-

ing the correlated features in terms of the differences between exon and intron coefficients at

two adjacent scales. We pursue this investigation which results from the HMR195 dataset by

calculating the Jensen-Shannon divergence and the histogram distributions. Experimental

results demonstrate that through MSBF and multiscale products, detection accuracy can be

significantly improved with only a small loss in exon prediction. The proposed technique,

termed multiscale products in MSBF domain (MP-MSBF), is more effective than locating

exons directly from the linear filtering data, leading to superior exon prediction results.

2 Methodology

2.1 Numerical representation of a DNA sequence

The representation of DNA character strings into numerical sequences is the first step in DNA

spectral analysis. In this paper, the paired-numerical representation [8] is introduced to map

DNA characters (i.e., A, C, G, and T) into numeric values. A particular advantage of this repre-

sentation is that it exploits the structural differences between exon and intron regions to facili-

tate the TBP extraction, in addition to reducing complexity. Eq (1) provides an example of this

representation scheme for the short DNA fragment . . .CTGCAGTGGT. . .:

u ¼ f. . . � 1; 1; � 1; � 1; 1; � 1; 1; � 1; � 1; 1 . . .g: ð1Þ

2.2 Genomic-inspired MSBF

To introduce our genomic-inspired MSBF, we first describe in Section A the domain filtering

called B-spline wavelet transform. This wavelet function exhibits a higher degree of freedom

for curve design, which can be adapted to analyse complex genome. In the next section, we

first define a continuous representation of the average magnitude difference function (AMDF)

inspired by Akhtar et al. [8], and a range filtering built with AMDF is designed to find certain

information about nucleotide similarity in a specific codon position. Finally, the genomic-

inspired MSBF is suggested for differentiating between intron noise and meaningful data.

A. Domain filtering. In this work, domain filtering given by B-spline windows are formu-

lated. The B-spline window βm(t) of orderm, which is time-limited in [−T/2,T/2], is built as

follows [32]:

bmðtÞ ¼ m
m
Xm

p¼0

ð� 1Þ
p
ðt � ðp � m=2ÞT=mÞm� 1

þ
=p!ðm � pÞ!;m ¼ 1; 2; 3; . . . ; ð2Þ

where

ðt � t0Þ ¼
ðt � t0Þ

m� 1 if t > t0
0 if t < t0

: ð3Þ

(

Fig 1(A) plots βm(t) following Eqs (2) and (3).

To fully analyse the DNA sequences characterized by a specific periodicity, the task here is

to extract the TBP at different scales while keeping the analysis frequency constant. From Eqs
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(2) and (3), our proposed domain filter of length L is defined as

φdðt; b; aÞ ¼ bmðt; b; aÞe
io0ðt� bÞ; ð4Þ

where i2 = −1, a>0 is the scale (or dilation) parameter, b indicates the translation (or position)

parameter, and ω0 = L/3 denotes the basic frequency. In Eq (4), the functions βm(t,b,a) are fam-

ilies generated from the base functions βm(t) by dilations and translations, i.e.,

bmðt; b; aÞ ¼
1
ffiffiffi
a
p bm

t � b
a

� �

: ð5Þ

Fig 1(B) and Fig 1(C) illustrate our domain filter with two different scales in the time and fre-

quency domains. The proposed domain filtering of a signal u is given by

Udðb; aÞ ¼
R
uðtÞφdðt; b; aÞdt ¼

1
ffiffiffi
a
p
R
uðtÞbm t� b

a

� �
eio0ðt� bÞdt: ð6Þ

The domain filtering of Eq (6) measures the geometric distance between the center nucleotide

and its neighbourhood.

In the case of domain filter, the length of the domain filter is 2400, and the scale parameter

is set to 10 exponentially separated values between 1/60 and 1/6 for an input sequence. For

practical purposes, the order of the B-spline function βm(t) is truncated to 6.

B. Range filtering. Before continuing to our genomic-inspired MSBF, we first use the

AMDF to design a range filtering for measuring nucleotide similarity in a specific codon posi-

tion. A continuous representation of AMDF for a signal u, as a function of the grid spacing τ0,

Fig 1. Examples of B-spline windows, and domain filter (order 6) with two different scales in the time and frequency domains. (A) Examples of B-spline windows;

(B) Magnitude response of domain filter in the time domain; (C) Frequency response of domain filter.

https://doi.org/10.1371/journal.pone.0205050.g001
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is defined as

AMDFðtÞ ¼
1

L
R tþL� 1

t juðtÞ � uðt � t0Þjdt; ð7Þ

where L is equal to the window length of Eq (4), τ0 is set to 3 for TBP. Before applying AMDF
to a DNA sequence, the authors in [8] suggest passing it first through a second-order resonant

filter centered at frequency 2π/3 [13].

For efficient implementation, a multiscale and sliding window will move along the filtered

sequence to compute AMDF for the whole sequence. The complex envelope of φd(t,b,a) given

in Eq (4) is then used to calculate the window:

wðt; b; aÞ ¼ jφdðt; b; aÞj: ð8Þ

In other words, the window w(t,b,a) is the magnitude response of φd(t,b,a) in time domain.

From Eqs (7) and (8), the proposed range filtering for a signal u can be formulated as follows:

Urðb; aÞ ¼
1

L
R
½
R tþL� 1

t jðuðtÞ � uðt � t0ÞÞwðt; b; aÞjdt�dt: ð9Þ

The range filtering of Eq (9) measures the radiometric distance between the center nucleotide

and its neighbourhood.

Finally, the expressions given in Eqs (6) and (9) are used to design our genomic-inspired

MSBF of a signal u, having the non-linear property:

Uðb; aÞ ¼ Udðb; aÞ � Urðb; aÞ: ð10Þ

Given a DNA sequence of length N, the projection of the MSBF coefficients onto the position

axis is defined as a function of b(b = 0,1,. . .,N−1).

2.3 Multiscale products

Several exon-finding techniques take advantage of traditional wavelet transform to filter short

exons with small scales and long exons with large scales. This approach implies that they do

not exploit the dependencies between adjacent scales. To explore the MSBF inter-scale correla-

tions we multiply the adjacent MSBF sub-bands to distinguish intron noise from meaningful

data while preserving the sharp variations of short exons. The core idea behind the multiscale

products method is based on our research (see Section 3.4): namely, for DNA sequences repre-

sented by MSBF, the multiscale transform coefficients related to intron noise are less corre-

lated across scales than the coefficients associated with exon signals.

LetU(b,aj) be the MSBF of a signal u at the scale aj(j = 1,2,. . .,J) and the position b. The mul-

tiscale products (or inter-scale correlation)MPj(b) of the MSBF contents at two adjacent scales

is defined as

MPjðbÞ ¼ jUðb; ajÞj � jUðb; ajþ1Þj; j ¼ 1; 2; . . . ; J � 1: ð11Þ

With the observation of experimental results, we can imagine that multiplying the MSBF at

adjacent scales would amplify exon structures and dilute noise (see Section 3).

2.4 Multiscale products of multiscale bilateral filtering

Our multiscale products of multiscale bilateral filtering (MP-MSBF) for exon prediction is

described briefly in Table 1. The input DNA sequence of length N is referred to as u.

Exon prediction
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3 Results and discussion

3.1 Data resources

To evaluate and compare the performance of the proposed MP-MSBF with that of other meth-

ods, the two benchmark data sets BG570 [33] and HMR195 [34] have been considered. Fur-

thermore, we conduct an additional classification experiment using 29 genes of the ENm001-

004 data set (part of EGASP) [35] (see S1 File for detailed information on these sequences).

Table 2 summarizes the features of the considered data sets.

3.2 General setting

In this section, we first conduct an experiment to establish a comprehensive analysis of the

inter-scale correlation of the differences between exon and intron coefficients. Next, we pres-

ent experiments in exon prediction using the proposed method. For comparison, MP-MSBF

presents comparable performance to that of four popular existing methods: the paired and

weighted spectral rotation measure (PWSR) [8], the MGWT [14], the fast Fourier transform

plus empirical mode decomposition (FFTEMD) [11] and the WRWW [18]. To evaluate the

general performances of these measures, the TBP data for each DNA sequence considered

have been normalized with values between 0 and 1.

3.3 Evaluation metrics

To investigate the inter-scale correlation of the differences between exon and intron sequences,

the distance criterion of Jensen-Shannon (JS) divergence [36] is adopted. In probability theory

and statistics, the JS divergence is a method of measuring the similarity between two probabil-

ity distributions. The JS divergence is a convenient divergence measure for our purpose

because it is symmetric and bounded between 0 and 1. The distance between two probability

Table 1. Exon predictor algorithm using the MP-MSBF technique.

1. Convert an input DNA sequence into the numerical sequence u using the paired-numerical representation.

2. Apply the MSBF to the whole sequence. The transform of the numerical sequence is given by

Uðb; ajÞ ¼ Udðb; ajÞ � Urðb; ajÞ;

where aj(j = 1,2,. . .,J) is the scale parameter and b denotes the nucleotide position along the

DNA sequence.

3. Take U(aj,b) as an input and perform the multiscale products to obtain the filtered

sequence MPj(b)(j = 1,2,. . .,J−1).

4. Compute the spectrum of the numerical DNA sequence: S(b) = ∑j|MPj(b)|2.

5. Project the obtained spectrum onto the position axis, which is defined as a function of b:

SpðbÞ ¼ SðbÞ; b ¼ 0; 1; . . . ;N � 1:

https://doi.org/10.1371/journal.pone.0205050.t001

Table 2. Statistics of the test data sets.

Dataset Species Genes Length Exons Average length of exons (bp) Proportion of exons/introns

BG570 Vertebrate 570 2,892,149 2,649 168 15.37% / 84.63%

HMR195 Mammalian 195 1,383,720 948 208 14% / 86%

EGASP Human 29 2,425,886 323 167 2.22% / 97.78%

https://doi.org/10.1371/journal.pone.0205050.t002
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vectors P and Q in terms of the JS divergence is defined as

JSðP;QÞ ¼
1

2
KLðP;MÞ þ

1

2
KLðQ;MÞ; ð12Þ

where M = (P+Q)/2 and KL is the Kullback-Leibler divergence,

KLðP;MÞ ¼
X

l

pðlÞlog
2

pðlÞ
mðlÞ

� �

: ð13Þ

With a set of results obtained by running a predictor on a test data set, the true positive

(TP), true negative (TN), false negative (FN) and false positive (FP) counts can be determined.

Using these counts, the performances of various methods in handling exons of different

lengths are measured in terms of the approximate correlation (AC) [33]

AC ¼
1

4

TP
TP þ FN

þ
TP

TP þ FP
þ

TN
TN þ FP

þ
TN

TN þ FN

� �

� 0:5

� �

� 2: ð14Þ

To evaluate the general performance of the method under consideration, the receiver oper-

ating characteristic (ROC) curve [37] is used to explore the effects on sensitivity and specificity.
The sensitivity and specificity are given by

Sensitivity ¼
TP

TP þ FN
; ð15Þ

Specificity ¼
TN

TN þ FP
: ð16Þ

The area under an ROC curve (AUC) can be used as an indicator of prediction performance.

3.4 Inter-scale correlation analysis

The coefficients of the input DNA sequences obtained from the multiresolution decomposi-

tion include exon-structure information together with intron noise. The general purpose of

inter-scale correlation analysis is to investigate the dependency information on the differences

between exon and intron coefficients. We apply the schemes proposed in this paper to analyse

the correlation for a large number of exon and intron regions.

Fig 2 shows the prediction plots of the sequence HUMDZA2G locus (AZGP1 gene) of

Homo sapiens (GenBank accession number D14034) using MSBF and its inter-scale correla-

tion (or multiscale products) at different scales. The sequence HUMDZA2G locus (AZGP1
gene) contains four exons at positions 5322–5388, 9329–9589, 12907–13182 and 14052–14335.

The peaks corresponding to the exon regions of the original data appear much stronger in Fig

2(B) than those in Fig 2(A). The results demonstrate that inter-scale correlation can suppress

intron noise while retaining more exon details. Fig 3 compares the prediction results of the

sequence HUMDZA2G locus (AZGP1 gene) using the tested methods. Our MP-MSBF algo-

rithm identified the localized peaks better and located the short coding sequence (exon 1)

more accurately.

Herein, the JS divergences are employed to investigate whether the coefficients related to

introns are less correlated across scales than the coefficients associated with exons. This dis-

tance criterion has been applied in genome comparison [38], bioinformatics [39] and protein

surface comparison [40]. Table 3 summarizes the JS divergences of the MSBF coefficients

between two adjacent scales, aj,j+1 (j = 1,2,. . .,9), for the exon and intron nucleotides of the

HMR195 data set. The results of Table 3 reveal that the JS divergences of exons are smaller

Exon prediction
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Fig 2. Prediction plots for sequence HUMDZA2G locus (AZGP1 gene) at different scales. The abscissa axes of all the plots represent the relative base positions, the

actual locations of the exons are marked with rectangles in red dashed lines. Part (A) shows the MSBF result; and (B) shows the result of inter-scale correlation.

https://doi.org/10.1371/journal.pone.0205050.g002

Fig 3. Prediction results for the sequence HUMDZA2G locus (AZGP1 gene) using the considered methods. The abscissa axes of all the plots represent the relative

base positions, and the actual locations of exons are marked with rectangles in red dashed lines.

https://doi.org/10.1371/journal.pone.0205050.g003
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than those of introns at consecutive scales, while there is a difference of one order of magni-

tude between the exon and intron regions at the last eight consecutive scales. This property

can assist in discriminating exon features from introns in the multiscale transform domain.

To further justify our assumption, histograms with fitted distributions are calculated

for the exon and intron nucleotides of HMR195 at different scales. Fig 4(A) and Fig 4(B)

give the distributions of exon and intron nucleotides using the MSBF and inter-scale cor-

relation, respectively. This result indicates that the most relevant exon information repre-

sented by the correlation at each scale is captured by large-valued coefficients, whereas the

intron information is captured by a large number of small-valued coefficients. Fig 5 clearly

illustrates that the distance between the exon and intron curves obtained from inter-scale

correlation is greater than that obtained from MSBF. In other words, the MSBF coeffi-

cients of the exon sequences have a strong correlation on various decomposition scales,

whereas the MSBF coefficients of noise are weakly correlated. These plots justify our

assumption.

3.5 Performance evaluation on benchmark data sets

Exons have significant functional constraints, and their length plays an important role in splice

site selection. Rogic’s evaluation work [34] stated, "These constraints have shaped the exon
length distribution quite differently from geometric distribution. The length distribution depends
on the exon type." In our analysis, we grouped exons into ten ranges of exon lengths, namely,

(0,25), [25,50), [50,75), [75,100), [100,125), [125,150), [150,175), [175,200), [200,300) and

[300,300+). We thought the exons of these ranges are relatively short and long in length. The

best accuracies achieved by the tested methods are calculated in terms of the AC values for

each group of exons. Fig 6(A) and Fig 6(B) depict the experimental results obtained from vari-

ous methods using the HMR195 and BG570 data sets, respectively. The MP-MSBF exhibits

good accuracies in these ten ranges. In Fig 6(A), MP-MSBF presents results close to those of

MGWT in the ranges (0,25) and WRWW in the ranges [300,300+), while it exceeds the perfor-

mance of other methods in the other ranges. The results of Fig 6(B) show that the performance

of the MP-MSBF method is close to those of FFTEMD at the range (0,25) and MGWT at the

range [75,100), while it outperforms the performance of the other methods at the other ranges

of exon lengths. Similar results obtained with the sequences in the ENm00-004 data set are

shown in Fig 6(C); however, no exons of length<25 occur in these sequences. The MP-MSBF

exhibits good accuracies in these nine ranges and presents results close to those of FFTEMD at

the ranges [25,75) and WRWW in the ranges [100,125), [200,300) and [300,300+), while it

slightly exceeds the performance of other methods in the other ranges.

Table 4 summaries the performances of various methods for exons using the BG570,

HMR195 and ENm001-004 data sets. By comparison with the PWSR, MGWT, FFTEMD and

WRWW methods, the prediction results show that: our MP-MSBF exhibits at least improve-

ment of 4.1%, 50.5%, 25.6%, 2.5%, 10.8%, 15.5%, 11.1%, 12.3%, 9.2% and 2.4% on the exons of

the ranges (0,25), [25,50), [50,75), [75,100), [100,125), [125,150), [150,175), [175,200),

[200,300) and [300,300+), respectively.

Table 3. JS divergence of MSBF coefficients between two adjacent scales.

Regions JS divergence of MSBF coefficients between consecutive scales

a1,2 a2,3 a3,4 a4,5 a5,6 a6,7 a7,8 a8,9 a9,10

Exon 0.0030 0.0028 0.0032 0.0057 0.0083 0.0089 0.0041 0.0035 0.0033

Intron 0.0085 0.0130 0.0189 0.0220 0.0206 0.0138 0.0102 0.0133 0.0178

https://doi.org/10.1371/journal.pone.0205050.t003
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An additional classification experiment on all sequences of considered data sets is designed

to assess the general performance of our proposed technique and other methods. Fig 7 presents

the ROC curves obtained from the different methods tested in this experiment. The MP-MSBF

method has higher prediction accuracy than its counterparts. Our MP-MSBF method consis-

tently exhibits higher prediction accuracy than its counterparts for exons that are either rela-

tively short or long in length.

3.6 Summary

In this work, we have introduced a new, robust and efficient method to predict exons in

eukaryotes. Unlike some prediction techniques that detect exons directly by linear filtering,

Fig 4. Histogram distributions at different scales for MSBF and inter-scale correlation applied to HMR195. For all the plots, blue lines represent exons, red lines

indicate introns, the abscissa axes represent the magnitude values, and the ordinate axes represent the number of coefficients. Part (A) shows the MSBF result; and (B)

shows the result of inter-scale correlation.

https://doi.org/10.1371/journal.pone.0205050.g004
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the proposed scheme incorporates a genomic-inspired multiscale bilateral filtering and its

inter-scale dependencies and then applies these features to better differentiate exon structures

from background noise. The first key concept of our method is its nonlinear nature, which

exploits geometric distance in the spatial domain and nucleotide similarity in the range. The

second is that this technique compacts the energy of the exons into coefficients with large

amplitudes and spreads the energy of the introns over a large number of coefficients with

small amplitudes. This phenomenon has led to improved results with respect to exon preserva-

tion and noise suppression. The proposed MP-MSBF method requires neither prior

Fig 5. Mean values of histogram distributions at different scales for MSBF and inter-scale correlation applied to HMR195.

https://doi.org/10.1371/journal.pone.0205050.g005

Fig 6. Plots of approximate correlation (AC) for considered data sets with various methods applied to exons in length ranges. For all the plots, the ordinate axes

denote the ranges of exon lengths.

https://doi.org/10.1371/journal.pone.0205050.g006
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information nor training models for exon prediction, and so it can be applied to analyse

unknown and novel genomes. It should be noted that all five methods considered here tend to

have low accuracy in predicting microexons shorter than 25 bp (there were only 121) and

microexons with lengths of 25–49 bp (there were only 227) as shown in Table 4. A possible

explanation for this phenomenon is that these microexons are too short to be efficiently spliced

in vivo without special splicing activation sequences [41]. In other words, the length of these

microexons is too short to be clearly distinguished from surrounding noncoding regions. For

almost all the methods, the accuracies slowly rise with the length of annotated exons between

75 and 300+ nucleotides. Although not good for exons shorter than 50 bp, the results obtained

from our method are acceptable. Our MP-BSBF should encourage further development of

existing methods in prediction of microexons.

4 Conclusion

Exons encode the biochemical processes and information involved in the pathway from DNA

to proteins. In genomic sequence analysis, exon prediction based on the annotated sequences

Table 4. Best performances obtained from considered methods for exons using the BG570, HMR195 and ENm001-004 data sets.

Methods Approximate coefficient (AC)

(0,25) [25,50) [50,75) [75,100) [100,125) [125,150) [150,175) [175,200) [200,300) [300,300+)

MP-MSBF 0.205 0.292 0.466 0.459 0.505 0.566 0.563 0.623 0.665 0.682

PWSR 0.117 0.161 0.239 0.197 0.299 0.378 0.414 0.477 0.559 0.612

MGWT 0.117 0.181 0.371 0.448 0.456 0.490 0.507 0.549 0.585 0.635

FFTEMD 0.197 0.194 0.333 0.333 0.352 0.439 0.424 0.475 0.510 0.547

WRWW 0.103 0.172 0.341 0.407 0.429 0.481 0.505 0.555 0.609 0.666

https://doi.org/10.1371/journal.pone.0205050.t004

Fig 7. ROC plots of tested methods using the BG570, HMR195 and ENm001-004 data sets.

https://doi.org/10.1371/journal.pone.0205050.g007
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in the online databases is an important problem. For exon prediction, extracting the relevant

features of short coding sequences is a major task because the subtle features of short exons are

obscured by the strong presence of background noise. In practice, spectral analysis is an

important tool for the discovery of interesting patterns and structures in exon data. In this

paper, we present a new exon-finding spectral analysis method that overcomes some of the

shortcomings of current predicting techniques. The MP-MSBF predictor takes advantage of

the nonlinear filtering and the dependency information between scales, which makes it capable

of short exon prediction. We see some possible applications of this predictor. The correlation-

based property and nonlinear nature of this technique allow the selection of a characteristic

frequency from surrounding noise and thereby makes it possible to offer good localization and

protection of sharp variations for locating hot spots in proteins and performing fault diagnosis

of aero-engine.
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