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Ángel F. Álvarez-Prado, Roeltje R. Maas,

Klara Soukup, ..., Roy T. Daniel,

Monika E. Hegi, Johanna A. Joyce

Correspondence
johanna.joyce@unil.ch

In brief
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Ángel F. Álvarez-Prado,1,2,3,4 Roeltje R. Maas,1,2,3,4,5,6,10 Klara Soukup,1,2,3,10 Florian Klemm,1,2,3 Mara Kornete,1,2,3

Fanny S. Krebs,1,7 Vincent Zoete,1,7 Sabina Berezowska,8 Jean-Philippe Brouland,8 Andreas F. Hottinger,1,4,9

Roy T. Daniel,4,6 Monika E. Hegi,4,5,6 and Johanna A. Joyce1,2,3,4,11,*
1Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
2Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
3Agora Cancer Research Center, 1011 Lausanne, Switzerland
4L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire

Vaudois, 1011 Lausanne, Switzerland
5Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
6Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
7Swiss Institute of Bioinformatics, Lausanne, Switzerland
8Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
9Brain and Spine Tumor Center, Departments of Clinical Neurosciences and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne,
Switzerland
10These authors contributed equally
11Lead contact
*Correspondence: johanna.joyce@unil.ch

https://doi.org/10.1016/j.xcrm.2022.100900
SUMMARY
Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from
lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more
effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide tar-
geted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gain-
ing momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous,
and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we
perform an extensive characterization of the immunogenomic landscape of human BrMs by combining
whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry,
immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genet-
ically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies
tailored by the genetic makeup of the tumors.
INTRODUCTION

Advanced metastatic disease is associated with poor treatment

efficacy and is a major cause of patient mortality. Brain metasta-

ses (BrMs) are the most common form of brain cancer in adults,

originating frequently from lung (40%–50%) and breast (15%–

25%) primary tumors.1,2 BrM results in progressive neurologic

disability and impairment of key cognitive and motor functions

that severely decrease the quality of life for patients. Furthermore,

cancer patients with BrM face a dismal prognosis, with a median

overall survival post-BrM detection of 7 and 9 months for lung-

and breast-BrMs, respectively.3 Currently available treatments

are largely palliative,3,4 and effective therapies for BrM disease

thus represent an urgent clinical need. In this regard, the thera-

peutic repertoire targeted against BrM has been expanded

from the traditional whole-brain radiotherapy and surgery to
Cell Repo
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include more precise stereotactic radiosurgery approaches,

molecularly targeted therapies, and immunotherapies.4

The genetic profile of primary tumors has been recently inte-

grated with prognostic scores, with the objective of guiding

treatment decisions for lung- and melanoma-BrM patients.3

This now includes assessing the mutational status for EGFR/

ALK in lung,5 and BRAF in melanoma,6 as key clinical parame-

ters. Moreover, immune checkpoint blockade (ICB) has shown

promising initial outcomes in certain patients with lung- or mela-

noma-BrM, and several clinical trials are currently ongoing for

BrMs originating from breast and other primary cancers.4 A

phase II trial evaluating the anti-PD1 antibody pembrolizumab

demonstrated response rates of 29.7% and 22% in patients

with brain-metastatic lung and melanoma cancers, respec-

tively.7,8 Other clinical studies combining anti-CTLA4 (ipilimu-

mab) and anti-PD-1 (nivolumab) antibody treatment have
rts Medicine 4, 100900, January 17, 2023 ª 2022 The Author(s). 1
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reported intracranial response rates between 45% and 60% in

melanoma-BrM patients.9–11 Despite these encouraging results,

a substantial proportion of BrMs overall remain unresponsive to

immunotherapy, likely reflecting the underlying complexity and

heterogeneity of the BrM tumor immune microenvironment

(TIME)12–14 and the necessity for a comprehensive and inte-

grated understanding of the factors driving pro- or anti-tumoral

roles for the immune system in these patients.

Multiparametric analysis of large collections ofprimary andmet-

astatic brain tumors has revealed that BrMspresent characteristic

TIMEs, which are shaped by the tumor of origin and are distinct

from the TIME of gliomas.15,16 In addition, recent single-cell inte-

grative analyses of BrMs identified two distinct and co-existing

functional BrM archetypes (‘‘proliferative’’ and ‘‘inflammatory’’),

which are consistent with previously identified states in metasta-

ses to other organs and defined by tumor-immune interactions.17

The importance of the TIME in regulating tumor progression, met-

astatic dissemination, and response to immunotherapy has been

reported for several primary cancers.18–23 Likewise, a correlation

between the genetic makeup of a tumor and its TIME composition

andphenotypewasdescribed forpancreaticcancer24andprimary

pediatric25 and adult15,26 brain tumors.

Although extensive genomic profiling of primary and metasta-

tic tumors has been performed to identify genetic determinants

of metastatic disease in patients,13,27–32 whether the immune

landscape of these tumors is influenced by their underlying ge-

netic makeup currently remains unknown. Therefore, to address

this critical question, we performed a comprehensive immuno-

genomic analysis of lung- and breast-BrMs by combining

whole-exome and whole-genome sequencing of tumors, RNA

sequencing of purified immune populations (encompassing

>170 transcriptomes), flow cytometry, and immunofluorescence

analyses. Our data revealed that specific genetic drivers corre-

late with distinct immune landscapes in BrMs, with TP53-mutant

lung-BrMs presenting with an increased CD8+ T cell infiltration

and activation, but a more immunosuppressive myeloid

compartment, and hypermutated breast-BrMs showing a gener-

ally more pro-inflammatory microenvironment. These results

support the incorporation of genetic profiling of BrMs as ameans

to potentially predict responses to current immunotherapies and

for the development of personalized immune-based interven-

tions informed by the genetic makeup of the tumors.
Figure 1. The genomic landscape of lung-to-brain metastases

(A) Schematic overview of the study. BrM, brain metastasis; PBMC, peripheral b

whole-genome sequencing; RNA-seq, RNA sequencing; IF, immunofluorescenc

(B) Oncoplot summarizing genomic features of lung-BrMs in the immunogenom

(central panel), andmutation prevalence (central left panel) of mutated lung cance

panel, only CNV alterations identified by bothWES and LP-WGS are reported her

panel); mutational signatures (fourth central panel) and clinical information, includi

surgical resection of the BrM (i.e., > 6 months indicates that the corresponding t

methasone treatment, sex, and histological subtype of the primary tumor (bottom

(SRS) in all radiotherapy-treated samples.

(C) Comparison of tumor mutational burden (TMB) between lung-BrM samples in

(TCGA). Each dot represents the mutational burden of one tumor; total number o

(D) Total number of mutations in lung-BrMs (TP53mut n = 9; TP53mutKRASmut n =

0.0002; Dunnett’s multiple comparisons test **adjusted p < 0.01, ****adjusted p

(E) Total number of neoantigens in lung-BrMs (TP53mut n = 9; TP53mutKRASmut n =

p = 0.025; Dunn’s multiple comparisons test *adjusted p < 0.05, ***adjusted p <
RESULTS

The genomic landscape of lung- and breast-to-brain
metastatic tumors
We collected surgically resected tissue and matched peripheral

blood, as germline controls, from 30 patients with pathologically

confirmed BrM tumors, with 21 originating from lung and nine

from breast primary cancers (Figure 1A, Table S1A). Tumor sam-

ples were processed immediately following surgical resection

and were subjected to multiparametric immunogenomic

profiling including whole-exome/low-pass whole-genome

sequencing (WES/LP-WGS), RNA sequencing (RNA-seq) of

sorted populations, flow cytometry (FCM), and immunofluores-

cence (IF) tissue staining analyses (‘‘Immunogenomics cohort,’’

Figure 1A, left), using a previously described comprehensive

experimental pipeline.33 In addition, we analyzed an indepen-

dently collected ‘‘validation cohort’’ of 18 frozen tumor tissue

and matched paired peripheral blood mononuclear cell (PBMC)

samples, with five originating from lung and 13 from breast pri-

mary tumors (Figure 1A, right; Table S1B), which were subjected

to WES, RNA-seq of bulk tissue, and IF staining.

We performed WES at an average depth of 1703 on matched

BrM tumor and PBMC samples and detected a total of 9,349

non-synonymous variants in the immunogenomics cohort

(Table S2), encompassing single-nucleotide variants (SNVs)

and short insertions and deletions (INDELs). We observed vary-

ing degrees of overall mutational load in the different lung-BrMs

(Figure 1B, top panel), which did not correlate with chemo-

therapy or radiotherapy treatment, as evidenced by the pres-

ence of treatment-naive samples among the most mutated and

treated samples among the least mutated (non-synonymous

mutations treated vs. untreated, unpaired two-tailed t test,

p > 0.05 for both chemotherapy and radiotherapy; Figure 1B,

Tables S1 and S2), nor with dexamethasone treatment (non-syn-

onymous mutations treated vs. untreated, unpaired two-tailed t

test, p > 0.05, Figure 1B, Tables S1 and S2). When compared

with the average tumor mutational burden (TMB) of 33 different

primary cancer types from The Cancer Genome Atlas (TCGA),

our lung-BrM cohort showed a similar, yet slightly higher, muta-

tional load compared with lung primary tumors (Figure 1C),

which is in agreement with the branched evolution model re-

ported for tumors that metastasize to the brain.27
lood mononuclear cells; WES, whole-exome sequencing; LP-WGS, low-pass

e; CD45-neg, CD45-negative cells; MDM, monocyte-derived macrophages.

ics cohort (n = 21, in red), including mutational load (upper panel), mutations

r drivers; copy number variation (CNV) status of selected genes (second central

e); summary of individual nucleotide changes in all mutated genes (third central

ng time from the end of the last chemo/radio/immunotherapy treatment prior to

reatment was finished more than 6 months before surgery), duration of dexa-

panels). Radiation treatment modality corresponds to stereotactic radiosurgery

this study (n = 21) and 33 primary cancer types from The Cancer Genome Atlas

f tumors per primary cancer is indicated above the plot.

5; KRASmut n = 2; NP/NK n = 5 biological replicates; one-way ANOVA test p =

< 0.0001).

5;KRASmut n = 2; NP/NK n = 5 biological replicates; ANOVA/Kruskal-Wallis test

0.001). See also Tables S1–S5.
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We identified TP53 and KRAS as the two most prevalently

mutated lung cancer driver genes in our lung-BrM cohort (Fig-

ure 1B, left panel; Tables S2 and S3). This is consistent with

recently published collections of lung-BrMs: TP53 and KRAS

mutations were observed in 64% and 32% of lung-BrMs,

respectively, in our immunogenomics cohort (n = 21) vs.

64% and 40% in the Brastianos cohort (n = 73),31 63% and

61% in the Berezowska cohort (n = 57),32 and 60% and

40% in the Dunn cohort (n = 6).13 Moreover, this comparison

indicates that the number of samples included in this immuno-

genomics study is adequate to provide an accurate represen-

tation of the genetic heterogeneity of lung-BrMs. While most

of the SNVs identified in TP53 correspond to nonsense muta-

tions or frameshift INDELs, missense mutations were also de-

tected (Figure 1B, central panel). To assess the functional

relevance of these mutations, we analyzed their prevalence

in primary lung tumors from the TCGA and their predicted

‘‘driver’’ or ‘‘passenger’’ status as defined by in silico muta-

genesis analysis (Figure S1A34). Interestingly, all missense mu-

tations identified in lung-BrMs are frequently found in primary

lung cancers and predicted to be cancer drivers (Figure S1A,

red arrows). We further assessed the structural impact of

these missense SNVs by computing the differential in Gibbs

free energy between the mutant and wild-type forms and

found them to be destabilizing for P53 binding to DNA (Fig-

ure S1B). In addition, several of these mutations occurred in

well-conserved amino acid residues, suggesting that they

are functionally relevant (Figure S1C). Together, these results

support a loss-of-function role for the TP53 missense muta-

tions identified herein in lung-BrMs. For KRAS, by contrast,

most SNVs that we identified correspond to well-known

gain-of-function mutations including G12C, G13D, and G12V

(Figure 1B, central panel35), representing the most frequent

KRAS mutations in lung adenocarcinomas.36

In order to identify other potential driver genes, we looked for

evidence of positive selection on SNVs in our lung-BrM cohort by

using the well-established dNdScv algorithm.37 We recovered

just two significant hits, TP53 (adjusted p = 8.9e-12) and KRAS

(adjusted p = 1.3e-5), consistent with the analyses above. This

was further validated by an alternative driver detection method

based on the detection of genomic regions with somatic muta-

tion clustering signals (OncoDriveCLUSTL38). Given the

emerging relevance of co-occurring genomic alterations medi-

ating diverse phenotypes in primary lung cancers,39 we next

evaluated the co-occurrence and co-exclusion of TP53 and

KRAS SNVs with mutations in other genes (Figure S2). No signif-

icant hits were detected for KRAS, whereas TP53 mutations

significantly co-occurred with mutations in very large genes,
Figure 2. The genomic landscape of breast-to-brain metastases

(A) Oncoplot summarizing genomic features of breast-BrMs (n = 9) in the immun

(B) Comparison of TMB between breast-BrMs from this study (n = 9, in red) and

(C) Rainfall plots of kataegic breast-BrMs. Y axis depicts the distance between co

detected.

(D) Total number of mutations (left panel) and neoantigens (right panel) in breast-

tailed Mann-Whitney test *p < 0.05; data are represented as mean ± SEM).

(E) Estimation of intratumoral heterogeneity in breast-BrMs (see STAR Methods f

unpaired Mann-Whitney test *p < 0.05). See also Tables S1–S5.
including TTN (300Kb), USH2A (800Kb), and CSMD3 (1.2Mb),

which are more susceptible to false positive signals in genomic

analyses than average-sized (�10–15Kb) genes. Indeed, none

of these genes have been formally ascribed a pro-tumorigenic

function in vivo, and only CSMD3 has been tested in vitro, where

its loss was associated with increased proliferation in airway

epithelial cells.40 We also characterized the copy number varia-

tion (CNV) landscape of the tumors by whole-exome and LP-

WGS (see STAR Methods for details), and we found known

drivers of metastatic lung cancer, including amplifications in

MYC, YAP, and MMP13 and deletions in CDKN2A/B loci

(Figures 1B, S3A, and S3B31).

Finally, we interrogated the individual nucleotide changes

occurring in each of the tumors and performedmutational signa-

ture deconvolution analysis (Figures 1B and S441–43). Signature

4, associated with tobacco smoking and transcription-coupled

nucleotide repair of bulky DNA adducts, dominated the muta-

tional spectrum of most lung-BrMs, followed by signature 5

(clock-like, of unknown etiology but increased in many cancers

by tobacco smoking) and signature 2 (attributed to the muta-

tional activity of AID/APOBEC deaminases).41–43 These results

indicate that lung-BrMs retain the mutational footprint of the pri-

mary tumor of origin.

In light of these data, we segregated our lung-BrM cohort into

four genetically distinct groups: TP53 mutant (TP53mut, n = 9),

both TP53 and KRAS mutant (TP53mut;KRASmut, n = 5), KRAS

mutant (KRASmut, n = 2), and non-TP53, non-KRAS mutant (NP/

NK, n = 5), with the latter being composed of tumors presenting

other oncogenic alterations commonly found in primary lung tu-

mors and lung-BrMs, such as amplifications in MMP13, ERBB2,

EGFR, and MET (Figures S3A and S3B; Tables S4 and S5,39); or

gene fusions involving ALK, RET and ROS1 (Table S6,39). We

then compared the totalmutational load of tumors in eachof these

groups and found that TP53mut and TP53mut;KRASmut BrMs were

significantly more mutated than KRASmut or NP/NK BrMs (Fig-

ure 1D). Neoantigen prediction analysis revealed that TP53mut

and TP53mut;KRASmut lung-BrMs also displayed a higher number

of neoantigens (Figure 1E; Table S7).We further estimated intratu-

moral heterogeneity (ITH) by measuring clonal and subclonal var-

iants (Figure S5, see STAR Methods for details) and found that a

large proportion of TP53mut and TP53mut;KRASmut lung-BrMs

(77% and 80% respectively, vs. 50% of KRASmut and NP/NK tu-

mors) present with a high ITH (i.e., >50% subclonal variants,

Figures S5A, S5C, and S5D).

A detailed characterization of the genomic landscape of

breast-BrM (Figure 2) revealed TP53 as the most prevalently

mutated breast cancer driver gene in this cohort (Figure 2A).

We also detected SNV and CNV alterations previously described
ogenomics cohort (panels as in Figure 1B).

33 primary cancers from the TCGA.

nsecutive mutations; red arrows indicate genomic regions where kataegis was

BrMs (kataegic, n = 4; non-kataegic, n = 5 biological replicates; unpaired two-

or details; kataegic, n = 4; non-kataegic, n = 5 biological replicates; two-tailed

Cell Reports Medicine 4, 100900, January 17, 2023 5
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in breastmetastatic cancers, includingESR1mutation (Figure 2A;

Table S2) andARID1A loss (Figures S3C and S3D; Tables S4 and

S5,44). Similar to our findings in lung-BrMs, the average TMB of

our breast-BrM cohort was higher than that of primary breast tu-

mors in TCGA (Figure 2B). Notably, four breast-BrMs (BrM35,

BrM65, BrM167, and BrM169) presented the highest mutational

load and showed a distinct mutational pattern, dominated by

transitions and transversions at C:G pairs (Figure 2A). Mutational

signature analyses further indicated that signatures 2 and 13 ac-

count for a large proportion of the mutations observed in these

BrMs (Figure 2A). Both of these signatures have been attributed

to the activity of the APOBEC/AID family of deaminases and

frequently appear together.42 APOBECs have been implicated

in the generation of hypermutation clusters in small genomic re-

gions, also known as kataegis, which have been observed inmul-

tiple primary tumors, including breast cancer.42,45,46 We indeed

detected kataegis in the four above-mentioned breast-BrMs:

BrM35, BrM65, BrM167, and BrM169 (Figure 2C). Three out

of four of these samples are HER2+ (Figure 2A), in line with previ-

ous findings reporting an association between kataegis and

elevated HER2 levels in primary breast tumors.47 As expected,

we detected a higher number of mutations (Figure 2D) and

greater ITH (Figures 2E, S5B, and S5C) in kataegic vs. non-katae-

gic BrMs.

Importantly, the findings presented above were recapitulated in

our independently collected validation cohort (Figure S6 and

Table S3). The prevalence of TP53mut, TP53mut;KRASmut, and NP/

NK tumors in the lung-BrM validation cohort paralleled that of the

lung-BrM immunogenomics cohort (TP53mut > TP53mut;KRASmut).

There was also concordance when comparing the proportions of

kataegic breast-BrMs between the immunogenomics and valida-

tion cohorts (44%vs. 31%kataegic tumors, respectively; FigureS6

andTable S3).We found similar results in termsof average TMBvs.

primary tumors, with both lung- and breast-BrMs showing a similar

but slightly higher mutational burden compared with their primary

counterparts (FiguresS6BandS6F).Moreover,differences inmuta-

tional load and ITH between genetically distinct lung- and breast-

BrMs were conserved in the validation cohort (Figures S6C, S6D,

and S6G). Lastly, mutational signatures associatedwith oncogenic

events presumably originating fromprimary tumorswere also iden-

tified (Figures S6A and S6E), reinforcing the notion that lung- and

breast-BrMs retain themutational footprint of their tumors of origin.
Figure 3. Characteristic immune landscapes in genetically distinct lun

(A) Flow cytometry (FCM) quantification of non-immune cells (CD45-neg), lympho

NK n = 5; KRASmut n = 2; TP53mut n = 9; TP53mut;KRASmut n = 5 biological replica

(B) Mean of 14 different immune cell populations analyzed in lung-BrMs as perc

ulatory T cells; mono, monocytes; MDM,monocyte-derivedmacrophages; DC, de

markers used to define individual populations.

(C) Summary of differential gene expression analyses by DESeq2 (contrasts: TP53

with an adjusted p value %0.05 and absolute fold-change R2 were defined as

(DEGs); red, number of upregulated genes; blue, number of downregulated gene

(D) Visualization of intersects of DEGs between genetically distinct BrMs in sorte

immune (CD45-neg) populations. Left panel indicates total number of DEGs (up, u

for each comparison, as encoded in the combination matrix, are indicated abov

intersecting genes for each comparison.

(E) Circos representation of selected significantly enriched pathways in sorted im

MSigDB HALLMARK (H) and Gene Ontology Biological Process (BP) gene sets; ad

whether enrichment scores are positive (red, indicates enrichment in upregulated

half). See also Tables S6A and S7A.
Characteristic immune cell landscapes in genetically
distinct lung-BrMs
To next explore the TIME composition in these genetically

distinct lung-BrMs, we performed multiparameter FCM anal-

ysis and quantified overall immune infiltrates and the relative

abundance of 14 different immune cell populations. This re-

vealed a significant increase in immune cell infiltration in

TP53mut lung-BrMs when compared with their NP/NK counter-

parts, as reflected by a larger proportion of lymphoid (CD45+

CD11B�) and myeloid (CD45+CD11B+) cells than of non-im-

mune (CD45-negative) cells (Figure 3A). Interestingly, this

aligns well with previously published data showing that TP53

mutations correlate with a higher leukocyte infiltration in

many primary cancers.19 Within the immune compartment,

we observed a significant decrease in the proportion of micro-

glia (Kruskal-Wallis p = 0.01; Dunn’s multiple comparisons

test, adjusted p = 0.0016), and a concomitant trend toward

an increase in the proportion of CD8+ T cells, CD4+ T cells,

B cells, and neutrophils of total CD45+ leukocytes in TP53mut

vs. NP/NK BrMs (Figure 3B; Kruskal-Wallis and Dunn’s multi-

ple comparisons test, adjusted p > 0.05).

We next assessed whether phenotypic alterations are also

observed between BrMs with different genetic profiles by per-

forming RNA-seq of the major cell populations, including sorted

CD45-negative cells (CD45-neg), monocyte-derived macro-

phages (MDM), microglia, neutrophils, CD8+ T cells, and CD4+

T cells. We performed differential expression analyses

comparing all available sorted populations from TP53mut (n =

8–9 samples per cell population), TP53mut;KRASmut (n = 4–5

per population), and KRASmut (n = 2 per population) lung-BrMs

individually against NP/NK lung-BrMs (n = 3–5 per population)

(Figure 3C; Table S1A; Table S8). These analyses showed wide-

spread transcriptional differences in immune cells, which were

generally more evident in TP53mut than in KRASmut lung-BrMs

(Figure 3C; Table S8). To further investigate whether mutations

in TP53 or KRAS alone would have a more pronounced effect

on the TIME, we intersected significantly up- and downregulated

genes from all contrasts in all sorted immune populations (Fig-

ure 3D). These comparisons showed that TP53mut;KRASmut

lung-BrMs are more similar to TP53mut than to KRASmut BrMs,

suggesting that TP53 disruption plays a more prominent role in

shaping the transcriptional programs of the TIME compared
g-BrMs

cytes (CD45+, CD11B�), and myeloid cells (CD45+, CD11B+) in lung-BrMs (NP/

tes; Kruskal-Wallis plus Dunn’s multiple comparisons test *adjusted p < 0.05).

entage of total CD45+ cells. NK, natural killer; DN, double-negative; Treg, reg-

ndritic cells; iMC, immature myeloid cells; see STARMethods for details on the

mut vs. NP/NK; KRASmut vs. NP/NK; TP53mut;KRASmut vs. NP/NK). Only genes

differentially expressed. Black, total number of differentially expressed genes

s.

d immune (MDM, microglia, neutrophils, CD8+ T cells, CD4+ T cells) and non-

pregulated genes; down, downregulated genes); number of intersecting genes

e individual bars; numbers below the combination matrix show percentage of

mune and non-immune populations (gene set enrichment analysis (GSEA) on

justed p% 0.05). Outer rings show genotype of the BrM samples (left half), and

genes) or negative (blue, indicates enrichment in downregulated genes) (right
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with KRAS gain of function. It is important to note that mutations

in TP53 and KRAS presented similar variant allele frequencies in

TP53mut;KRASmut BrMs, indicating that bothmutations occurred

at a similar time point during tumor evolution, thereby excluding

the possibility that an earlier acquisition of TP53 mutations was

responsible for the observed higher similarity between TP53mut

and TP53mut;KRASmut lung-BrMs (Table S2).

We functionally annotated alterations in gene expression by

gene set enrichment analysis (GSEA48) on MSigDB,49

HALLMARK (H), and Gene Ontology Biological Process (BP)

gene sets, establishing a significance threshold of adjusted p

value %0.05 (Figure 3E; Table S8; Table S10A). CD45-neg cells

from TP53mut and TP53mut;KRASmut tumors displayed a more

proliferative transcriptional signature than NP/NK tumors, as evi-

denced by a positive enrichment of proliferation-related path-

ways, such as ‘‘E2F targets,’’ ‘‘MYC targets,’’ and ‘‘G2M check-

point’’ (Figure 3E). While the CD45-neg fraction may also contain

other non-immune cells, including neurons and astrocytes, it is

reasonable to conclude that given the low proliferation rate of

these cells in the brain, these observed transcriptional differ-

ences are mostly driven by the cancer cells. Overrepresentation

analysis (ORA) on differentially expressed genes (DEGs) vali-

dated these results (upregulated genes were enriched in ‘‘cell di-

vision,’’ ‘‘cell cycle,’’ ‘‘nuclear division’’ pathways (BP); adjusted

p < 0.05) and further revealed a significant enrichment of down-

regulated genes in the ‘‘endocytosis’’ pathway in TP53mut vs.

NP/NK tumors (KEGG v7.4, adjusted p < 0.05) (Table S10A).

Interestingly, dysregulated endocytosis has been reported to

contribute to several hallmarks of cancer, including reduced

apoptosis, sustained proliferation, and enhanced invasive-

ness.50,51 This may provide an explanation for the high preva-

lence of TP53 mutations in lung-BrMs (this study and Schaettler

et al., Robinson et al., and Shih et al.13,31,32).

A wide range of transcriptional alterations was also observed in

the immune compartment of TP53mut, KRASmut, and TP53mut;K-

RASmut lung-BrMswhencomparedwithNP/NK tumors (Figure3E;

Table S8; Table S10A). MDMs and microglia showed a generally

more immunosuppressive phenotype, characterized by negative

enrichment of pro-inflammatory pathways, including ‘‘inflamma-

tory response,’’ ‘‘positive regulation of immune response,’’ ‘‘posi-

tive regulation of T cell activation’’ and ‘‘IFN-G response’’

(Figure 3E). These changes were shared by TP53mut, KRASmut,

and TP53mut;KRASmut lung-BrMs. Conversely, transcriptional al-

terations in CD8+ T cells were only detected in TP53mut and

TP53mut;KRASmut lung-BrMs and were linked to a more acti-

vated-like phenotype, as shown by a positive enrichment in prolif-

eration-related (‘‘E2F targets,’’ ‘‘G2Mcheckpoint’’) and activation-

related (‘‘IFN-G response,’’ ‘‘IFN-A response,’’ ‘‘TNF-A signaling

via NF-KB,’’ ‘‘IL6-JAK-STAT3 signaling’’) pathways (Figure 3E).
Figure 4. Transcriptional analysis of the immune microenvironment of

(A) Volcano plot representation of DEG in TP53mut vs. NP/NK lung-BrMs in sorte

indicate adjusted p value (%0.05) and fold-change thresholds (R2) respectively

(B) Normalized enrichment score (NES) of selected gene sets from the MSigDB ha

neutrophils, CD8+ T cells, and microglia (adjusted p value % 0.05).

(C and D) Normalized counts (TPM, transcripts per million) of T cell activation-rela

(E) Normalized counts of selected genes in sortedmicroglia; please note log10 sca

differential expression analysis by DESeq2; *adjusted p < 0.05; data are represe
Thegreatestdifferences ingeneexpressionof theCD4+Tcell pop-

ulation were observed in KRASmut lung-BrMs, which showed a

more immunosuppressive and less pro-angiogenic transcriptional

status, definedbynegativeenrichment inpro-inflammatory (‘‘TNF-

A signaling via NF-KB,’’ ‘‘inflammatory response,’’ ‘‘positive regu-

lationof lymphocyteactivation’’) andpro-angiogenic (‘‘vasculature

development,’’ ‘‘angiogenesis’’) pathways (Figure 3E).

In sum, these results reveal that genetically distinct lung-BrMs

present characteristic immunophenotypes, with TP53mut lung-

BrMs being associated with the largest alterations in the compo-

sition and transcriptional landscape of the TIME.

TP53 mutant lung-BrMs present a distinctive immune
landscape
We next focused on further dissecting the widespread transcrip-

tional alterations observed in the TIME of TP53mut lung-BrMs

(Figure 4A). GSEA revealed higher type I and type II interferon re-

sponses and increased IL6-JAK-STAT3 and NF-KB signaling in

CD8+ T cells (Figures 4B, S7A; Table S10A), indicating that

CD8+ T cells from TP53mut lung-BrMs are more activated than

those from NP/NK tumors. In line with these findings, we

observed a significant upregulation of genes related to T cell

activation, such asGZMB (Figure 4C), and interferon responses,

including IFNAR2, IFI27L2, IFIT1, IFIT3, IFITM3, IFI27, and

IFI27L1 (Figure 4D). In addition, gene set variation analyses

(GSVA) showed significantly higher scores for ‘‘TCR signaling’’

and ‘‘Cytotoxic T lymphocyte (CTL)’’ reactome pathways (Fig-

ure S7B) in CD8+ T cells isolated from TP53mut compared with

NP/NK lung-BrMs, indicating a more activated status for these

cells. To further interrogate the functional state of CD8+ T cells,

we queried the expression of exhaustion-related markers. We

found a trend toward higher mRNA levels of the co-inhibitory re-

ceptors HAVCR2, LAG3, PD-1, TIGIT, and CTLA-4 (Figure S7C;

DESeq2 analysis, adjusted p > 0.05) in TP53mut vs. NP/NK lung-

BrMs and also of the transcription factor BATF, which has been

reported to drive CD8+ T cells from exhaustion into a more

responsive state.52,53 Whether this indicates ongoing T cell

exhaustion or rather reflects CD8+ T cells pivoting away from

this condition toward a more effector-like state is an interesting

point for future investigation.

Within the myeloid cell compartment, neutrophils from

TP53mut lung-BrMs showed transcriptional evidence of

increasedmitochondrial activity, oxidative phosphorylation, fatty

acid metabolism, and DNA repair and reduced expression of

genes involved in vascular development and angiogenesis

(Figures 3E and 4B). This may be suggestive of a metabolic

switch toward mitochondrial fatty acid oxidation to support

ROS production and exert an immunosuppressive function un-

der limited glucose supply in the tumor microenvironment, as
TP53 mutant lung-BrMs

d immune and non-immune cell populations. Horizontal and vertical red lines

for genes to be considered differentially expressed.

llmark (H) and Gene Ontology BP collections in sorted CD45-neg cells, MDMs,

ted genes (C) and interferon response-related genes (D) in sorted CD8+ T cells.

le (C–E, TP53mut n = 9; NP/NK n = 5 biological replicates; adjusted p values from

nted as mean ± SEM). See also Tables S6A and S7A.
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previously reported in a mouse model of primary breast can-

cer.54 MDMs and microglia displayed a less activated, less

phagocytic, and more immunosuppressive transcriptional pro-

gram. This was evidenced by overall negative GSEA enrichment

scores in pathways related toMDM/microglia activation (‘‘TNF-A

signaling via NF-KB,’’ ‘‘positive regulation of ERK1/2 cascade’’)

and inflammation (‘‘inflammatory response,’’ ‘‘allograft rejec-

tion,’’ ‘‘regulation of T cell activation,’’ ‘‘lymphocyte migration,’’

‘‘lymphocyte activation,’’ etc.) (Figures 4C, S7D, and S7E; see

Table S10A for a full list of pathways and core enrichment genes).

Furthermore, we observed a significant downregulation of pro-

inflammatory cytokines, such as CCL2, CCL3, CCL4, CCL5,

IL6, IL7, and IL18; activation-related genes, including CD69

and TREM2; a well-known mediator of neuroinflammation,

CSF2; and genes related to phagocytosis, such as AXL,

SCARB1, FCGR1A, and FCGR3A (Figures 4E and S7F). Finally,

IL1R1 and IL1R2 were significantly upregulated in microglia

(and showed a trend toward higher expression in MDMs) of

TP53mut vs. NP/NK lung-BrMs (Table S8). IL1R has been impli-

cated in fostering immunosuppression by tumor-associated

macrophages in a melanoma model,55 suggesting that IL1R

signaling could contribute to the immunosuppressive phenotype

observed in microglia.

Overall, our data reveal that TP53mut lung-BrMs present a

distinctive TIME, characterized by a higher immune infiltration,

increased CD8+ T cell activation, and a more immunosuppres-

sive myeloid cell compartment.

Kataegic breast-BrMs display a more inflamed tumor
microenvironment
Genomic characterization of breast-BrMs identified a subset of

tumors in which kataegis, i.e., focalized hypermutation, was de-

tected (Figure 2). These tumors presented with a higher muta-

tional burden, neoantigen load, and increased intratumoral het-

erogeneity (Figures 2D, 2E, S5B, and S5C). To determine

whether this mutational phenotype was associated with a distinct

TIME, we performed multicolor FCM and RNA-seq of purified im-

mune and non-immune populations. Unsupervised clustering of

breast-BrM samples based on the relative abundance of 14

different immune populations indicated that the composition of

the TIMEof kataegic breast-BrMswas indeed unique and defined

by a higher CD8+ and CD4+ T cell abundance and lower neutro-

phil infiltration (Figures 5A and5B). These resultswere further vali-

dated by immunofluorescence staining (Figures 5C–5F).

Differential expression analysis contrasting sorted populations

from kataegic and non-kataegic breast-BrMs revealed extensive

transcriptional alterations in non-immune (CD45-neg, 527 DEG)

and immune cells (CD8+ T cells, 94 DEGs; CD4+ T cells, 384
Figure 5. Kataegic breast-BrMs present a distinct immune microenvir

(A) Unsupervised clustering of different immune cell fractions (of total CD45+ imm

(B) FCM quantification of the abundance of selected immune populations in k

biological replicates; unpaired two-tailed t test, *p < 0.05, **p < 0.01; data are re

(C–E) Representative immunofluorescence staining of (C) CD8+ T cells, (D) CD4+

(F) Quantification of CD8+ T cells, CD4+ T cells, and neutrophils from immunoflu

munogenomics and validation (Val) cohorts (CD8+ T cells: kataegic, n = 6; non-ka

n = 14 biological replicates; neutrophils: kataegic, n = 7; non-kataegic, n = 10 bio

represented as mean ± SEM). Only samples with a false to true positive ratio <2

samples closest to the mean of each group were selected as representative for
DEGs; MDM, 46 DEGs; microglia, 37 DEGs; neutrophils, 322

DEGs; absolute fold-change R2 and adjusted p value %0.05;

Table S9). GSEA showed that CD45-neg cells display a more

pro-inflammatory phenotype, supported by a positive enrich-

ment of inflammation-related pathways such as ‘‘Positive regu-

lation of IL1B production,’’ ‘‘Positive regulation of defense

response,’’ ‘‘Allograft rejection,’’ and ‘‘Inflammatory response’’

(Figure 6A, Table S10B). Likewise, the myeloid cell compartment

also showed a generally more inflamed status, as demonstrated

by the positive GSEA enrichment in interferon alpha response

pathway found in MDMs, microglia, and neutrophils (Figure 6A;

Table S10B). In line with these findings, neutrophils from katae-

gic tumors showed a significant upregulation of several genes

coding for pro-inflammatory S100 proteins (S100A2, S100A7),

pro-inflammatory cytokines (IL18, IL1F10), IFN response genes

(IFI27, IFI44L, VAMP8), and degranulation-related genes (SLPI,

GSTP1, GGH) (Figure 6B; Table S9). Interestingly, this may be

connected with the more activated phenotype displayed by

MDMs from kataegic breast-BrMs, since S100 proteins have

been implicated in macrophage inflammation.56 It is also

intriguing that neutrophils from kataegic breast-BrMs showed

a trend toward upregulation of CXCL10 (adjusted p = 0.06; DE-

Seq2 analysis), a pro-inflammatory cytokine involved in the

recruitment of effector T cells,57 which could account for the

higher CD8+ T cell infiltration observed in kataegic breast-

BrMs (Figures 6B and 5; Table S9). CD8+ T cells from kataegic

tumors also presented a more activation-like phenotype. This

was evidenced by an increased type I interferon response (Fig-

ure 6C; Table S10B) and GSVA showing significantly higher

scores in several T cell activation-related pathways (‘‘Early

CD8 activation,’’ ‘‘AKT phosphorylates targets in the cytosol,’’

‘‘NFKB is activated and signals survival,’’ ‘‘IKK complex recruit-

ment mediated by RIP1,’’ ‘‘Activation of IRF3/IRF7 mediated by

TBK1/IKKε’’) and a lower ‘‘apoptotic execution phase’’ pathway

score when comparing kataegic and non-kataegic breast-BrMs

(Figure 6D). Accordingly, kataegic breast-BrM tumors exhibited

a significantly higher proportion of CD103+CD8+ T cells

(Figures 6E and 6F), which have been previously described to

drive cytotoxic effector responses against several tumor

types58,59 and to correlate with a better response to anti-PD-

L1 immunotherapy in lung and bladder primary cancers.60 De-

convolution analysis of bulk RNA-seq data further validated

these results, confirming a higher infiltration of cytotoxic CD8+

T cells (1.953 fold increase) in kataegic vs. non-kataegic

breast-BrMs (Figure 6G).

Together, our results indicate that kataegic breast-BrMs pre-

sent a characteristic TIME, defined by an increased CD8+ and

CD4+ T cell infiltration, reduced neutrophil presence, and an
onment

une cells) as quantified by FCM.

ataegic and non-kataegic breast-BrMs (kataegic, n = 4; non-kataegic, n = 5

presented as mean ± SEM).

T cells, and (E) CD15+ neutrophils in breast-BrM tumors.

orescence stainings of kataegic and non-kataegic breast-BrMs from the im-

taegic, n = 10 biological replicates; CD4+ T cells: kataegic, n = 6; non-kataegic,

logical replicates; unpaired two-tailed Mann-Whitney test, *p < 0.05; data are

% were included in these analyses (see STAR Methods for details). The two

the images shown in (C)–(E). Scale bars represent 100 mm.
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overall more pro-inflammatory phenotype compared with non-

kataegic BrMs.

DISCUSSION

Metastatic brain tumors are associated with a very poor prog-

nosis, with survival rates for patients diagnosed with BrM often

measured in months.3 Although new therapeutic strategies are

emerging and include personalized treatments based on the ge-

netic makeup of primary tumors, along with immune-based ther-

apies,3,5,6,63,64 only a small subset of patients with BrM respond

to current treatments.4,7,9–11 This is likely related to the pheno-

typic heterogeneity of the TIME, which can be influenced by ge-

netic alterations, as previously reported for several primary can-

cers.15,18–22,24–26,65 However, the extent to which specific

genetic profiles correlate with, and potentially shape, distinct im-

mune states in the TIME of BrMs is unknown. In this study, we

therefore integrated next-generation sequencing and antibody-

based immunophenotyping analyses to extensively characterize

the immunogenomic landscape of lung- and breast-BrMs. By

leveraging the combined analyses of DNA sequencing of tumors,

RNA sequencing of immune populations, multiparametric flow

cytometry, and immunofluorescence analyses of whole tissue

samples, we have uncovered specific immunophenotypes asso-

ciated with distinct genetic alterations in human lung- and

breast-BrMs.

Previous studies have reported on the relevance of the TIME in

shaping responses to immunotherapy in primary human cancers.

For example, immunogenomic analyses of 33 different primary

cancer types in TCGA revealed six immune subtypes character-

ized by distinct somatic alterations, tumor microenvironments,

and survival rates.19 This study also found that mutations in

TP53 correlated with higher overall leukocyte abundance across

the cancers analyzed. A recent large-scale transcriptomic char-

acterization of cancer patients identified four microenvironment

subtypes that are conserved in multiple primary tumors and

correlate with response to immunotherapy.21 Interestingly, this

study defined an ‘‘immune enriched, non-fibrotic’’ subtype,

which is characterized by a high mutational burden, abundant

T cell infiltration, and the presence of immune-suppressive cells,

as a biomarker associated with a better response to immuno-

therapy.21 Moreover, in NSCLC, a ‘‘lung cancer immune activa-
Figure 6. Transcriptional analysis of the immune microenvironment of

(A) NES of selected gene sets from theMSigDB hallmark (H) andGeneOntology BP

T cells (adjusted p value % 0.05).

(B) Normalized counts (TPM) of selected genes in sorted neutrophils (kataegic, n =

expression analysis by DESeq2; *adjusted p < 0.05; data are represented as me

(C) GSEA of interferon alpha response genes (MSigDBHcollection; upper left pane

Ontology Biological Process collection; lower left panel) in sorted CD8+ T cells; to

kataegic; numbers in pink indicate log2 fold changes) from DESeq2 analysis (righ

(D) Gene set variation analysis (GSVA) of ‘‘Early CD8 activation’’ (as defined in And

Reactome database in sorted CD8+ T cells. Each dot corresponds to one BrM sa

tailed t test, *p < 0.05; **p < 0.01; data are represented as mean ± SEM).

(E and F) (E) Representative immunofluorescence staining and (F) quantification of

n = 3; non-kataegic, n = 8 biological replicates; unpaired two-tailed t test, **p < 0.01

ratio <2% were included in these analyses (see STAR Methods for details). Scal

(G) Heatmap of the average immune cell Danaher scores (computed as in Danahe

(n = 13). See also Tables S6B and S7B.
tion module,’’ characterized by PDCD1+ CXCL13+ activated

T cells, SPP1+ macrophages, and IgG+ plasma cells, was identi-

fied by scRNA-seq profiling of early-stage tumors. Importantly,

thismodule was also associatedwith a highermutational burden,

ectopic antigens, and TP53 mutations, and it correlated with a

better response to anti-PD(L)-1 immunotherapy.22

Together, these phenotypes are remarkably similar to what we

have uncovered herein in TP53mut lung-BrMs, which are charac-

terized by a high mutational burden, increased T cell infiltration,

and the presence of a more immunosuppressive myeloid

compartment. This suggests that immune checkpoint blockade

(ICB) might be a particularly beneficial treatment for patients with

TP53mut lung-BrMs. Moreover, we detected a significant upre-

gulation of IL1R1 and IL1R2 in microglia and a significant down-

regulation of TREM2 in microglia and MDMs from TP53mut lung-

BrMs when compared with NP/NK BrMs. It has been reported

that IL1R fosters immune suppression by tumor-associated

macrophages in melanoma, and consequently that combinato-

rial immunotherapy targeting IL1R signaling and PD-1 resulted

in anti-tumoral effects in the pre-clinical setting.55 TREM2 inhibi-

tion was also shown to lead to enhanced T cell activity and

improved response to anti-PD1 immunotherapy in several

mouse models.66 Together, these mechanistic findings support

our prediction that TP53mut lung-BrMs specifically would show

a better response to immunotherapy. Finally, a high non-synon-

ymous mutational burden—often a proxy for the increased pres-

ence of immunogenic neoantigens—has been linked to an

improved response to ICB in NSCLC.67,68 We identified both a

greater mutational burden and a higher level of neoantigens as

characteristic features of TP53mut lung-BrMs when compared

with NP/NK BrMs, further reinforcing the notion that these

TP53mut BrMs may be more sensitive to immunotherapy.

Immune-modifying effects of TMB and mutational status of

driver genes directly impacting the response to immunotherapy

have also been recently reported in breast cancer. In primary

breast tumors, BRCA1 and BRCA2 mutations lead to distinct

TIME phenotypes, with BRCA2 truncating mutations resulting in

a more immunogenic TIME and an improved ICB response.65

Likewise, homologous recombination deficiency, linked to higher

mutational burden and genomic instability, has been recently

identified as a key vulnerability in breast-BrM patients treated

with PARP inhibitors.69 Kataegis, or focalized hypermutation,
kataegic and non-kataegic breast-BrM tumors

collections in sorted CD45-neg cells, MDMs,microglia, neutrophils, andCD8+

4; non-kataegic, n = 5 biological replicates; adjusted p values from differential

an ± SEM).

l) and genes involved in positive regulation of type I interferon production (Gene

p 40 interferon alpha response genes sorted by fold change (kataegic vs. non-

t panel).

reatta et al.61), AKT, NFKB, and apoptosis pathway-related gene sets from the

mple (kataegic, n = 4; non-kataegic, n = 5 biological replicates; unpaired two-

CD103+CD8+ T cells in breast-BrM tumors from the validation cohort (kataegic,

; data are represented asmean ±SD). Only sampleswith a false to true positive

e bars represent 100 mm.

r et al.62) from bulk RNA-seq of breast-BrM samples from the validation cohort
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occurs in approximately 55%of breast cancers and is associated

with increased genomic instability, HER2 positivity, and tran-

scriptome-wide expression changes, resulting in lower invasive

potential and better patient prognosis.47 Accordingly, our immu-

nogenomic analysis of breast-BrMs revealed that hypermutated

tumors (75% of which are also HER2+) present a more inflamed

TIME overall, characterized by increased T cell infiltration and

broad transcriptional changes in cancer cells (CD45-neg) and im-

mune cells leading to a pro-inflammatory phenotype. Further-

more, we found that neutrophils from kataegic BrMs express

higher levels of CXCL10, a cytokine involved in the recruitment

of effector T cells, which has recently been shown to predict bet-

ter responses of anti-PD1 treatment in metastatic melanoma,70

and that kataegic BrMs present a significantly higher proportion

of CD103+CD8+ T cells, a predictor of improved responses to

PD1 blockade in some primary cancers.60 Together, these find-

ings suggest that patients with kataegic breast-BrMs might

benefit from ICB and/or PARP inhibition therapies.

While we cannot currently evaluate how these individual alter-

ations differentially sculpt the TIME in a dynamic manner, due to

the lack of appropriate genetic mouse models, this study none-

theless provides compelling evidence for an association be-

tween specific genetic alterations and unique TIME immunophe-

notypes in human BrMs. This knowledge can be of critical

importance to predict responses to current immunotherapies,

to stratify patients, and to develop novel immune-based person-

alized treatments guided by the geneticmakeup of the tumors. In

this regard, genotyping of biopsied or surgically resected pri-

mary tumors or genetic profiling of circulating tumor cells or

circulating free DNA from cerebrospinal fluid71 could represent

valid surrogate approaches to inform customized immune ther-

apies for BrM patients. Different breast and lung-BrM mouse

models are under active development, and further research will

be critical to dissect the precise contribution of specific genetic

alterations to the composition and status of the immune micro-

environment of BrMs. We expect that our results herein will

inform these fundamental next steps to advance toward the

goal of personalized and more effective therapies for BrM

patients.

Limitations of the study
There are some limitations to our study. Firstly, it does not include

matched primary tumor samples, so we cannot ascertain

whether the phenotypes described here are metastasis specific,

although in some cases (TP53mut lung-BrMs), they are similar to

published data on primary tumors. Secondly, the number of

TP53WT/KRASmut lung-BrMs analyzed in this study is limited,

which may preclude the identification of relevant TIME pheno-

types. While this study could benefit from a larger sample size,

we nonetheless demonstrate that our findings are not driven by

potentially confounding factors, such as primary tumor subtype,

treatment, age, or sex. Due to the current lack of appropriate ge-

netic mouse models, we could not test whether the observed ge-

netic makeups are causative of the TIME phenotypes reported.

Different pre-clinical breast and lung-BrM models are under

active development and will be important to assess this question

and to evaluate whether BrMs with distinct genetic makeups and

TIMEs respond differently to immunotherapy.
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Bio-Rad Cat# MCA1817; RRID:AB_322868

Rabbit monoclonal anti-human CD4 (clone

EPR6855) (IF, 1:50 dilution)

Abcam Cat#ab133616;

AB_2750883

Mouse monoclonal anti-human CD15

(clone MMA) (IF, 1:100 dilution)

Abcam Cat#ab17080;

AB_443635

(Continued on next page)
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Rabbit monoclonal anti-human CD103

(clone EPR22590-27) (IF, 1:100 dilution)

Abcam Cat#ab224202;

AB_2891141

AF555 donkey anti-mouse IgG (1:500

dilution)

ThermoFisher Cat#A32773; RRID:AB_2762848

AF647 donkey anti-rabbit IgG (1:500

dilution)

Invitrogen Cat#A31573; RRID: AB_2536183

DyLight755 donkey anti-goat IgG (1:500

dilution)

Invitrogen Cat# SA5-10091; RRID:AB_2556671

DAPI (1 mg/mL) Invitrogen Cat#D1306; RRID:AB_2629482

Biological samples

Human brain metastasis tissue Centre Hospitalier

Universitaire Vaudois,

Lausanne, Switzerland

N/A

Human blood Centre Hospitalier

Universitaire Vaudois,

Lausanne, Switzerland

N/A

Chemicals, peptides, and recombinant proteins

Trizol LS Thermo Fisher Cat#10296028

Tween 20 Applied Chemicals Cat#A4974

Triton X-100 Applied Chemicals Cat#A4975

Fluorescence Mounting Medium Dako Cat#S302380

Critical commercial assays

Tumor Dissociation Kit, human Miltenyi Cat#130-095-929

Human TruStain FcX BioLegend Cat#422302

ZombieNIR Fixable Viability Kit BioLegend Cat#423106

Qiagen DNAeasy Blood & Tissue kit Qiagen Cat#69504

Deposited data

RNA-Seq count data This paper https://joycelab.shinyapps.io/braintime/

Human reference genome, hg38

(GRCh38.95, Jan 2019)

EMBL/EBI http://jan2019.archive.ensembl.org/index.

html

TCGA datasets Genomics Data Common https://portal.gdc.cancer.gov/

Molecular Signatures Database gene set

collection

UC San Diego and

Broad Institute

https://www.gsea-msigdb.org/gsea/

msigdb/

The Gene Ontology Resource Gene Ontology Consortium http://geneontology.org/

Software and algorithms

FastQC (version 0.11.7) Babraham Institute https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Cutadapt (version 2.3) National Bioinformatics

Infrastructure Sweden

https://cutadapt.readthedocs.io/en/stable/

Burrows-Wheeler Aligner (version 0.7.17) Li and Durbin72 http://bio-bwa.sourceforge.net/

GATK (version 4.1.0.0) Broad Institute https://gatk.broadinstitute.org/hc/en-us

Samtools (version 1.8) Genome Research Limited http://www.htslib.org/

Picard tools (version 2.9.0) Broad Institute https://broadinstitute.github.io/picard/

Vcftools (version 0.1.16) Adam Auton, Petr Danecek,

Anthony Marcketta

https://vcftools.github.io/index.html

Variant Effect Predictor (version 95) EMBL/EBI https://github.com/Ensembl/ensembl-vep

CNVKit (version 0.9.10) Talevich et al.73 https://cnvkit.readthedocs.io/en/stable/

Manta (version 1.6.0) Illumina https://github.com/Illumina/manta

Kallisto (version 0.46.0) Bray et al.74 https://pachterlab.github.io/kallisto/

(Continued on next page)
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Polysolver (version 4.0–1) Broad Institute https://software.broadinstitute.org/

cancer/cga/polysolver

Pvactools (version 2.0.0) Hundal et al.75 https://pvactools.readthedocs.io/en/

latest/

GNU bash (version 3.2.57) GNU Project https://www.gnu.org/software/bash/

GNU coreutils (version 9.0) GNU project https://www.gnu.org/software/coreutils/

Docker (version 20.10.5) Docker, Inc https://www.docker.com/

GraphPad Prism (version 9.1.1) GraphPad software https://www.graphpad.com/

scientific-software/prism/

FlowJo (version 10.5.3) BD Biosciences https://www.flowjo.com/

R (version 4.1.0) The R Foundation https://cran.r-project.org/

OncodriveCLUSTL (version 1.1.4) Arnedo-Pac et al.38 https://bitbucket.org/bbglab/

oncodriveclustl/src/master/

MUSCLE (version 3.8.31) EMBL-EBI https://www.ebi.ac.uk/Tools/msa/

muscle/

Chimera (version 1.13.1) University of California

San Francisco (UCSF)

https://www.cgl.ucsf.edu/chimera/

QuPath (version 0.3.0) Bankhead et al.76 https://qupath.github.io/

dNdScv (R package, version 0.1.0) Martincorena et al.37 https://github.com/im3sanger/dndscv

MAFtools (R package, version 2.8.0) Mayakonda et al.77 https://www.bioconductor.org/packages/

release/bioc/html/maftools.html

CopyWriteR (R package, version 2.24.0) Kuilman et al.78 https://www.bioconductor.org/packages/

release/bioc/html/CopywriteR.html

SciClone (R package, version 1.1.0) Miller et al.79 https://github.com/genome/sciclone

DESeq2 (R package, version 1.32.0) Love et al.80 https://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

Ggplot2 (R package, version 3.3.35) Hadley Wickham https://ggplot2.tidyverse.org/

Stats (R package, version 4.1.0) The R Foundation https://cran.r-project.org/

Tximport (R package, version 1.20.0) Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/tximport.html

Ensembldb (R package, version 2.16.0) Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/ensembldb.html

AnnotationHub (R package, version 3.0.1) Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/AnnotationHub.html

RColorBrewer (R package, version 1.1–2) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

RColorBrewer/index.html

GSVA (R package, version 1.40.1) Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/GSVA.html

Pheatmap (R package, version 1.0.12) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

pheatmap/index.html

UpSetR (R package, version 1.4.0) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

UpSetR/index.html

Dplyr (R package, version 1.0.7) Hadley Wickham https://dplyr.tidyverse.org/

Reshape2 (R package, version 1.4.4) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

reshape2/index.html

Scales (R package, version 1.1.1) The Comprehensive

R Archive Network (CRAN)

https://scales.r-lib.org/

Ggpubr (R package, version 0.4.0) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

ggpubr/index.html

EDASeq (R package, version 2.26.1) Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/EDASeq.html

(Continued on next page)
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org.Hs.eg.db (R package, version 3.13.0) Bioconductor https://www.bioconductor.org/

packages/release/data/annotation/

html/org.Hs.eg.db.html

ClusterProfiler (R package, version 4.0.0) Bioconductor https://www.bioconductor.org/

packages/release/bioc/html/

clusterProfiler.html

Gprofiler2 (R package, version 0.2.0) The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/

packages/gprofiler2/index.html

GenVisR (R package, version 1.24.0) Bioconductor https://bioconductor.org/packages/

release/bioc/html/GenVisR.html

Other

gentleMACS Octo Dissociator with heaters Miltenyi Cat# 130-096-427

gentleMACS C Tubes Miltenyi Cat#130-096-334

LSR II flow cytometer BD N/A

Fortessa flow cytometer BD N/A

FACSAria III, flow cytometer and cell sorter BD N/A

FACSAria II SORP, flow cytometer and cell

sorter

BD N/A

Axio Scan.Z1 slide scanner Zeiss N/A

NanoDrop One spectrophotometer ThermoFisher Cat# ND-ONEC-W

Qubit fluorometer Invitrogen, ThermoFisher Cat# Q33238

TissueLyser II Qiagen Cat #85300
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Prof. Johanna A. Joyce (johanna.joyce@

unil.ch).

Materials availability
This study did not generate new, unique reagents.

Data and code availability
RNA-seq count expression data generated during this study can currently be accessed and visualized at:

https://joycelab.shinyapps.io/braintime/

Due to strict patient privacy protection, requests for access to the rawDNA andRNA-seq datamust bemade to the lead contact for

subsequent referral to the institutional ethics committee. Data reported in this paper is available from the lead contact. Software used

in thismanuscript are listed in the key resources table. This paper does not report original code. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures performed on clinical tissue samples obtained from human participants were in accordance with the

ethical standards of the institutional and/or national research committees, and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in this

study. The collection of tumor tissue and blood samples at the Biobank of the Brain and Spine Tumor Center (BB_031_BBLBGT)

of the Center Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland) was approved by the Commission Cantonale d’éthi-

que de la recherche sur l’être humain (CER-VD, protocol PB 2017-00240, F25/99). Tissue specimens were immediately collected

from the operating room and processed as described below. All samples were fully anonymized before any processing/experimen-

tation. Pathological review of tumor tissues was performed at CHUV as part of the standard clinical care; all clinical information is

included in Table S1A. Clinical information referring to ‘sex’ was evaluated and reported in themedical history of the patients by their

physicians.
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METHOD DETAILS

Clinical sample processing, flow cytometry, fluorescence-activated cell sorting, immunofluorescence, DNA
sequencing and RNA sequencing of sorted populations
Clinical sample processing and preparation for flow cytometry (FCM), fluorescence-activated cell sorting (FACS), immunofluores-

cence (IF) staining, RNA sequencing of sorted populations (RNA-seq), whole-exome sequencing (WES) and low-pass whole-genome

sequencing (LP-WGS) was performed as described in modules 2a (FCM, FACS), 1a (IF), 1b (WES, LP-WGS) and 2b (RNA-seq),

respectively.33

Flow cytometry markers and definition of cell populations for fluorescence-activated cell sorting
The followingmarkers were used to define immune and non-immune cell populations for the quantifications shown in Figures 3A, 3B,

5A, and 5B and for cell sorting:
Cell population Markers

CD45-negative CD45�

Lymphocytes CD45+, CD11B�

Myeloid cells CD45+, CD11B+

Monocyte-derived macrophages (MDM) CD45+, CD11B+, CD66B�, CD14+, CD16�,
CD49Dhigh

Microglia CD45+, CD11B+, CD66B�, CD14+, CD16�,
CD49Dlow

Neutrophils CD45+, CD11B+, CD66B+, CD16+

B cells CD45+, CD11B�, CD19+, CD3�

Dendritic cells (DC) CD45+, CD11B+, CD66B�, CD14low,
CD16�, CD49Dmed, HLA-DR+, CD11C+

NK cells CD45+, CD11B�, CD19�, CD3�, CD56+

CD8+ T cells CD45+, CD11B�, CD19�, CD3+, CD4�,
CD8+

CD4+ T cells CD45+, CD11B�, CD19�, CD3+, CD4+,
CD8�, CD25�

Regulatory T cells (Treg) CD45+, CD11B�, CD19�, CD3+, CD4+,
CD8�, CD127low, CD25+

Double-negative (DN) T cells CD45+, CD11B�, CD19�, CD3+, CD4�,
CD8�

CD16 neg. granulocytes CD45+, CD11B+, CD66B+, CD16�

CD14-/low/CD16+ monocytes CD45+, CD11B+, CD66B�, CD14�/low,

CD16+

CD14+/CD16+ monocytes CD45+, CD11B+, CD66B�, CD14+, CD16+

Immature myeloid cells (iMC) CD45+, CD11B+, CD66B�, CD14low,
CD16�, CD49Dmed, HLA-DR�, CD11C�
RNA-sequencing of sorted immune cell populations
2,000 cells of each of the following cell populations were sorted into Trizol LS as indicated in module 2b33 and submitted to the

company ‘‘GeneWiz from Azenta Life Sciences’’ for RNA extraction, quality control check, library preparation and RNA-seq: CD45-

negative, microglia, MDM, neutrophils, CD8+ T cells and CD4+ T cells. Total RNA was extracted from cells following the Trizol

Reagent User Guide (Thermo Fisher Scientific). Extracted RNA samples were quantified using Qubit 2.0 Fluorometer (Life

Technologies, Carlsbad, CA, USA) and RNA integrity was assessed using Agilent TapeStation 4200 (Agilent Technologies, Palo

Alto, CA, USA). SMART-Seq HT Ultra Low Input Kit for Sequencing was used for full-length cDNA synthesis and amplification

(Clontech, Mountain View, CA), and Illumina Nextera XT library was used for the sequencing library preparation, following the man-

ufacturer’s instructions. Paired-end 150 base-pair (2 3 150) sequencing of the libraries was performed using an Illumina NovaSeq

6000 sequencer.

Bulk RNA-sequencing of validation cohort samples
17 of 18 tumor samples from the validation cohort had sufficient tissue to perform bulk RNA sequencing. Snap-frozen tumor tissue

(�1–3 mm3 piece) was placed into a microcentrifuge tube containing 600mL lysis buffer (buffer RLT, Qiagen) and 5mm stainless steel
Cell Reports Medicine 4, 100900, January 17, 2023 e5
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beads; disrupted and homogenized using a Tissue Lyser II system (Qiagen) at a frequency of 20Hz for 2 min. Total RNA was isolated

using an RNAeasy Mini kit (Qiagen) following the manufacturer’s instructions. Purified RNA was submitted to the Genewiz company

(R2ug RNA per tumor at R20 ng/mL; A260/A280 = 1.8–2.0 and DNA-free) for library preparation and RNA-seq, as detailed in the

section ‘‘RNA-sequencing of sorted immune cell populations’’ above.

Whole-exome and low-pass whole-genome sequencing
Genomic DNA was isolated as indicated in module 1b33 and submitted to the Genewiz company (R1.5ug DNA per tumor at

R20 ng/mL; A260/A280 = 1.8–2.0 and RNA-free) for library preparation and sequencing. The following quality control checks

were performed for all samples before sequencing: (i) genomic DNA integrity assessment by gel electrophoresis and quantification

of total concentration by Qubit assay; (ii) sonication efficiency and library size assessment by capillary electrophoresis using the

5300 Fragment Analyzer system (Agilent); (iii) quantification of library concentration by Qubit assay. Whole-exome and low-pass

whole-genome sequencing libraries were generated using the SureSelect Human All Exon v7 kit (Agilent) and SureSelectQXT Li-

brary Prep (Agilent), respectively, following the manufacturer’s instructions. Paired-end 150 base-pair (2 3 150) sequencing of

the libraries was performed using an Illumina NovaSeq 6000 sequencer.

Immunofluorescence (IF) staining and quantification
Tissue processing and staining was performed as described in module 1a (IF),33 except for the fixation, which was performed using

10% neutral-buffered formalin instead of methanol. Image quantification was performed using the QuPath 0.3.076 image analysis

software. For each sample, a region of interest (ROI) was manually defined to exclude aberrant signals (i.e. those resulting from

dust particles, tissue folds or air bubbles). Nuclear segmentation was performed using the StarDist method81 powered by the

dsb2018_heavy_augment.pb deep learning model with the following parameters: threshold = 0.5; channels = ‘DAPI’; pixelSize =

0; cellExpansion = 3; cellConstrainScale = 1.5; measureShape = true; measureIntensity = true; includeProbability = true; nThreads =

10. Classifiers for eachmarker/fluorophore were created by setting detection thresholds in a per sample basis. The ratio of false pos-

itive (FP) vs. true positive (TP) signal was calculated for each sample by dividing the number of positive cells for a given marker in the

secondary-only control by the number of positive cells for the same marker in the fully stained tissue (primary plus secondary anti-

bodies). Samples with an FP/TP >2% were excluded from the analyses.

Computational analyses
Somatic variant calling from WES data

Somatic variant calling was performed fromWES data of paired tumor and PBMC samples. Raw reads (fastq files) were quality-control

checked by FastQC and sequencing adaptors were removed by cutadapt. The resulting reads were then aligned to the hg38

(GRCh38.95) reference genome by using the Burrows-Wheeler aligner72 (command line: bwa mem -M -t 64 -v 3 -R). Aligned reads

were sorted and written into BAM alignment files using SAMtools and marked for duplicates using Picard tools (command line: pic-

ard-tools MarkDuplicates VALIDATION_STRINGENCY = LENIENT). Somatic mutation calling was performed using MuTect2,82

GenomeAnalysisTK-4.0 (GATK4.0)andGATKResourceBundleGRCh38 followingbestpractices for somatic variantcallingasdescribed

by The Broad Institute (https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-

Indels-): 1) Basequality scoreswere recalibratedusing theGenomeAnalysisTKBaseRecalibrator function and ‘‘dbSNPv146’’ and ‘‘Mills

and1000genomes’’ goldstandardvcffiles fromtheGATKresourcebundle; 2)Apanelofnormal (PoN)wasgeneratedby runningMutect2

in tumor-only mode (parameters: –disable-read-filter MateOnSameContigOrNoMappedMateReadFilter) on individual PBMC samples

and merging them using GenomeAnalysisTK CreateSomaticPanelOfNormals function into a single VCF file; 3) Somatic variants were

called on recalibrated BAM files and written into VCF files (one per tumor sample) using MuTect2, the PoN generated in the previous

step and GNOMAD (hg38) as the population germline variant resource (parameters: –af-of-alleles-not-in-resource 0.0000025 –disable-

read-filterMateOnSameContigOrNoMappedMateReadFilter); 4) Cross-samplecontaminationwasestimatedusingGenomeAnalysisTK

GetPileupSummaries and GenomeAnalysisTK CalculateContamination functions; 5) Somatic variants were filtered to keep only

confident calls by using the GenomeAnalysisTK FilterMutectCalls function provided with the contamination tables generated in step

4, theVCFfilesgenerated in step3and runwithdefault parameters.Note that this stepapplies 14different filters, details onfilters/thresh-

olds can be found in GATK4 documentation; 6) VCF files containing only ‘‘PASS’’ (filtered) variants were generated by using

GenomeAnalysisTK SelectVariants (parameters: –exclude-filtered); 7) Filtered variants were annotated using ENSEMBL Variant Effect

Predictor (VEP). See also ‘‘Software versions’’ table below.

Germline variant calling from WES data

Germline variant calling was performed using the Haplo-type Caller from GATK4.0 (GenomeAnalysisTK HaploTypeCaller –disable-

read-filter MateOnSameContigOrNoMappedMateReadFilter) on recalibrated BAM files from PBMC samples as generated in step 1

of the somatic variant calling procedure described above.

Copy number variation (CNV) analysis from WES data

Copy number variation analysis was performed using CopyWriteR, which implements a statistical method to estimate CNV from

off-target reads in capture-based sequencing experiments and overcomes most of the limitations and biases associated with

CNV quantification from whole-exome sequencing data (see78 for details). Briefly, the software processes the alignment files to re-

move non-random off-target reads, computes depth of coverage in predefined bins, corrects depth by GC content and mappability
e6 Cell Reports Medicine 4, 100900, January 17, 2023
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and generates a CNV profile. On-target and off-target regions were identified based on germline (PBMC) samples, as recommended

by the authors of the tool. We defined 20Kb bins and analyzed paired tumor and healthy tissue (PBMC -as a negative control-) sam-

ples, so that all copy number estimations reported for the tumor samples in this study are relative to their corresponding healthy

control.

Copy number variation (CNV) imputation from LP-WGS data

CNV imputation from LP-WGSdatawas provided byGeneWiz (Azenta Life Sciences, Germany) via partneringwith Gencove Inc (New

York, United States). Briefly, reads weremapped to the Human GRCh38 genome using the Burrows-Wheeler aligner and CNV calling

was performed using CNVKit73 in wgs mode. The imputation panel used here corresponds to a lifted-over version (from GRCh37 to

GRCh38) of the phased release of genotype calls from the New York Genome Center’s resequencing of individuals from the 1000

Genomes Project. The panel is composed of 3202 individuals including the original 2504 fromPhase 3 and an additional 798 relatives.

Structural variation (SV) analysis from WES data

Raw reads from paired tumor and healthy control (PBMC) samples were processed and aligned to the human genome (GRCh38.p12

v95 Jan 2019) as described in section ‘‘Somatic variant calling from WES data’’. Gene fusions/translocations were identified using

manta83 as follows: 1) Configure the analysis by executing configManta.py with parameters: –exome (indicates that reads come from

a whole-exome sequencing experiment), –normalBam and –tumorBam (to define normal and tumor samples, respectively), –refer-

enceFasta (to indicate genome of reference used for the alignment) –runDir (to define working directory); 2) Run the analysis by

executing runWorkflow.py. Both configManta.py and runWorkflow.py are part of the standard manta distribution and can be down-

loaded from the link indicated in the section ‘‘Software versions’’.

Mutational signature deconvolution

Mutational signatures (COSMIC v3.2) were deconvoluted fromWES data using Mutalisk84 on VCF files containing filtered, high-qual-

ity single nucleotide variants (SNVs) generated as detailed in ‘‘Somatic variant calling fromWES data’’ section. Maximum Likelihood

Estimation (MLE) method was set to linear regression.

In silico cancer driver gene analysis

Cancer driver discovery analyses were performed on WES data using two independent approaches: (i) dN/dS method (dNdScv R

package), which infers cancer driver genes (genes under positive selection) based on the ratio between non-synonymous and syn-

onymousmutations.43 A reference file for the human genome version GRCh38.p12 v95was generated using the buildref function and

subsequently employed to run driver discovery analysis by means of the dNdScv function, an implementation of the dN/dS method

that combines local (synonymous mutations in each analyzed gene) and global (variation of the mutation rate across all analyzed

genes) information to estimate background mutation and improves traditional dN/dS implementations. (ii) OncoDriveCLUSTL

method,38 which detects significant mutation clustering signals by comparing observed mutations to a simulated local background

model of the distribution of mutations in the cohort under study. Driver detection was performed on all CDS regions (GRCh38.p12

v95) by executing oncodriverclustl with the following parameters: –smooth-window 11 –cluster-window 11 –kmer 3 –n-simulations

1000 –simulation-window 31 –simulation-mode mutation_centered –concatenate.

In silico saturation mutagenesis (BoostDM)

Predictions of TP53 driver and passengermutations were performed by using BoostDM34 and downloaded from the Integrative Onco

Genomics (IntOGen) web service (https://www.intogen.org/) release 2020-02-01 (TCGA data). Lollipop plots included in Figure S1A

were adapted from those downloaded from the IntOGen webpage.

Intratumoral heterogeneity (ITH)

ITH was estimated using the R package SciClone,79 which implements a Bayesian inference model to assign SNVs to clonality clus-

ters based on variant allele frequencies (VAF). Clonal architecture was inferred from copy number neutral (diploid) genomic regions

and only somatic variants (as identified in section ‘‘Somatic variant calling from WES data’’) supported by at least 50 reads (‘‘Immu-

nogenomics cohort’’, 9/9 breast-BrMs; 18/21 lung-BrMs) or 100 reads (‘‘Validation cohort’’, 9/13 breast-BrMs; 5/5 lung-BrMs) were

considered for the analyses. These thresholds were defined so that ITH could be reliably estimated in at least 50% of the samples

from each primary tumor in each of the two cohorts. For each BrM tumor, variants belonging to the cluster with the highest VAF were

annotated as ‘‘clonal’’, whereas those belonging to clusters with a lower VAF were annotated as ‘‘subclonal’’. ITH was estimated by

computing the ratio of ‘‘subclonal’’ versus ‘‘clonal’’ variants, with higher ratios indicating a higher proportion of ‘‘subclonal’’ variants

within the tumor cell population and therefore a higher ITH.

Mutual exclusivity and co-occurrence

Mutual exclusivity and co-occurrence analyses were performed with the MAFtools77 built-in function somaticInteractions.

Molecular modeling predictions

Structural analysis of TP53 mutations were performed using crystallographic structures retrieved from the PDB (https://www.rcsb.

org/), with PDB codes 1gzh, 1kzy, 1tsr, 1 tup, 3kmd. Sequences of human TP53 and orthologs were retrieved from the UniProt data-

base (https://www.uniprot.org/) and the alignment of the sequences was performed usingMUSCLE. Structures shown in Figure S1C

were performed using USCF Chimera.

Neoantigen prediction

Class I HLA typing was performed by using polysolver85 on WES data from PBMC samples (command line: polysolver shell_call_h-

la_type (sorted bamfile) Unknown 1 hg38 ILM1.8 0 (output file)) and all haplotypes were summarized in a pVACtools75 compatible text

file via custom scripting. For each tumor sample, a VCF file containing confident somatic calls was generated as indicated in
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‘‘Somatic variant calling from WES data’’ section (steps 3–6) and annotated using the Variant Effect Predictor (VEP) with the Frame-

shift and Wildtype plugins (https://github.com/griffithlab/pVACtools/tree/master/tools/pvacseq/VEP_plugins) from the pVACtools

teamwith the following parameters: –cache_version 95 –dir_cache (vep cache folder) –species homo_sapiens –format vcf –vcf –sym-

bol –terms SO –tsl –hgvs –fasta (GRCh38.95 fasta file) –plugin Frameshift –plugin Wildtype –output_file (VCF file). These annotated

VCF files were further annotated with transcript expression information using VAtools (vcf-expression-annotator function) and used

for neoantigen predictions. Neoantigens were predicted using a Docker containerized version of pVACtools (DockerHub: griffithlab/

pvactools:2.0.0). Briefly, we used the pvaseq run function to performMHC-peptide binding affinity predictions with threeMHC class I

prediction algorithms (MHCflurry, MHCnuggetsI and NetMHC) for 8, 9 and 10-mer peptides. The following filters were applied to all

identified neo-epitopes: (i) binding filter, to remove neoantigen candidates that do not meet desired peptide:MHC binding criteria.

Threshold: median MT IC50 score + median fold change (mut vs. WT); (ii) coverage filter, to remove variants that do not meet desired

read count and VAF criteria (in normal DNA and tumor DNA/RNA). Threshold: median MT IC50 score + median fold change (mut vs.

WT); (iii) Transcript support level filter, to remove variant annotations based on low quality transcript annotations. Threshold: TSL = 1

(Highest level; ENSEMBL definition: ‘‘all splice junctions of the transcript are supported by at least one non-suspect mRNA’’); (iv) top

score filter. Threshold: median MT IC50 binding score of all chosen prediction methods. See also Table S7.

Kataegis

Detection of hypermutated (kataegic) genomic regions was performed using the MAFtools77 built-in function rainfallPlot. Genomic

regions containing six or more mutations with an average inter-mutation distance %1000 base pairs were considered as kataegic.

Differential RNA-seq gene expression analysis

Reads were quality-checked by FastQC. Transcript quantification was performed using kallisto74 and the hg38 (GRCh38.95) refer-

ence coding transcriptome (kallisto compatible indexes and quantifications were generated with the kallisto index and kallisto quant

functions, respectively). Transcript-level quantifications were collapsed into gene quantifications using the R package tximport and

an RNA transcript to gene mapping table containing mappings for all protein-coding genes. A raw count matrix was subsequently

produced and differential gene expression was assessed with DESeq2.80 Only genes with an absolute fold-change R2 and an

adjusted p-value %0.05 when contrasting to the corresponding reference samples were defined as differentially expressed.

Hierarchical clustering of flow cytometry data

Unsupervised hierarchical clustering of flow cytometry data was performed using average (UPGMA) clustering method with

Euclidean distances as the distance metric. Heatmaps were produced using pheatmap R package (refers to Figure 5A).

Gene set-centered analyses

Gene Set Enrichment Analysis (GSEA) was performed with the clusterProfiler4 R package86 using the maximum likelihood log fold

changes computed byDESeq2 as the rankingmetric. Gene Set Variation Analysis (GSVA) was performed using theGSVAR package.

The Molecular Signatures Database (MSigDB, version 7.2; C2 biocarta and reactome v7.4 gene sets for GSVA) and Gene Ontology

Biological Process (source date 2021-02-01, retrieved by gprofiler via GO.db library), were used as the main sources for gene-set

based analyses. Over-representation analyses (ORA) were performed on significantly up- and down-regulated genes by using the

gprofiler2 R package.

Data visualization

Summary plots included in Figures 1B, 1C, 2A–2C, S2, S3, S6A, S6B, S6E, and S6F were generated using MAFtools77 and Gen-

VisR.87 Plots included in Figures 3A and 3D were generated using ggplot2 and UpSetR, respectively. Plots included in Figure 3E

were generated using Circos.88 Volcano plots in Figure 4A were generated using ggplot2. GSEA plots were generated using gseaplot

function from clusterProfiler R package. Mutational signature plots in Figure S4 were generated using Mutalisk. Clonality plots in

Figures S5A and S5Bwere generated using SciClone. Bar plots and violin plots were generated with GraphPad Prism. See ‘‘Software

versions’’ table below for details.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using the stats R package and GraphPad Prism software. Summary data are presented as

mean ± standard error of the mean (SEM) (bar plots and dot plots), unless otherwise indicated in the figure legends. Student’s t

test and ANOVA plus Dunnet’s multiple comparisons tests were applied to continuous normal data; and the equivalent non-para-

metric Mann-Whitney and Kruskal-Wallis tests to data distributions failing normality tests. p-values were corrected for multiple hy-

pothesis testing using the Benjamini-Hochberg procedure where appropriate. Differences were considered statistically significant at

p % 0.05 or adjusted p % 0.05.
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