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ABSTRACT

With the proliferating studies of human cancers by
single-cell RNA sequencing technique (scRNA-seq),
cellular heterogeneity, immune landscape and patho-
genesis within diverse cancers have been uncovered
successively. The exponential explosion of massive
cancer scRNA-seq datasets in the past decade are
calling for a burning demand to be integrated and
processed for essential investigations in tumor mi-
croenvironment of various cancer types. To fill this
gap, we developed a database of Cancer Single-cell
Expression Map (CancerSCEM, https://ngdc.cncb.
ac.cn/cancerscem), particularly focusing on a vari-
ety of human cancers. To date, CancerSCE version
1.0 consists of 208 cancer samples across 28 studies
and 20 human cancer types. A series of uniformly and
multiscale analyses for each sample were performed,
including accurate cell type annotation, functional
gene expressions, cell interaction network, survival
analysis and etc. Plus, we visualized CancerSCEM
as a user-friendly web interface for users to browse,
search, online analyze and download all the metadata
as well as analytical results. More importantly and
unprecedentedly, the newly-constructed comprehen-
sive online analyzing platform in CancerSCEM inte-
grates seven analyze functions, where investigators
can interactively perform cancer scRNA-seq analy-
ses. In all, CancerSCEM paves an informative and
practical way to facilitate human cancer studies, and
also provides insights into clinical therapy assess-
ments.

INTRODUCTION

Since Tang et al. first reported the completely unbiased ap-
proach of whole-transcriptome mRNA sequencing at single
cell resolution in 2009 (1), this field has developed rapidly
over the past decade. Thanks to the studies of cellular tran-
scriptome heterogeneity, scRNA-seq is being widely ap-
plied to answer many essential questions in developmen-
tal biology, neurosciences, oncology, and immunology (2,3).
Particularly in oncology, scRNA-seq becomes indispens-
able means for studies in tumor microenvironment (4), het-
erogeneity (5), pathogenesis (6), metastasis and invasion
(7) and treatment and diagnosis of diverse tumors (8). For
instance, Zhang et al. depicted sequentially the dynamic
immune landscape of T cells in liver cancer, non-small-
cell lung cancer and hepatocellular carcinoma and also re-
vealed novel biomarkers associated with the mal-prognosis
(9–11). Maynard et al. studied metastatic lung cancer across
30 patients before and during targeted therapy, and found
cancer cells that survived from treatments expressed an
alveolar-regenerative cell signature, suggesting of therapy-
induced primitive cell-state transition (12). Zhang et al. per-
formed scRNA-seq analyses on immune and stromal pop-
ulations from colorectal cancer patients, identifying spe-
cific macrophage and conventional dendritic cell subsets
as key mediators of cellular cross-talk in the specific tu-
mor microenvironment (TME) (13). These researches have
greatly improved our understanding of human cancer pro-
gression and also undoubtedly facilitated clinical diagnoses
and treatments.

However, to date there are only several single cell
databases available to the public, despite of daily erup-
tive scRNA-seq datasets. Comprehensive databases, such as
Single Cell Portal, PanglaoDB (14), Single Cell Expression
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Atlas (15), Human Cell Atlas Data Portal (16) and scR-
NASeqDB (17), catalogue a large number of single-cell ex-
pression datasets for both healthy and diseased tissues, ma-
jority of which are from human and mouse samples. These
databases, in general, merely contain elementary analyses
of cell clustering and differential gene expression profiling.
Other disease- or cancer-specific databases like CancerSEA
(18) and TISCH (19) may provide some extra valuable an-
notations and are widely used in tumor single-cell stud-
ies. Although CancerSEA is the first database released in
2018 to decode distinct functional of cancer cells at single-
cell resolution, back then, it combined 49 cancer-related
scRNA-seq datasets and 128 518 single cells. Meanwhile, it
solely focused on 14 functional states of 41 900 cancer cells
instead of considering immune or stromal cells in TME.
As for TISCH, it integrated single-cell transcriptomic pro-
files of nearly 2 million cells from 76 tumor datasets across
27 cancer types, and provided detailed cell type identifica-
tions, gene expression comparison between datasets and cell
types, and gene set enrichment analysis as well. Nonethe-
less, all the downloaded datasets in TISCH were in fixed
expression matrices and had no uniform methods for reads
quality control and gene expression quantification. These
issues might possibly lead to analysis bias or reduce com-
parability across diverse databases. In sum, these integra-
tion of cross-platform single-cell datasets, accurate cell type
identifications and comprehensive online analyzing plat-
forms are still somehow insufficient, and leaving a huge
challenge to human cancer studies.

Here, we present CancerSCEM (Cancer Single-cell Ex-
pression Map), a public database of collecting, analyzing,
visualizing scRNA-seq data for human cancer samples.
Database version 1.0 collected public scRNA-seq datasets
involving 638 341 high-quality single cells from 208 samples
across 20 types of human cancers. Multiscale data analy-
ses for TME profiling and functional gene annotation were
performed with in-house pipeline, and a comprehensive on-
line analyzing platform was equipped in CancerSCEM. In
short, we expect CancerSCEM will significantly reinforce
scRNA-seq databases for human cancers studies.

DATA COLLECTION AND PROCESSING

Cancer single cell RNA-seq data collection and expression
quantification

CancerSCEM was established from hundreds of
cancer related scRNA-seq datasets from GEO
(https://www.ncbi.nlm.nih.gov/geo/) (20), ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) (21), Single Cell Ex-
pression Atlas – EBI (https://www.ebi.ac.uk/gxa/sc/home)
(15), GSA (https://ngdc.cncb.ac.cn/gsa/) (22) and ZEN-
ODO (https://zenodo.org/record/3937811). Briefly, a total
of 208 samples across 20 human cancer types and 5 con-
struction protocols (10X Genomics, Smart-seq2, Drop-seq,
Seq-Well and Microwell) were collected and processed.
Raw sequencing datasets and expression matrices consist
of 82.69% and 17.31%, respectively (Supplementary Table
S1). For data from 10X Genomics platform, we consistently
used Cell Ranger v5.0 (https://support.10xgenomics.com/
single-cell-gene-expression/software/overview/welcome)

(23) with its built-in reference data refdata-gex-GRCh38-
2020-A.tar.gz to construct UMI (unique molecular iden-
tifier) count matrix for each individual sample. For each
non-10X Genomics dataset, a standard strict reads quality
control was initially performed by Fastp v0.20.0 (https:
//github.com/OpenGene/fastp) (24) and Trimmomatic
v0.36 (http://www.usadellab.org/cms/?page=trimmomatic)
(25). zUMIs v2.9.4f (https://github.com/sdparekh/zUMIs)
was then adopted for high-quality reads alignment and
gene expression quantification (26).

Cell quality control, unsupervised clustering and ‘three-step’
cell-type annotation

After expression matrix construction, DoubletFinder
v2.2.0 (https://github.com/comodr/doubletfinder) was
applied to doublets removal (7% per 10 000 cells)
for all datasets (27), and R package Seurat v3.2.3
(https://satijalab.org/seurat/) was utilized to perform
a series of analyses: cell quality control (200 ≤ nfea-
tures ≤ 5000 and MT < 10%), PCA (Principal Component
Analysis) dimension reduction, tSNE (t-distributed
Stochastic Neighbor Embedding) and UMAP (Uniform
Manifold Approximation and Projection) clustering
with personalized principal component numbers and
clustering resolutions and etc. (28). Crucially, based
on the collection and curation of biomarker genes for
different cell types from Cell Marker database (29),
cell-type annotation in CancerSCEM was achieved by
a combined ‘three-step’ strategy: (i) scCancer v2.2.0
(https://github.com/HealthVivo/scCancer) (30) and Copy-
KAT v1.0.4 (https://github.com/navinlabcode/copykat)
(31) were used for the copy number variation assessment
for 10X Genomics and other sequencing datasets, respec-
tively. A group of marker genes, such as EPCAM, KRT8,
KRT18, KRT19 and EGFR in glioblastoma cells that
represent cancer cells or cancer stem cells, were investi-
gated in parallel. Cells with significantly abnormal CNV
levels and high expression levels of above marker genes
were defined as malignant cells, (ii) Manual annotations
were subsequently performed based on the expression of
dozens of canonical markers for common cell types like T
cells (e.g. CD3D, CD3E), B cells (e.g. MS4A1, BANK1),
Macrophages/Monocytes (e.g. CD68, CD14), Mast cells
(e.g. SLC18A2, ASIC4), Endothelial cells (e.g. VWF,
PECAM1), Fibroblasts (e.g. FAP, NECTIN1), Oligoden-
drocytes (e.g. OLIG1, PLP1) and Astrocytes (e.g. SLC1A3,
GFAP) and etc. A complete list of marker genes used in
our database is accessible on the Documents webpage.
Only when a considerable number of marker genes have
significantly specific expression in the target cell cluster
(P-value < 0.01), their corresponding cell types can be
determined, (iii) SingleR has been among the top tools in
cell type annotation analysis in recent years (32,33), here we
chose SingleR v1.4.1 (https://github.com/dviraran/SingleR)
for immune cell subtype recognition (34). We further clas-
sified T cells and B cells into subtypes in CancerSCEM.
In samples of Mixed phenotype Acute Leukemia and Acute
Myeloid Leukemia, multiple cell types except malignant
cells were identified due to the complications of cell type
annotation in liquid tumor. Finally, a total of 33 cell
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types including immune cell subtypes were identified, and
the FindMarkers function in Seurat was used to perform
differential gene expression analysis for each specific cell
type (28).

In-depth TME profiling at single-cell resolution and TCGA
bulk RNA-seq data integration

In addition to the conventional single cell analyses men-
tioned above, a series of special analyses were performed
as well. First, thousands of functional receptor-ligand
gene-pairs were curated from multiple data resources in-
cluding CelltalkDB (35), SingleCellSingalR (36), Cellinker
(37), Cell–Cell Interaction Database (38), and another
review article (39). Oncogenes and tumor suppressor genes
(TSGs) were collected from Cancer Gene Census (CGC)
(40), OncoKB (41), Network of Cancer Genes (NCG)
(42), TSGene (43), IntOGene (44) and another cancer gene
clinical care study (45). We further screened out those genes
supported by at least three data resources and exhibited
their original expression patterns in our database. Second,
we collected bulk RNA-seq data across 13 cancer projects
from TCGA (46) and profiled the expression patterns for
these target gene in different cancer types at tissue level.
These profiles serve as references to the single-cell-level
expression studies. Third, GO and KEGG enrichment
analyses on differentially expressed genes were performed
for each specific cell type using R package clusterProfiler
v3.14.3 (http://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html) (47–49). Gene expression corre-
lation was calculated by R package Hmisc v4.4.2 (https:
//cran.r-project.org/web/packages/Hmisc/index.html).
Cell component comparison was assessed by both chi-
square test and Wilcoxon signed rank test. Cell–cell
interaction networks were constructed by CellphoneDB
(https://www.cellphonedb.org/) (50). Survival analysis
was performed by R package survival v3.2.7 (https:
//cran.r-project.org/web/packages/survival/index.html)
and survminer v0.4.9 (https://github.com/kassambara/
survminer). Static figures in the database were created by
ggplot2 v3.3.3 (https://github.com/tidyverse/ggplot2) (51),
and an overview of the data processing workflow is shown
in Figure 1.

DATABASE IMPLEMENTATION

CancerSCEM was constructed by standard database de-
velopment techniques. Thymeleaf (a Java template engine),
HTML5, CSS, AJAX, JQuery and Bootstrap were used
for rendering and interactive operations of front-end pages.
Spring Boot was used as the basic architecture of the back-
end system. MySQL was served as a container for data stor-
age and Mybatis as an accesser to the container. Echarts,
Highcharts, svg3dtagcloud.js and plotly.js were adopted for
building interactive graphs. Bootstrap Table was used to
construct data tables, and finally, bioinformatics analyses
were implemented by in-house R scripts. To better com-
ply with CancerSCEM infrastructure, we advise following
browsers: Google Chrome (v56.0 and up), Opera (v53.0 and
up), Safari (v11.1 and up) or Firefox (v64.0 and up).

DATABASE CONTENTS AND FEATURES

Cancer scRNA-seq dataset summary and additional statistics

CancerSCEM was originally designed to extensively col-
lect all public single-cell RNA-seq datasets of diverse hu-
man cancer types, and investigate the immune profiles and
gene expression dynamics in the specific TME. Database
version 1.0 was released online on 12 June 2021, includ-
ing full-scale metadata and multi-level analytical results
of a total of 208 scRNA-seq datasets (samples) across 28
projects and 20 human cancer types. After reads and cell
quality control, 638 341 high-quality cells were reserved.
The datasets collected from GEO (NCBI), GSA (NGDC),
ArrayExpress (EBI), Single Cell Expression Atlas – EBI
and ZENODO accounted for 139 (66.83%), 24 (11.54%),
23 (11.06%), 16 (7.69%) and 6 (2.88%), respectively. Can-
cer types involved in the database and the number of sam-
ples within each cancer type were listed in Supplementary
Table S1. Among these samples, 125 (60.1%), 39 (18.75%),
36 (17.31%), 4 (1.92%) and 4(1.92%) datasets were pro-
duced by 10X Genomics, Microwell, Seq-Well, Smart-seq2
and Drop-seq techniques, respectively. Cell counts in each
sample ranged from 105 in LUSC to 28 764 in GBM with
the median of 2 270, were partially associated with the se-
quencing techniques. The average UMI counts and detected
gene counts of each sample across 208 samples ranged cor-
respondingly from 558 to 927 701 and from 358 to 3 971.
Statistically, there are 33 cell types were finalized in Can-
cerSCEM. A total number of 36 601 genes including 36
widely-used immune checkpoint molecules, 3 853 receptor-
ligand pairs, 488 oncogenes and 523 TSGs were associ-
ated with gene expression analyses, and 13 TCGA can-
cer projects covering 5 554 donors (TCGA-BLCA, TCGA-
LUAD, TCGA-COAD and etc.) were adopted in Cancer-
SCEM for tissue-level gene expression profiling and online
survival analysis.

A browse interface for retrieving cancer scRNA-seq datasets

Multiscale data analyses for 208 cancer samples were
processed at single-cell resolution, and users can browse,
search, online analyze and download all the metadata and
analytical results of interest. An overview and interactive
table on the Project Browse page present all collected can-
cer scRNA-seq projects, with information ranging from the
unique newly-assigned project ID, cancer type, sample ID,
sample details, cell count to the data construction proto-
col (Figure 2A). The Sample Details and Analysis columns
in the table additionally provide hyperlinks to the detailed
information of the tumor sample (Figure 2B, e.g. acces-
sion number, donor age, tumor grade and clinical treat-
ments) and the comprehensive analytical results for each
dataset, respectively. In detail, there are three main mod-
ules on the Analysis page, consisting of Data Statistics
and tSNE/UMAP Visualization, Tumor Microenvironment
and Functional Genes’ Expression (Figure 2C). The cell-
type annotation, cell component (including malignant cells,
immune cells and stromal cells) and their corresponding
functional enrichment analyses on differentially expressed
genes show the landscape of particular TME. The changes
in the composition of different immune cells and stromal
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Figure 1. An overview of data processing (above) and four functional modules (below) equipped in CancerSCEM. Cancer scRNA-seq data were mainly
collected from five data resources. Beside conventional analysis, several advanced analyses such as cell interaction network construction and survival
analysis were also performed. To support visualization and exploration, a user-friendly web interface for CancerSCEM was developed where users can
browse, search, online analyze and download all the metadata and analytical results of interest.

cells can confine or promote tumor growth and progres-
sion depending on the context according to previous studies
(52,53). The list of significantly positively expressed genes
in different cell types exhibites the information of essential
biomarkers for single-cell studies. Moreover, the expression
patterns of these collected high-confidence functional genes
(60 receptors, 42 ligands, 205 oncogenes and 228 TSGs) will
undoubtedly improve our understanding of their potential
impacts on diverse tumors.

User-friendly searching modules for data inquiry

To better access datasets or genes of interest, CancerSCEM
provides several inquiry methods: (i) A quick search box
and a keyword cloud (Figure 3A) are presented on the home
page, and both equipped for real-time querying by specify-
ing cancer type, gene or data protocol; (ii) Four advanced
search modules on the search page (Figure 3B): in term of
projects, users can specify a project/sample ID or an ac-
cession number, or select a particular cancer type or con-
struction protocol, an overview of the target projects or
datasets as well as comprehensive analytical results will be
obtained (Figure 2); in terms of genes, by searching a gene
symbol or gene ID users can quickly view gene summary
and expression distributions at both single-cell and bulk
RNA-seq levels (Figure 3C). Currently, the immune check-
point molecules such as CTLA4 and PDCD1 were widely-
used as targets for immunotherapies in clinical practice
(54,55). However, it is still unclear which treatment to differ-

ent cancer patients will respond more effectively, and thus,
this question drives further investigations into optimal co-
inhibitory receptors for each cancer type (56,57). To solve
this issue, 36 widely-used immune checkpoint molecules
such as PDCD1, TIGIT and LAG3 were listed in both key-
word cloud and the Search by Gene module, researchers and
clinicians thereby have a direct access to their expression
profiles across different cancer types, and quickly narrow
down the best targets for further researches or immunother-
apies.

Comprehensive multiple-dimensional online data exploration

Gene analyzing module. It contains four functions: (i) Gene
Expression (GE) in Sample––whole expression profiling of
the target gene in specified cancer single-cell sample in tSNE
or UMAP manner; (ii) GE in Subtypes––gene expressions
in different cell types or subtypes in the sample; (iii) GE
Correlation––pearson correlation calculation between any
two genes in the specific sample ranked by P-values and (iv)
GE Comparison––gene expression comparison across dif-
ferent scRNA-seq or TCGA bulk RNA-seq datasets (Fig-
ure 4A). With the addition of these functions, users can
find out cell types that contribute the highest expressions
of a given gene, and further uncover their underlying bio-
logical roles during tumor genesis and development. Users
can also compare the expression of a given gene (especially
for 36 immune checkpoint molecules) across all different
cancer types at both single-cell or tissue levels, and it is
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Figure 2. Demonstration of browse interfaces in CancerSCEM. (A) An overview table of all collected cancer scRNA-seq projects and samples. (B) An
extended page presenting the full-scale metadata of each cancer sample. (C) A general analysis page including comprehensive analytical results related to
the cancer TME and functional gene expression dynamics.

much easier to identify novel predictive biomarkers (e.g.
HMGB1 significantly highly expressed in mixed-phenotype
acute leukemia).

Cell component comparison in sample analyzing mod-
ule. Cell component and proportion, consisting of
malignant/immune/stromal cells, can be compared be-
tween any two single-cell samples using chi-square test and
Wilcoxon signed rank test (Figure 4B, left panel). Users
can evaluate the global immunity of different samples or
different cancer types according to the immune cell pro-
portion. Diverse composition of immune and stromal cells

may impact tumor growth and progression on different
ways (52). For example, the more CD8 + effector T cells,
the higher cytotoxic activities the tissue harvests, thus
might damage some specific foreign antigens or malignant
tumor cells (58). By clicking on View All Samples button,
the cell component for 208 samples will pop up (Figure 4B,
right panel).

Cell interaction network construction across different cell
types. Increasing cell interaction evidence suggests that
cell–cell interaction plays critical roles in driving cancer pro-
gression (13,59). Therefore, a function of cell-cell interac-
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Figure 3. Illustration of data querying in CancerSCEM. (A) Keyword cloud is shown on the home page including a majority of cancer types, data sequenc-
ing techniques, and several biological or clinical gene symbols. (B) Four advanced searching modules queried by project, gene, cancer type or protocol. (C)
Returned results including gene summary, gene expression profiles across both single cell and bulk RNA-seq datasets.

Figure 4. Screen captures of seven online analyzing functions equipped in CancerSCEM. (A) Four analyze functions equipped in Gene Analyze module.
(B) Cell component comparison and overall cell component across 208 samples. (C) Cell–cell interaction networks with quantifying expression intensities
of receptor-ligand pairs. (D) Survival analysis based on TCGA bulk RNA-seq data and clinical survival data.
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tion network construction was integrated in Sample Ana-
lyze module. By using the expressions of receptor–ligand
pairs, the biological relevance across different cell types can
be quantified within the dynamic tumor ecosystem. Users
need to specify a sample and a cell type, by which, an inter-
action network circos image (http://circos.ca/) will be gen-
erated with a positive integral on each connection. These
connections represent the communication intensity between
two cell types (Figure 4C, left panel). For example, the ma-
jority of the samples are harboring endothelial cells which,
in general, actively and widely interact with other cell types
(e.g. macrophages, dendritic cells and fibroblasts). A maxi-
mum of 50 pairs can be displayed with interacting intensities
and calculated P-values (Figure 4C, right panel).

Survival analysis in sample analyzing module. Based on
the bulk RNA-seq data and clinical survival data collected
from TCGA, the module of online survival analysis allows
users, especially clinicians, rapidly grasp the correlation be-
tween the expression levels of a given gene and clinical prog-
nosis of the specified cancer type. This may also aid in
fishing out useful candidate genes for constructing prog-
nosis prediction panel in clinical practice, and ultimately
serve in the targeting therapy in future. Here, we provide
a case study to demonstrate the excellent performance of
this module. By applying survival analysis, we profiled a
high expression of CTLA4. This gene is significantly associ-
ated with worse prognosis of lung adenocarcinoma with P-
value < 0.0001 (Figure 4D). CTLA4 ia also well-known as
a immune checkpoint molecule and a cytotoxic T lympho-
cyte associated protein coding gene. The protein of CTLA4
is known as CD152 which is one of the leukocyte differenti-
ation antigens. CTLA4 binding and molecule B7 liganding
can effectively induce the T cell non-responsiveness, result-
ing in the negative regulation of immune response (60). We
further double checked the expression profiles of CTLA4 in
Gene Analyze module and, not surprisingly, CTLA4 signifi-
cantly highly expressed in some T cell subtypes especially in
regulatory T cells (Tregs) of LUAD samples (Figure 4A), ev-
idently identical with previous studies (61). Taken together,
this online anlysis using both single-cell and bulk RNA se-
quencing data proves our platform is a powerful tool for
cancer scRNA-Seq data exploration in a neoteric interac-
tive mode.

Data retrieving and maintenance

Users can perform customized analyses of their choice by
retrieving a varity of information: original metadata with
raw sequencing dataset sources, normalized gene expression
matrices, cell component for each single-cell datasets and
differential expressed gene list for each specific cell type.
The complete lists of biological and clinical functional
molecules (receptors, ligands, oncogenes and TSGs) and
cell interaction analytical results are available as well.

DISCUSSION AND FUTURE DIRECTIONS

The rapid growth of cancer single cell sequencing datasets
rises various challenges for scRNA-seq data studies. Data
integration into a comprehensive platform across different

experimentations, different samples, even different species
is one of these challenges. Besides, inter-experimental com-
parisons and visual presentations are problematic as well.
Several large-scale studies upon human cancers have de-
picted the dynamic immune landscapes and revealed novel
biomarkers associated with the poor prognosis in clinical
trials (9–11). Some studies obtained the inner primitive cell-
state transition mechanisms (12) and identified key medi-
ators of cellular cross-talk in the specific TME (13). To
better and easier compare diverse human cancer types, a
public open access and cancer-specific single-cell expression
database for diverse types of human cancers, CancerSCEM,
was developed. In comparison with existing single cell ex-
pression databases, CancerSCEM mainly features: (i) the
relatively consistant data processing and the tailored ‘three-
step’ strategy for cell type annotation, combining multiple-
level information from numerous tools and manual annota-
tions, significantly improve the accuracy of cell type identifi-
cation; (ii) it has the competency of hosting more abundant
analyses such as gene expression of functional molecules,
cell component and diversity analysis, cell–cell interactions
and survival analysis; (iii) it integrates of an unprecedented
online analyzing functions (two modules and seven func-
tions) and facilitates cancer single-cell data explorations in
multiple levels and (iv) it offers the availability of expression
profiles for all curated immune checkpoint molecules.

By comprehensively profiling the expression of immune
checkpoint molecules across 208 single-cell samples, we ob-
served that HMGB1, LGALS3 and CD48 have expressed in
almost all cancer types with significantly higher expressions
in average. This suggests they have the universal roles in
clinical cancer immunotherapies. While in contrast, the ex-
pression of several widely-used checkpoints (such as LAG3,
PDCD1 and TIGIT) exhibited dynamic variation char-
acteristics across different samples or cancer types. This
might demonstrate the inconsistent responses of patients
in immunotherapy by using these molecules (Supplemen-
tary Figure S1). Taken all, CancerSCEM presents a func-
tionally complete, human cancer-centered, multi-level ana-
lyzed and broadly applicable scRNA-seq resource. We be-
lieve that CancerSCEM will facilitate our understanding of
cancer TMEs and tumorigenesis mechanisms at single-cell
resolution, and also will provide valuable information for
cancer preventions and clinical researches.

To date, CancerSCEM has already catalogued 208
scRNA-seq datasets across 20 human cancer types. With
numerous new cancer single cell projects being carried out,
more scRNA-seq datasets are being conducted in Can-
cerSCEM. This will cover more cancer types, such as
esophageal carcinoma and uveal melanoma (62,63). More-
over, other sequencing data types like spatial transcriptome
data, chromatin accessibility data, DNA methylation data,
histone modifications data and chromosome conformation
data at single-cell resolution are also expected to be inte-
grated for better understanding the TME profiles and regu-
latory mechanisms of diverse cancers (64). In addition, we
will be constructing an effective method for cell type an-
notation of liquid tumors. In the long run, a batch of novel
practical tools will be integrated in our database to facilitate
network modeling, malignant cell categorizing, clinical im-
munotherapy response prediction and cross-experimental

http://circos.ca/
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or cross-sample dataset integration (65,66), which will un-
doubtedly improve graphical user interface experience. In a
word, as one of most important database resources in Na-
tional Genomics Data Center, CancerSCEM will be con-
tinuously interpretating more datasets, developing more
handy analytical modules and ultimately, supporting global
human cancer researches, clinical applications and beyond.

DATA AVAILABILITY
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