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Abstract

Adaptive radiations are characterized by the diversification and ecological differentiation of species, and replicated cases of this

process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation,

genes related to ecological specialization may be subject to recurrent positive directional selection. However, it is not clear to what

extentpatternsof lineage-specificecological specialization (includingphenotypicconvergence)arecorrelatedwith sharedsignatures

of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent

species, a group characterized by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We

found that genes associated with immunity, reproduction, diet, digestion, and taste have been subject to pervasive positive selection

during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and

dietary specialization, with a higher proportion of positively selected codon sites in derived dietary forms (i.e., carnivores and

herbivores) than in ancestral forms (i.e., omnivores). Despite striking convergent evolution of skull morphology and dentition in

two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection

than in a nonconvergent species comparison. Although a small number of the genes we detected can be incidentally linked to

craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent

phenotype.Our results suggesta linkbetweenpositive selectionandderivedecological phenotypes, andhighlight specificgenesand

general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents.
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Introduction

Adaptive radiations provide natural experiments which allow

us to characterize the diversification and convergent evolution

of species in response to ecological forces (Schluter 2000;

Yoder et al. 2010; Stroud and Losos 2016). Repeated pheno-

typic shifts and convergent evolution in response to similar

environmental pressures provide indirect evidence for adap-

tive evolution (Losos and Ricklefs 2009; Salzburger 2009;

Elmer et al. 2010; Elmer and Meyer 2011; Losos 2011).

Although the evolutionary patterns that underlie adaptive ra-

diation and diversification have been studied for many deca-

des at a phenotypic level, advances in DNA sequencing
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methodologies now allow a genomic view of adaptive radia-

tion (Loh et al. 2008; Schluter and Conte 2009; Jones et al.

2012; Losos et al. 2013; Supple et al. 2013; Berner and

Salzburger 2015; Lamichhaney et al. 2015; Tollis et al.

2018; Daane et al. 2019; Li et al. 2019; Marcionetti et al.

2019; Martin et al. 2019). Despite this, many genomic studies

have primarily focused on small numbers of exemplar taxa.

Genome-wide data from across the taxonomic and pheno-

typic diversity of species-rich adaptive radiations are generally

lacking (but see Lamichhaney et al. 2015; Malinsky et al.

2018), as are broad-scale links between molecular evolution

and periods of rapid ecological diversification. Consequently,

it remains unclear if the pronounced ecological and pheno-

typic shifts that are hallmarks of adaptive radiations are also

associated with corresponding shifts in the pace and pattern

of molecular evolution across the genome.

The opening of novel ecological niche space can facilitate

adaptive radiation, and this has classically been characterized

with examples of island colonization (Schluter 2000).

Following colonization and subsequent adaptive radiation,

nascent species face novel assemblages of biotic and abiotic

factors. Particular functional categories of genes or pathways

are expected to be under pervasive positive selection (i.e.,

positive selection in multiple lineages), as they enable adapta-

tion to disparate, novel, and changing environments. In stud-

ies within and between species, recurrent positive selection is

consistently recovered on genes associated with immune

function (Castillo-Davis et al. 2004; Nielsen et al. 2005;

Shultz and Sackton 2019) and reproduction (Swanson and

Vacquier 2002; Swanson et al. 2003; Castillo-Davis et al.

2004; Nuzhdin et al. 2004; Zhang et al. 2004; Nielsen et al.

2005; Turner and Hoekstra 2006), respectively thought to be

driven by host–pathogen evolutionary arms races and sexual

selection. Additionally, signatures of positive selection across

other functional categories of genes may reveal ecological

drivers of adaptive diversification (e.g., Kosiol et al. 2008).

Clades that have undergone adaptive radiation in geograph-

ically constrained areas (e.g., on islands) often exhibit exten-

sive phenotypic disparity among species due to ecological

character displacement (Losos 1990; Grant and Grant

2006). In these cases, positive selection presumably also acts

on genes underlying ecologically relevant traits such as diet,

body size, or microhabitat niche (e.g., Shultz and Sackton

2019). However, it is unclear to what extent bursts of rapid

speciation, phenotypic evolution, and ecological specialization

also trigger shifts in molecular evolution across the genome.

Murine rodents represent >10% of all living mammalian

species (> 700 species in subfamily Murinae; Burgin et al.

2018). Their diversity is the result of a recent (ca. 12 My)

radiation, and murine species have repeatedly colonized

most areas of the Eastern Hemisphere (Fabre et al. 2013;

Aghov�a et al. 2018; Rowe et al. 2019). Recurring colonization

and multiple, independent adaptive radiations have led to

extensive phenotypic diversity within Murinae, including a

large range in body size (3–2,700 g; Denys et al. 2017), diet

(omnivorous, herbivorous, and carnivorous; Rowe et al.

2016a), microhabitat niche (terrestrial, arboreal, semi-

aquatic; Nations et al. 2019; Nations et al. 2021), and repro-

ductive output (4–24 mammae; Denys et al. 2017). Given this

process of repeated adaptive radiation in murines, genes as-

sociated with their ecological diversity and specialization (e.g.,

diet, reproduction, or microhabitat) may have been subject to

pervasive positive selection.

Across the diversity of murine rodents, there are numerous

examples of highly specialized morphologies, including cases

of repeated convergent phenotypic evolution (Esselstyn et al.

2012; Rowe et al. 2014). One exceptional murine example of

convergence is the independent evolution of vermivorous

“shrew rats” on both the Indonesian island of Sulawesi

(Murinae: Rattini) and the Philippine island of Luzon

(Murinae: Hydromyini), with the most extreme examples

among these groups being Paucidentomys vermidax (a spe-

cies monotypic within its genus; Esselstyn et al. 2012) on

Sulawesi, and Rhynchomys spp. (Rickart et al. 2019; Heaney

et al. 2016) on Luzon. Both are nested within independent,

endemic clades of carnivorous rats on the two islands, respec-

tively (Jansa et al. 2003; Rowe et al. 2016a; Rickart et al.

2019). Most murine species are omnivores, and previous

work has reconstructed the ancestral dietary state for the

group as omnivorous (Rowe et al. 2016). Subsequent to their

independent shifts to carnivory, species in the genera

Paucidentomys and Rhynchomys have converged on a

Significance

It is currently unclear whether bursts of rapid ecological diversification, which are the hallmarks of adaptive radiation,

are associated with corresponding shifts in selective pressures across the genome. We address this question by gen-

erating and analyzing 38 whole exomes from across the radiation of murine rodents, a group of over 700 ecologically

diverse species. We find that genes associated with immunity, reproduction, and dietary processes have been subject

to pervasive positive selection. We also find a correlation between genome-wide positive selection and dietary spe-

cialization, with a higher proportion of positively selected sites in derived dietary forms (i.e., carnivores and herbivores)

when compared with ancestral forms (i.e., omnivores). Our results provide a link between rapid ecological diversifi-

cation and the pattern and pace of molecular evolution in protein coding genes.

Roycroft et al. GBE

2 Genome Biol. Evol. 13(7): doi:10.1093/gbe/evab103 Advance Access publication 14 May 2021



phenotype that is exceptional among Murinae, with highly

elongated rostra, slender mandibles, and greatly reduced or

absent molars (fig. 1; Esselstyn et al. 2012; Martinez et al.

2018; Rickart et al. 2019). These species share a common

ancestor approximately 10–12 Ma, near the base of all

Murinae (Rowe et al. 2016a; Aghov�a et al. 2018; Rowe et

al. 2019), and are isolated on oceanic islands, precluding any

role for gene flow. As such, this striking ecomorphological

convergence may be associated with convergent changes at

the genomic level. Independent fixation of shared ancestral

variation could also contribute to these observations, but this

seems most unlikely to bridge 12 My of independent evolu-

tion (Arendt and Reznick 2008). Although convergence at

particular coding sites within genes is unlikely to be directly

associated with complex convergent phenotypes (Foote et al.

2015), common sets of genes may show parallel signatures of

positive or relaxed selection in convergent species (Bergey et

al. 2018; Dixon and Kenkel 2019; Sahm et al. 2019). In

Paucidentomys and Rhynchomys, ecological selective pres-

sures which drove the evolution of their striking, shared phe-

notype may be linked to convergent shifts in selective

pressures on genes associated with their derived diet and cra-

niofacial or tooth development (Charles et al. 2013).

Murine rodents are also important model organisms, both

in laboratory studies and in the wild, with Mus musculus and

Rattus norvegicus among the most well-studied mammalian

species (Mouse Genome Sequencing Consortium 2002;

Gibbs et al. 2004; Gu�enet 2005; Phifer-Rixey and Nachman

2015). Despite their utility as model organisms, these gener-

alist species represent only a miniscule fraction of the ecomor-

phological diversity in the broader murine radiation.

Comparative genomic studies have not previously examined

broader Murinae, and as such there is no prior understanding

of the interactions between genes, traits, and ecology in this

group. Repeated, nested adaptive radiations within Murinae,

extensive diversity and recurrent ecomorphological specializa-

tion make murine rodents an ideal system for testing corre-

lates between trait evolution, convergence, and rapid

molecular evolution. A broad-scale, comparative approach is

warranted to begin to unlock what is largely an untapped

natural system for characterizing genomic responses to eco-

logical opportunity.

Here, we generate sequence data for >14,000 protein-

coding genes from 38 species spanning the phylogenetic

breadth of murine diversity, and spanning multiple adaptive

radiations within the subfamily, with focused sampling from

independent radiations in the Philippines and Sulawesi. Using

these data, we identify genes and gene categories with sig-

natures of pervasive positive selection across Murinae, test if

heterogeneity in positive selection across lineages is associated

with ecological traits (i.e., diet, microhabitat, reproductive

output, and body size), and screen for evidence of convergent

molecular evolution between Rhynchomys and

Paucidentomys, an extreme example of ecomorphological

convergence in murines.

Results

Phylogenetic Reconstruction

Using data from 1,360 phylogenetically informative exons, we

inferred a consistent, well-supported species tree topology in

both IQ-TREE 1.6.1 (Nguyen et al. 2015) and SVDquartets

(Chifman and Kubatko 2014, fig. 2) for 38 species (supple-

mentary table S1, Supplementary Material online). These

FIG. 1.—Exceptional convergence of craniofacial morphology and dentition in worm-eating specialists; (A) Paucidentomys vermidax (Muridae: Rattini)

and (B) Rhynchomys labo (Muridae: Hydromyini), compared with two generalist species belonging to the same respective clades; (C) Rattus fuscipes

(Muridae: Rattini), and (D) Pseudomys shortridgei (Muridae: Hydromyini). Photos by (A) D. Paul, Museums Victoria, (B) modified from Rickart et al.

(2019) with permission, (C) and (D) M. Rawlinson, C. Accurso, and K. Walker, Museums Victoria.
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species covered the phylogenetic breadth of subfamily

Murinae, including representatives from Asian, Australian,

and African radiations, and were also representative of the

substantial ecomorphological variation of murine rodents,

that is, dietary, microhabitat, and body size variation.

Almost all nodes (n¼ 71) received 100% bootstrap support

across all approaches implemented. Two nodes received less

support in more than one analysis, but no nodes were con-

sistently poorly supported. Across the full data set, average

coverage ranged from 25 to 57�, with full mapping and

coverage statistics per-sample summarized in supplementary

table S2, Supplementary Material online.

Pervasive Positive Selection across Murinae

Across the murine phylogeny, site models in codeml 4.9i

(Yang 2007) revealed 1,383 genes (out of 14,229 tested,

supplementary table S4, Supplementary Material online)

with consistent evidence for sites under positive selection

(P< 0.05, using a Benjamini–Hochberg false discovery rate

correction; FDR), using both individually inferred gene trees

(gene tree topology data set) and the species tree (species tree

topology data set). Among these, we identified 42 overrep-

resented Reactome pathways (Jassal et al. 2020) and 29

overrepresented KEGG pathways (Kanehisa et al. 2017) using

g: Profiler (Raudvere et al. 2019; supplementary tables S5 and

S6, Supplementary Material online). These pathways were

largely involved in immune, digestive, taste, and reproductive

functions (fig. 3A). Additionally, there were 53 “molecular

function,” 116 “biological process,” and 38 “cellular

component” GO category terms significantly overrepresented

(supplementary table S7, Supplementary Material online).

Overrepresented biological processes also broadly included

terms associated with immunity, reproduction, digestion,

and taste (fig. 3B). Overrepresented molecular functions in-

cluded peptidase and lipase activity, taste reception, and im-

mune receptor activity. Overrepresented cellular components

included sperm morphological parts and immunity-related

components, including secretory granule and cellular

membranes.

Ecological Predictors of Genome-Wide Positive Selection

Overall, branch-specific values of positive selection estimated

using aBSREL (Smith et al. 2015) in HyPhy 2.5.14. (Pond et al.

2005) revealed substantial heterogeneity in the proportion of

sites under selection among murine lineages (fig. 4A; supple-

mentary table S8, Supplementary Material online), which was
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FIG. 2.—Time-calibrated phylogeny of sampled murine species generated in MCMCtree, with a consistent topology estimated in both IQ-TREE and
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not explained by variation in terminal branch length (gene tree

topology: R2¼ 0.025, species tree topology: R2¼ 0.008). This

pattern of heterogeneity was consistent in analyses of the

species tree topology and gene tree topology data sets (R2

¼ 0.70). Dietary state (carnivorous, herbivorous, or omnivo-

rous) was a significant predictor (gene tree topology:

P¼ 0.0026, species tree topology: P¼ 0.045) of mean pro-

portion of sites under positive selection, when taking into

account phylogenetic relatedness in a PGLS regression.

There was also a significant difference (gene tree topology:

P¼ 0.0094, species tree topology: P¼ 0.0052) between die-

tary states in the mean proportion of sites under positive se-

lection in a phylogenetic ANOVA, with carnivores being

higher than omnivores (fig. 4B; gene tree topology:

P¼ 0.045, species tree topology: P¼ 0.012). Despite the

small number of herbivores in this data set (n¼ 3), herbivores

had significantly higher values than omnivores in the gene

tree topology data set (P¼ 0.045) but not the species tree

topology data set (P¼ 0.082). These patterns were also con-

sistent using the topology-free pairwise dN/dS values esti-

mated in codeml, where both carnivores (P¼ 0.003) and

herbivores (P¼ 0.044) had significantly higher dN/dS values

than omnivores. All models that jointly accounted for diet and

relative population size (approximated by average

heterozygosity across the whole-exome, and based only on

third codon position sites) did not recover contemporary pop-

ulation size as a significant predictor for the mean proportion

of sites under selection (whole exome estimate: species tree

topology P-value ¼ 0.21, gene tree topology P-value ¼ 0.46,

third codon estimate: species tree topology P-value ¼ 0.25,

gene tree topology P-value ¼ 0.67).

There was no significant effect of microhabitat (fig. 4C),

reproductive output (no. of mammae; fig. 4D), or body mass

(fig. 4E) on the proportion of sites under positive selection in

either PGLS or phylogenetic ANOVA analyses; however, the

number of mammae was significantly correlated with the

number of positively selected sites before, but not after phy-

logenetic correction. The proportion of positively selected sites

across digestion-related genes was no more correlated with

dietary state, than the proportion of positively selected sites

across genes with nondigestive functions. Similarly, the pro-

portion of positively selected sites across reproduction-related

genes was no more correlated with number of mammae,

than across genes with function unrelated to reproduction.

Overrepresentation and functional enrichment tests of genes

that were most correlated with dietary specialization (top 5%

and 10%, and Spearman’s q values), did not yield any signif-

icant functional categories or pathways. This suggests that the
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increase in positive selection across genes in dietary specialists

is not restricted to genes directly related to, or associated with,

digestion, but potentially a suite of interacting genes in other

functional categories across the genome.

Shared Positive and Relaxed Selection

Across both the species tree topology and gene tree topology

data sets, 39 genes were consistently detected under shared

positive selection in both Rhynchomys labo and

Paucidentomys vermidax using the aBSREL test for positive

selection (supplementary table S9, Supplementary Material

online). For all 39 positive genes, the standard aBSREL model

was a better fit (AICc) to the data than models accounting for

multinucleotide mutations (MNMs; aBSREL þ Double and

aBSREL þ Double þ Triple). Among these genes was the

Androgen Receptor (Ar) gene, which encodes a transcription

factor known to influence bone morphogenesis through in-

teraction with the RUNX2 transcription factor. However, the

number of total genes under shared positive selection in both

of these strikingly convergent vermivorous rodents was not

significantly greater than expected by chance, nor greater

than the number of genes under shared positive selection in

a nonconvergent control comparison between Mastacomys

fuscus and Echiothrix centrosa (59 convergent genes selected

in the species tree topology and gene tree topology data sets).

In addition, consistent signatures of relaxed selection in both

Paucidentomys and Rhynchomys were detected in 14 genes

across both the species tree topology and gene tree topology

data sets (supplementary table S10, Supplementary Material

online).

Convergent Amino Acid Profile Shifts

After filtering, 47 genes showed strong evidence (posterior

probably > 0.9) for site-based, convergent amino acid profile

shifts using PCOC (Rey et al. 2018; supplementary table S11,

Supplementary Material online). We did not identify any sig-

nificantly overrepresented functional terms among these

genes, nor at lower PCOC score thresholds. Among these

genes, Cdon is associated with human disease phenotype

pathways (HP) “abnormality of the nasal cavity,” “cleft-lip,”

“single median maxillary incisor,” and “midnasal stenosis.” In

the two convergent vermivores, Cdon has undergone a sig-

nificant shift in amino acid profile at site 414, where both

Rhynchomys and Paucidentomys have independently experi-

enced a shift from polar to nonpolar residues. Cdon was also

under significant positive selection in Paucidentomys but not

in Rhynchomys.

Discussion

We found that genes associated with immune, reproductive,

and dietary processes have been subject to pervasive positive

selection across the murine radiation. We also recovered a

higher proportion of positively selected sites in derived dietary

forms (i.e., carnivores and herbivores) than in omnivorous

species (the ancestral state, Rowe et al. 2016a), suggesting

a link between ecological forces of diversification and rates of

putatively adaptive molecular evolution. We did not detect

more genes with shared selective shifts in the strikingly con-

vergent worm-eating species Paucidentomys and

Rhynchomys, than in a non-convergent comparison.

However, a subset of genes we did detect can be incidentally

linked to craniofacial morphology or diet. Our results highlight

functional categories of genes that may have played an inte-

gral role in the repeated radiation and extensive dietary diver-

sification of murine rodents.

Pervasive Positive Selection on Immunity and Reproductive
Genes

We found strong evidence for pervasive positive selection on

genes and pathways associated with the immune system and

reproduction in Murinae. Numerous immunity- and

reproduction-related GO, KEGG, and Reactome terms were

significantly overrepresented among genes that experienced

positive selection across the radiation. Many previous studies

have identified that genes associated with immune function

(Schlenke and Begun 2003; Castillo-Davis et al. 2004; Nielsen

et al. 2005) and reproduction (Swanson and Vacquier 2002;

Swanson et al. 2003; Castillo-Davis et al. 2004; Nuzhdin et al.

2004; Zhang et al. 2004; Good and Nachman 2005; Nielsen

et al. 2005; Dean et al. 2008; Turner et al. 2008) are common

targets of recurrent positive selection, and on average, tend to

evolve faster than other protein coding genes. More recently,

comparative genomic studies at both deep and shallow tax-

onomic scales indicate that these patterns are consistent

across all scales of animal divergence (Nielsen et al. 2005;

Kosiol et al. 2008; Roux et al. 2014; Cagan et al. 2016;

Cicconardi et al. 2017; Sahm et al. 2019; Shultz and

Sackton 2019). The strong signal of positive selection on im-

mune and reproduction-related genes across Murinae con-

firms that these pervasive patterns remain consistent during

species diversification, in consort with rapid evolution of eco-

logically significant phenotypes.

The adaptive immune system of animals is subject to con-

stant pressure from rapidly evolving pathogens with shorter

generation times than their hosts (Woolhouse et al. 2002).

This co-evolutionary “arms race” is a source of selective pres-

sure and is thought to cause rapid adaptive evolution in

immunity-related genes (Nielsen et al. 2005; Kosiol et al.

2008). Murines have likely interacted with a diverse array of

both endemic and introduced pathogens (e.g. Winterhoff et

al. 2020) throughout their evolutionary history, driving this

rapid molecular evolution. Response to co-evolutionary

change may similarly explain rapid evolution of reproductive

proteins, with previous studies suggesting that sperm compe-

tition and sexual conflict are key drivers of positive directional
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selection (Wyckoff et al. 2000; Swanson and Vacquier 2002;

Torgerson et al. 2002; Swanson et al. 2003). The set of re-

productive genes under pervasive positive selection across

murines in our results include a number of genes which

have previously been identified as under positive selection in

other mammals, including Zp3 (Swanson and Vacquier 2002;

Jansa et al. 2003; Turner and Hoekstra 2006), which contains

the primary species-specific sperm binding site, as well as the

egg-binding proteins Adam2 and Spam1 (Torgerson et al.

2002). The coevolution of male and female reproductive pro-

teins may be associated with the eventual development of

barriers to fertilization, reproductive isolation, and subsequent

speciation (Swanson and Vacquier 2002). There is substantial

divergence in sperm morphology between closely related mu-

rine species (e.g., Breed 2000; McLennan et al. 2017; Pahl et

al. 2018), which may contribute to the rapid evolution of

prezygotic isolation between populations. Accelerated evolu-

tion, or increased positive selection, in reproductive genes in

murine rodents may be linked, in part, to the rapid speciation

of murines in both allopatry, and via ecological niche parti-

tioning in spatially limited island systems. Future comparative

studies may reveal whether diversifying selection, and positive

selection, on immunity and reproductive genes is more in-

tense during adaptive radiation, compared with background

rates, as nascent species encounter novel pathogens, and

rapidly diversify to fill available ecological niches.

Pervasive Positive Selection on Dietary and Taste-
Associated Genes

We also found significant overrepresentation of functional cat-

egories associated with diet (digestion and taste), which is likely

related to the exceptional ecological diversity and success of

murine rodents. Recent work has also identified selection on

bitter-taste genes in the desert-adapted rodent, Peromyscus

eremicus (Tigano et al. 2020). Pervasive positive selection in

diet-related genes has not previously been identified across a

recent radiation. A study of six mammalian genomes (Kosiol et

al. 2008) identified positive selection on starch digestion and

bitter taste genes in primates, but not in two murine species

(M. musculus and R. norvegicus). This contrast highlights the

importance of taxon sampling in detecting associations be-

tween ecological diversification and genomic adaptation,

with our study examining this pattern across the broad phylo-

genetic and ecological diversity of murine rodents. At a

broader scale, previous research suggests that dietary evolution

may be associated with changes in gene copy number (Feng et

al. 2014; Li and Zhang 2014; Pajic et al. 2019), gene family

expansions (Whiteman et al. 2012; Gloss et al. 2019; Seppey et

al. 2019), or loss of gene function (Kim et al. 2016; Hu et al.

2017; Hecker et al. 2019). For example, the evolution of car-

nivory across mammals at a broad scale is associated with re-

peated loss of sweet and bitter taste receptors (Jiang et al.

2012). However, our results provide the first strong link

between rapid ecological diversification of species, including

repeated evolution of dietary specialization, and recurrent pos-

itive selection on multiple genes in functional categories related

to dietary processes. Trophic niche is a crucial driver of pheno-

typic evolution (Price et al. 2012) and in the case of murine

rodents, is arguably the main axis of differentiation between

species, especially in island systems across the Indo-Australian

Archipelago (e.g., Rowe et al. 2014, 2016a, 2016b). Pervasive

positive selection on genes associated with diet, digestion, and

taste in a clade with extensive dietary disparity provides a com-

pelling link between ecological novelty, phenotypic evolution,

and putatively adaptive molecular evolution.

Derived Dietary States Are Associated with Rapid
Molecular Evolution

As well as triggering pervasive positive selection across dietary

genes, the evolution of dietary specialization in the murine

species examined in our study was significantly correlated

with a genome-wide increase in the average proportion of

sites under positive selection, as well as higher overall dN/dS.

This pattern was most compelling in carnivores (a derived state

in murines; Rowe et al. 2016a), where there was a significantly

higher average proportion of positively selected sites than in

omnivores (the ancestral state). This pattern was similar in

herbivores, but only significant when using the gene tree to-

pology data set or a pairwise (topology-free) contrast.

Although there were only three herbivorous species in this

study, these species represent three independent transitions

to herbivory. The elevated dN/dS may result from long-term

small effective population size (Ne), via increased fixation of

deleterious mutations which are incorrectly inferred as signa-

tures of positive selection (Ohta 1993; Deinum et al. 2015), or

alternatively a large Ne resulting in increased adaptive efficacy

(Gossmann et al. 2010). However, our comparative analyses

found no significant effect of average heterozygosity (as a

proxy for Ne). Similar patterns are evident in deeper-time com-

parisons among mammals, with increased signatures of mo-

lecular adaptation in carnivores (i.e., Felidae) when compared

with omnivores (Hominidae) and herbivores (Bovidae; Kim et

al. 2016). Our finding of an increase in positive selection at a

genome-wide scale in carnivorous, and to a lesser extent in

herbivorous murines, suggests that the evolution of dietary

specialization may have triggered increased positive selection

on a suite of interacting traits (Goldman-Huertas et al. 2015),

and subsequently affected many loci in the genome.

Whether rates of molecular evolution, or positive selection,

can be generally associated with the evolution of adaptive

ecological traits remains an open question, and few specific

examples exist. Temperate lacertid lizards were recently found

to have experienced a genome-wide decrease in molecular

evolution relative to tropical- and desert-adapted species

(Garcia-Porta et al. 2019). Body size is a consistent predictor

of neutral molecular evolutionary rate across broad taxonomic
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scales, with larger species expected to have slower rates due

to longer generation times (Bromham 2002; Berv and Field

2018). A recent study suggested an extension of this gener-

alization to positive selection in birds, finding that body size

was linked to variation in the proportion of positively selected

sites (Shultz and Sackton 2019). In contrast to diet, there was

no significant correlation between positive selection and any

other traits tested in our comparative phylogenetic analyses,

including body size. Although the murine species examined

here vary by two orders of magnitude in body size (20–

�2,000 g), differences in generation time may be insufficient

to affect relative evolutionary rates.

A Genomic Basis for Convergent Evolution of Worm-
Eating Rodents?

There were not more genes under shared selective shifts (pos-

itive or relaxed) in the convergent worm-eating rodents

Paucidentomys and Rhynchomys when compared with the

nonconvergent control comparison, Mastacomys and

Echiothrix. These results are consistent with a recent study

of shared positive selection in the convergent marsupial thy-

lacine and eutherian canid (Feigin et al. 2018), suggesting that

positive selection has not acted on the same genes in pheno-

typically convergent species more often than in general forms.

However, comparing the number of genes under shared pos-

itive selection may be a relatively conservative benchmark for

detecting molecular convergence. As such, it remains possible

that the genes we recovered are linked to the evolution of the

convergent phenotypes of Paucidentomys and Rhynchomys.

For example, we found shared positive selection on the

Androgen Receptor (Ar) gene, which encodes a transcription

factor known to influence bone morphogenesis through in-

teraction with the RUNX2 transcription factor (Baniwal et al.

2009). Variation between species in the number and ratio of

short repeats in RUNX2 has previously been associated with

variation in mammalian cranial length (Fondon and Garner

2004; Sears et al. 2007; Pointer et al. 2012; Ritzman et al.

2017), and RUNX2 also shows signatures of an ancient selec-

tive sweep after the divergence of anatomically modern

humans from other archaic lineages (Greenet al. 2010).

Given shared signatures of positive selection and its pivotal

role in mammalian bone metabolism (Kawanoet al. 2003),

the Ar transcription factor represents a potential candidate

gene contributing to the evolution of elongated craniofacial

morphology in Paucidentomys and Rhynchomys.

Additionally, shared positive selection and amino acid

shifts in taste-receptor genes Tas2r113 and Tas2r114, and

relaxed selection in the glucose transporter gene Slc2a2,

(part of the Reactome pathway “Intestinal absorption”), re-

capitulate the evolution of dietary specialization across

Murinae at a broad scale. We also detected convergent shifts

in amino acid profile in the gene Cdon, associated with cra-

niofacial and tooth development. However, genes involved

in patterning and development of morphology are often

highly pleiotropic (Sivakumaran et al. 2011), and changes

at the coding level likely have consequences for the function

of the gene in many different contexts. As such, parallel

amino acid changes are thought to rarely be directly associ-

ated with phenotypic convergence (Foote et al. 2015).

Although the genes listed above can be incidentally linked

to either craniofacial morphology or diet, the majority of

genes we detected with convergent selective signatures in

Paucidentomys and Rhynchomys do not have obvious links

to their convergent phenotype.

Increasing evidence implicates regulatory elements control-

ling pleiotropic genes in the evolution of complex traits

(Prud’homme et al. 2006; Kvon et al. 2016; Feigin et al.

2018; Roscito et al. 2018), especially in loss-of-function pheno-

types, such as limb loss in snakes (Kvon et al. 2016) and eye

degeneration in subterranean mammals (Roscito et al. 2018). In

such cases, changes in the timing and level of gene expression

via evolution in regulatory regions may underlie the evolution of

convergent phenotypes. Expansion or contraction of gene fam-

ilies also likely contributes to patterns of convergent evolution

(e.g., Hoffmann et al. 2010; Whittington et al. 2010). Given the

restricted genomic scope of whole exome data, future work

examining whole genomes from across Murinae may shed light

on the contribution of gene family evolution, noncoding

regions, and regulatory elements. More broadly, information

about the function of genes in unique morphological and eco-

logical contexts may not be captured by model species, from

which their functional annotations are derived. As such, any

functional relevance for the majority of genes under convergent

selection in Paucidentomys and Rhynchomys remains unclear.

Inclusion of species representing extreme morphological adap-

tation in laboratory studies, including developmental studies,

may reveal novel gene function and gene interactions previously

unknown from classic model species.

Conclusion

Multiple, nested adaptive radiations within Murinae have

resulted in repeated and convergent ecological specializations,

and we recover evidence for this at the genomic level. Pervasive

positive selection on diet-related genes across the radiation, and

an increase in positive selection in dietary specialists, suggests a

link between ecological drivers of diversification and molecular

evolution. We highlight both categories of genes, and specific

genes, which may have played an integral role in the repeated

invasion by murine rodents of novel ecological niches, and in

the convergent evolution of worm-eating specialists. Our find-

ings demonstrate the utility and opportunity for leveraging mu-

rine rodents as an emerging model system for understanding

adaptive processes. Given the enormous phenotypic and spe-

cies diversity of Murinae, and their existing genomic resources,

murine rodents represent a largely untapped resource for stud-

ies of evolutionary processes.
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Materials and Methods

Taxon Sampling

We selected 38 representatives of rodents from the subfamily

Murinae, including representatives from Asian, Australian,

and African radiations. We additionally included the model

murine species M. musculus (genome assembly GRCm38)

and R. norvegicus (genome assembly Rnor6), with final sam-

pling including ten species from tribe Hydromyini, 20 species

from tribe Rattini, nine species from the Mus-related clade

(tribes Apodemini (1), Arvicanthini (3), Murini (1),

Malacomyini (1), and Praomyini (3)), and one species of

Phloeomyini. Together, these species are representative of

the substantial ecomorphological variation of murine rodents,

including dietary, microhabitat, and body size variation. In this

comparative framework, we assume that individual samples

are representative of species-specific adaptations and ac-

knowledge that some signatures could reflect local adapta-

tion within species. Tissues were obtained from museum

collections (see supplementary table S1, Supplementary

Material online for details), where vouchers are permanently

curated. These specimens were collected according to the

relevant legal and ethical requirements of each country.

Sample Preparation, Whole-Exome Capture and
Sequencing

Total genomic DNA was extracted from liver or muscle tissue

using a Qiagen DNeasy Blood and Tissue Kit, following the

manufacturer protocol. DNA library preparation followed the

Meyer and Kircher (2010) protocol. Target regions were

enriched using two NimbleGen SeqCap EZ 1 mouse whole-

exome capture reactions (Fairfield et al. 2011), targeting

54.3 Mb of exonic regions based on the M. musculus refer-

ence genome (NCB137/mm9). These 203,225 target loci rep-

resent exons from nearly all protein-coding regions in M.

musculus excluding known pseudogenes, and highly similar

multi-copy gene families including olfactory receptor genes (a

large paralogous gene family in murines). The use of M. mus-

culus whole-exome enrichment probes has proven efficient

across approximately 7.5 My divergence (Sarver et al. 2017).

Enriched libraries were sequenced across two lanes of Illumina

NextSeq 550 paired-end, two lanes of Illumina NextSeq 550

single-end, one lane of MiSeq, and one lane of HiSeq 4000.

Obtaining a Database of Putatively Single-Copy Loci
among Murinae

To generate an initial reference set of putatively single-copy

exons across Murinae, we first used liftOver (Hinrichs 2006) to

convert M. musculus (mm9) nucleotide target regions from

the whole-exome bait-design (Fairfield et al. 2011) to orthol-

ogous co-ordinates in the R. norvegicus (Rn5) genome. The

final reference set excluded any loci that could not be aligned

between both the mm9 and Rn5 genomes, spanning�12 My

of murine evolution. We also removed any exons from the

reference set which had more than one internal hit of >95%

amino acid identity within either the mm9 or Rn5 genomes,

which would suggest they represent recent duplications. This

filtering resulted in a final set of 162,566 exons from 18,797

genes and was used as the reference for all subsequent

analyses.

Sequence Assembly and Alignment

We processed raw sequence data using ECPP v1.1.0, largely

following the workflow described in Roycroft et al. (2020a),

but with some modifications. Briefly, raw reads were dedu-

plicated using FastUniq v1.1 (Xu et al. 2012) and quality

trimmed using Trimmomatic (Bolger et al. 2014). Cleaned

reads for assembled de novo using TRINITY 2.4 (Grabherr et

al. 2011; Haas et al. 2014) to generate a sample-specific

contig file for each of 38 sequenced species. Using the fil-

tered, putatively single-copy murine loci described above, we

identified the best matching contigs in each assembly using

TBLASTN. Using BLAST coordinates, we extracted local

matches from assembled contigs to create a sample-specific

reference for mapping. We then mapped the cleaned reads to

the sample-specific reference using BBmap (version 35.82,

Bushnell B. 2015, sourceforge.net/projects/bbmap/) with min-

id¼ 0.8. Mapping and coverage statistics per-sample are

summarized in supplementary table S2, Supplementary

Material online. Consensus sequences and variants were

called using the mpileup2cns command in VarScan v2.3.7

(Koboldt et al. 2012). Consensus sequences were then col-

lated across all samples for each exon and were aligned using

MAFFT v7.310 (Katoh and Standley 2013).

Data Filtering and Post Hoc Paralog Detection

We only included exons in the final data set which were suc-

cessfully captured and mapped for at least 27 of 38 samples.

To screen for lineage-specific paralogs that were not detected

in initial filtering, we calculated average heterozygosity for

each sample in each alignment. Alignments with two or

more samples with > 3% average heterozygosity (Teasdale

et al. 2016; Roycroft et al. 2020a) were excluded, as these

may represent loci with pervasive paralogy. We assumed that

cases where only one sample had>3% average heterozygos-

ity represented lineage-specific duplications and removed only

that sample from the alignment. A total of 89,621 exons were

retained, that were concatenated into 14,229 gene align-

ments for analysis.

Phylogenetic Analyses

For phylogenetic analysis, we reduced the full data set to

alignments to a previously qualified, murine-specific set of

1,360 phylogenetically informative single-copy exons

(Roycroft et al. 2020a) and estimated the maximum likelihood
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(ML) phylogeny in IQ-TREE 1.6.1 (Nguyen et al. 2015) from a

concatenated supermatrix partitioned by codon position (i.e.,

three global partitions). We used ModelFinder

(Kalyaanamoorthy et al. 2017) to determine the best substi-

tution model for each partition, and executed 1,000 ultrafast

bootstrap replicates, using UFBoot2 (Hoang et al. 2017). We

also estimated support in IQ-TREE using two-tiered resam-

pling of genes and sites (–bspec GENESITE), an approach

which we previously showed provided more accurate esti-

mates of uncertainty in phylogenomic data sets (Roycroft et

al. 2020a). To verify this inferred ML topology, we estimated

the species tree topology using the coalescent approach

SVDquartets (Chifman and Kubatko 2014) implemented in

PAUP* v4.0a (Swofford 2002). We used MCMCtree (Yang

2007) to estimate time-calibrated branch lengths, with the

ML topology inferred in IQ-TREE, a GTRþC substitution

model, an uncorrelated C relaxed clock, and using the ap-

proximate likelihood calculation (Thorne et al. 1998; Reis and

Yang 2011). We used three secondary calibrations from

Aghov�a et al. (2018) that best matched our sampling of

Murinae: the MRCA of Rattini (95% HPD 9.91–12.67 Ma),

the MRCA of Sahul Hydromyini (95% HPD 6.48–8.34 Ma),

and the MRCA Praomyini (95% HPD 5.98–7.84 Ma). Samples

were drawn every 1,000 MCMC steps from a total of 107

steps, with a burn-in of 105 steps. Convergence was assessed

by comparing parameter estimates from two independent

runs, with all effective sample sizes >200.

Mendes and Hahn (2016) showed that estimates of posi-

tive selection derived from a fixed species tree can be subject

to false positives when the individual genealogical history con-

flicts with the species tree. To help combat this in downstream

molecular evolution analyses, we estimated individual gene

trees from each alignment in IQ-TREE 1.6.1 (Nguyen et al.

2015) using ModelFinder (Kalyaanamoorthy et al. 2017) to

select the single best fitting substitution model for each gene.

Detecting Genes under Pervasive Positive Selection

For all 14,229 orthologous genes, we ran two site-based

models in codeml 4.9i, the M1 and M2 models (Yang

2007). The M1 model allows for two x (dN/dS) rates across

sites (x< 1 and x¼ 1), whereas M2 allows three rates

(x< 1, x¼ 1 and x> 1). Evidence of pervasive positive se-

lection at particular sites can be inferred when the M2 model

is a significantly better fit for that gene than the M1 model.

Using a likelihood ratio test (LRT), we compared log-likelihood

estimates for models M1 and M2 to identify genes with sites

under positive selection across the murine phylogeny. These

tests were performed using both the species tree and gene

tree as the reference topology. We calculated LRT P-values

using chi-squared distribution (d.f. ¼ 2) and corrected for

multiple tests at a P< 0.05 threshold, using a Benjamini–

Hochberg FDR correction. Genes were considered to have

sites under positive selection only if both the LRT was

significant after correction, and at least one site was signifi-

cantly selected using a Bayes Empirical Bayes (BEB) test (pos-

terior probability > 0.95; Yang et al. 2005) against both the

species tree and gene tree.

Functional Overrepresentation of Genes under Positive
Selection

Using g:GOSt in gProfiler (Raudvere et al. 2019), we tested for

overrepresentation of GO terms, KEGG pathways (Kanehisa

et al. 2017) and Reactome pathways (Jassal et al. 2020)

among genes identified as being under significant positive

selection in site model tests. We used a custom background

including all tested genes and applied an FDR correction for

multiple comparisons (P< 0.05). To visualize overrepresented

functional categories, we used REVIGO (Supek et al. 2011) to

generate semantic clustering of GO biological process

(GO:BP), molecular function (GO:MF), and cellular component

(GO:CC) terms (allowing 0.5 term similarity).

Branch-Specific Positive Selection

Although site-based models can identify genic sites under

significant positive selection across multiple lineages in a phy-

logeny, they do not provide information about heterogeneity

in selection throughout time and across lineages. To investi-

gate this, we used the flexible branch-site test aBSREL (Smith

et al. 2015) in HyPhy 2.5.14. (Pond et al. 2005) to estimate x
values and proportion of sites under positive selection for each

terminal branch in the tree. To reduce potential false positive

rates due to tree misspecification (Mendes and Hahn 2016),

we applied two approaches to estimating branch-specific se-

lection in aBSREL. First, we estimated values for all terminal

branches and genes using the fixed species tree topology: the

species tree topology data set. Second, we inferred selection

across branches and genes using each individually estimated

gene tree: the gene tree topology data set.

Positive Selection and Ecomorphological Variation

For each terminal branch, we calculated the mean proportion

of sites under positive selection across all genes in aBSREL, to

obtain a genome-wide estimate of the proportion of sites

under positive selection for each species. To first visualize het-

erogeneity in positive selection across the tree, we used the R

function contMap in phytools (Revell 2012) to plot values

from both the species tree topology and gene tree topology

data sets as a heat map on the species tree. To additionally

estimate the strength of positive selection for each species

using a topology-free approach, we calculated average pair-

wise dN/dS across all species-pair comparisons using codeml

(Yang and Nielsen 2000). To test whether this proportion of

sites under positive selection, or strength of selection (dN/dS)

were correlated with ecological factors, we obtained dietary,

microhabitat, reproductive, and body mass data for each
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species from the literatures (Smith et al. 2003; Breed and Ford

2007; Rowe et al. 2016a, 2016b; Nations et al. 2019;

Roycroft et al. 2020b). We coded species according to their

diet (carnivore, omnivore, or herbivore), their microhabitat

(terrestrial, arboreal, or semi-aquatic), and their reproductive

output, (based on the number of mammae for each species,

supplementary table S3, Supplementary Material online).

Using the time-calibrated species tree inferred in

MCMCtree, we performed phylogenetic generalized least

squares (PGLS) regression and phylogenetic ANOVA with a

Bonferroni correction in phytools (Revell 2012), to test the

effects of diet, microhabitat, reproductive output, and body

size on genome-wide positive selection. Further, because ef-

fective population size (Ne) can affect estimates of positive

selection (Ohta 1993; Gossmann et al. 2010; Deinum et al.

2015), we jointly modeled the additive and interacting effects

of average exome-wide heterozygosity, and third codon po-

sition heterozygosity (as proxies for Ne), with ecological traits

in the comparative analysis.

To further determine whether there was an interaction

between gene function, positive selection, and ecological

traits, we used GO annotations and Gene ORGANizer

(Gokhman et al. 2017) classifications to identify genes with

function in the digestive (1,657 genes) and reproductive sys-

tems (2,077 genes). We then estimated the mean percent of

positively selected genes across digestive and nondigestive

genes, and reproductive and nonreproductive genes. Using

the same approach described above, we ran PGLS and phy-

logenetic ANOVA with dietary state or number of mammae

as the predictor, respectively. Using a binary measure of die-

tary state (1¼ specialist; i.e., herbivore or carnivore,

0¼ generalist; i.e., omnivore), we also performed a

Spearman’s rank correlation test to determine which genes

showed the highest correlation between positively selected

sites and lineages with dietary specialization. Using g:

Profiler, we tested for overrepresentation of functional cate-

gories in the top and bottom 10% and 5% of genes, and

performed functional enrichment analysis using the calculated

Spearman’s q value for each gene.

Branch-Specific Convergence in Positive and Relaxed
Selection

We tested for branch-specific convergent positive selection by

performing a branch-site test in aBSREL across all genes, with

two phenotypically convergent vermivorous rodents,

Paucidentomys vermidax and Rhynchomys labo, set as fore-

ground branches. All analyses were repeated using both the

species tree topology and gene tree topology data sets. A

recent study showed that MNMs may cause false inferences

in branch-site tests of positive selection (Venkat et al. 2018).

For genes where we detected positive selection in both

Paucidentomys and Rhynchomys, we accounted for this by

applying models that allow double and triple MNMs using

the –multiple-hits Double and –multiple-hits DoubleþTriple

options in HyPhy 2.5.14. As MNM models include additional

parameters compared with the standard aBSREL model, we

compared AICc scores from standard aBSREL, aBSREL þ
Double and aBSREL þ Double þ Triple, and retained results

from the model with the lowest AICc score. To further deter-

mine whether there were more shared genes under positive

selection in Paucidentomys and Rhynchomys than in other

nonconvergent murine forms, we repeated all analysis using

a nonconvergent “control” comparison, that is, by comparing

genes under positive selection in the graminivorous Australian

rodent Mastacomys fuscus (tribe Hydromyini), and the carniv-

orous Sulawesi shrew rat Echiothrix centrosa (tribe Rattini) as

the foreground test branches. These control species are phy-

logenetically equidistant to the Paucidentomys (tribe Rattini)

and Rhynchomys (tribe Hydromyini) comparison and occur

along comparable terminal branch lengths in the tree.

To test for genes with evidence for shared relaxation of

selection in Paucidentomys and Rhynchomys, we ran RELAX

in HyPhy 2.5.14 using both the species tree topology and

gene tree topology data sets. For comparison, relaxation anal-

yses were also repeated using the same nonconvergent spe-

cies pair as above, M. fuscus and E. centrosa. All P-values were

corrected for multiple tests at a P< 0.05 threshold, using a

Benjamini–Hochberg FDR correction.

Detecting Convergence Site-Based Functional Shifts

To detect potential convergence of positively selected sites in

Paucidentomys and Rhynchomys, we tested all genes for ev-

idence of convergent amino acid shifts using PCOC (Rey et al.

2018). This approach applies a CAT model (Quang et al.

2008) of protein evolution in a species-tree context to detect

convergent shifts in amino acid profile along branches with

convergent phenotypes. To filter for only sites with strong

evidence for convergent profile shifts, we set a posterior prob-

ability threshold of >0.9 for all PCOC, OC, and PC output.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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