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Abstract
Purpose  To investigate the value of a radiomics-based nomogram in predicting preoperative T staging of rectal cancer.
Methods  A total of 268 eligible rectal cancer patients from August 2012 to December 2018 were enrolled and allocated into 
two datasets: training (n = 188) and validation datasets (n = 80). Another set of 32 patients from January 2019 to July 2019 
was included in a prospective analysis. Pretreatment T2-weighted images were used to radiomics features extraction. Feature 
selection and radiomics score (Rad-score) construction were performed through a least absolute shrinkage and selection 
operator regression analysis. The nomogram, which included Rad-scores and clinical factors, was built using multivariate 
logistic regression. Discrimination, calibration, and clinical utility were used to evaluate the performance of the nomogram.
Results  The Rad-score containing nine selected features was significantly related to T staging. Patients who had locally 
advanced rectal cancer (LARC) generally had higher Rad-scores than patients with early-stage rectal cancer. The nomogram 
incorporated Rad-scores and carcinoembryonic antigen levels and showed good discrimination, with an area under the curve 
(AUC) of 0.882 (95% confidence interval [CI] 0.835–0.930) in the training dataset and 0.846 (95% CI 0.757–0.936) in the 
validation dataset. The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical 
value. A prospective analysis demonstrated that the AUC of the nomogram to predict LARC was 0.859 (95% CI 0.730–0.987).
Conclusion  A radiomics-based nomogram is a novel method for predicting LARC and can provide support in clinical deci-
sion making.
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Introduction

Colorectal cancer (CRC) is the most common tumor in the 
digestive system, and its mortality rate ranks third among 
cancer-related mortality in the world [1]. Moreover, rectal 
cancer accounts for about one-third of all CRC cases [2]. 
The primary treatments for rectal cancer include chemo-
therapy, radiotherapy, and surgery, though treatment options 
are determined by tumor stage. Early-stage rectal cancer can 
be treated directly by surgery, whereas locally advanced rec-
tal cancer (LARC) requires neoadjuvant radiochemotherapy 
before surgery. Accurate preoperative staging of rectal can-
cer is essential for achieving precision treatment. Thus, it is 
vital to be able to precisely identify preoperative staging.

Magnetic resonance imaging (MRI) provides good soft-
tissue contrast. The National Comprehensive Cancer Net-
work [3] and the European Society for Medical Oncology [4] 
recommend MRI as the preferred imaging exam for rectal 
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cancer. At present, MRI has been widely used in the evalu-
ation of preoperative T stages of rectal cancer. However, 
it is not without limitations. Conventional MRI staging is 
easily influenced by clinical experience and the individual 
perspective of observers and its reproducibility and accuracy 
remains unsatisfactory [5–7]. In addition, conventional MRI 
has difficulty in distinguishing the inflammatory reaction 
around the tumor and tumor invasion, resulting in staging 
wrong [8]. Accurate staging is an imperative prerequisite 
to individualized therapy. The stratification according to 
accurate staging could avoid unnecessary chemoradiother-
apy and their side effects, such as toxicity of chemothera-
peutics, radiation enteritis, and rectal wall fibrosis and can 
reduce the financial burden of patients. Accurate staging has 
particular significance for clinical practice. Thus, there is a 
critical need to develop a method to provide this important 
information.

Radiomics can extract large amounts of quantified fea-
tures from medical imaging data to provide mineable high-
dimensional data. It deeply analyzes the clinicopathologi-
cal information contained in large amounts of data [9, 10] 
and has been applied to tumor staging [11–13], predicting 
treatment response [14–17], and assessing the efficacy 
after chemoradiotherapy [18–20] in rectal cancer patients. 
Although some studies have explored the application of radi-
omics in T staging of rectal cancer, most of these studies 
used radiomics features alone; few have incorporated the 
clinical factors with the radiomics features and lack preop-
erative experimental validation. In this study, we introduced 
clinical factors and incorporated with radiomics features, 
analyzed from different aspects, constructed a multi-scale 

nomogram model to predict T staging in patients with rectal 
cancer, and validated the model in a prospective cohort, with 
the goal of providing a meaningful predictor and supporting 
for the individualized treatment plan, so as to make patients 
get more benefit from treatment.

Materials and methods

Patients

We searched our retrospective database for consecutive 
patients who received rectal MRI examinations in our hos-
pital from August 2012 to December 2018. Inclusion criteria 
were patients who (1) underwent surgery and pathologically 
diagnosed with rectal adenocarcinoma; (2) received no treat-
ment before surgery; (3) underwent MRI within 2 weeks 
before surgery; and (4) had complete clinical and pathologi-
cal data. Exclusion criteria were as follows: (1) preoperative 
therapy (radiotherapy, chemotherapy or chemoradiotherapy); 
(2) simultaneous existence of other malignant tumors; and 
(3) poor image quality or artifacts. Finally, 268 patients were 
eligible and randomly distributed into two datasets at a pro-
portion of 7:3. The study was approved by the Ethics Com-
mittee and the need to obtain informed consent was waived. 
Figure 1 presents the patient recruitment process.

Baseline clinicopathologic data, including age, gender, 
preoperative carbohydrate antigen 199 (CA199), carcinoem-
bryonic antigen (CEA), tumor diameter, location (distance 
from the anal verge), differentiation, and postoperative T 
staging, were derived from medical records.

Fig. 1   Patient selection process
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Pathologic evaluation

The specimens were fixed in formalin for 48 h, and two 
pathologists evaluated the tissue sections stained with hema-
toxylin–eosin (H–E). The pathological diagnosis was per-
formed according to the 8th edition of the American Joint 
Committee on Cancer staging standard [21]. T1 tumors 
invade submucosa, T2 tumors invade muscularis propria, 
T3 tumors penetrate the muscularis propria to reach the 
subserosal layer or invade the adjacent rectal tissue without 
peritoneal covering, and T4 tumors penetrate the serosal 
membrane or directly invade other organs or tissues. T1–T2 
stages were classified as early stage and T3–T4 stages as 
local advanced stage.

MRI image acquisition and regions of interest 
segmentation

Imaging data were collected using a GE Discovery 
MR750w 3.0 T MRI scanner with the phased-array body 
coil. Patients fasted for 4 h and emptied the bowel contents 
before scanning. The axial and coronal MRI sequences 
were perpendicular and parallel to the long axis of the rec-
tal tumor, respectively. The regions of interest were manu-
ally outlined using each slice of the axial T2-weighted 
images to cover the entire tumor (Fig. 2a and b). Intestinal 

contents and air were excluded. The procedure was per-
formed using the MITK software (MITK Workbench 
2018.04.2, http://​mitk.​org/​wiki/​MITK). Thirty cases of 
MRI images were randomly selected, and two radiologists 
with 9 (doctor 1) and 11 years (doctor 2) of MRI interpre-
tation experience independently outlined the tumors with-
out knowing the pathological results. Doctor 1 repeated 
the process 1 week later. The intra-class correlation coef-
ficient (ICC) was used to assess the inter-/intra-observer 
variability. An ICC above 0.75 was considered to have 
good reproducibility. Doctor 1 finished the delineation for 
the remaining images. The formulation of ICC is shown in 
Supplementary Material 1.

Radiomics feature extraction

Pyradiomics [22] (versions 3.0, https://​www.​radio​mics.​
io/​pyrad​iomics.​html) were used to extract radiomics fea-
tures. For the original MRI images, a Laplacian of Gauss-
ian (LoG) filter with different σ parameters and a wavelet 
filter were used for preprocessing to obtain filtered images. 
Then original and filtered images were taken to extract fea-
tures. Each patient obtained 960 features from their images 
and these features were normalized using a Z-score trans-
formation. Supplementary Material 2 lists the features.

Fig. 2   Tumor segmentation on rectal MRI. a A 49-year-old man with early-stage rectal cancer. b A 73-year-old man with LARC​

http://mitk.org/wiki/MITK
https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
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Feature selection and radiomics signature building

After extracting features, a least absolute shrinkage and 
selection operator (LASSO) logistic regression was per-
formed to identify the optimal predictive features from 
the training dataset. Then the optimal features weighted 
by corresponding coefficients were linearly combined to 
obtain a radiomics score (Rad-score) [23].

Radiomics nomogram construction 
and performance evaluation

The Rad-score and clinicopathological factors, including 
age, gender, tumor location, maximum diameter, differ-
entiation, CEA, and CA199, were considered as possible 
predictive factors. Significant predictors were chosen via 
univariate and multivariate logistic regression of the train-
ing dataset. Based on Akaike’s information criterion, we 
used the likelihood ratio test to make a backward stepwise 
selection. A radiomics nomogram grounded on the multi-
variate logistic analysis was built for the training dataset.

The predictive ability of the nomogram was quantified 
through the area under the curve (AUC) of a receiver oper-
ator characteristic (ROC) curve. A calibration curve [24] 
was chosen to evaluate the calibration performance via 
bootstrapping with 1000 resamplings. The Hosmer–Leme-
show (H–L) test was used to evaluate goodness of fit of 
the nomogram.

Validation of the nomogram

In the validation dataset, each patient received a Rad-score 
and the performance of the nomogram was validated. The 
discrimination was evaluated by the AUC, and calibration 
was verified by the calibration curve and H–L test.

Clinical use

The clinical utility of the nomogram was assessed via quan-
tifying the net benefits at different thresholds in decision 
curve analysis (DCA) [25] for the training and validation 
datasets.

Statistical analysis

A Mann–Whitney U test or an independent samples t-test 
was used for continuous variables comparison, while Chi-
squared tests for categorical variables. R software (version 
3.6.3; https://​www.r-​proje​ct.​org/) was applied to statistical 

analysis. P < 0.05 was considered statistically significant. 
Supplementary Material 3 describes the packages used in 
R.

Results

Patient characteristics

The median age was 59.84 in the training dataset and 
60.20 in the validation dataset. Males had a preponder-
ance in both datasets (69.7% and 70.0%, respectively). The 
moderately differentiated patients accounted large propor-
tion in two datasets (70.2% and 70.0%, respectively). No 
significant differences were found among clinical factors 
between the two datasets. The training dataset contained 
133 LARC patients and the validation dataset contained 60 
LARC patients. There was no difference in the proportion 
of LARC patients in the two datasets (Table 1).

Table 1   Characteristics of patients

SD standard deviation, IQR interquartile range, CEA carcinoembry-
onic antigen, CA199 carbohydrate antigen 199

Clinical factors Training dataset 
(n = 188)

Valida-
tion dataset 
(n = 80)

P

Age, mean ± SD, 
years

59.84 ± 10.77 60.20 ± 10.67 0.799

Gender, no (%) 0.958
 Male 131(69.7) 56(70.0)
 Female 57(30.3) 24(30.0)

Tumor diameter, 
median (IQR), cm

4.5(3.5–5.5) 4.5(3.6–5.5) 0.428

Location 0.339
 Lower 65(34.6) 21(26.3)
 Middle 119(63.3) 56(70.0)
 Upper 4(2.1) 3(3.7)

Differentiation degree 0.940
 Poorly 21(11.2) 10(12.5)
 Moderately 132(70.2) 56(70.0)
  Well 35(18.6) 14(17.5)

CEA level, no (%) 0.329
 Normal 120(63.8) 46(57.5)
 Abnormal 68(36.2) 34(42.5)

CA199 level, no (%) 0.080
 Normal 162(86.2) 62(77.5)
 Abnormal 26(13.8) 18(22.5)

Stage, no (%) 0.478
 T1–T2 55(29.3) 20(25.0)
 T3–T4 133(70.7) 60(75.0)

https://www.r-project.org/
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MRI evaluation of T staging

Two radiologists evaluated the T staging through MRI 
images without knowing the pathological results. When 
they had different opinions, the final results were deter-
mined through discussion. The AUC was used to evaluate 
the performance of the radiologists’ subjective judgment of 
T staging through MRI images. The AUC for the training 
dataset was 0.689 (95% CI 0.619–0.759) and 0.666 (95% 
CI 0.552–0.781) for the validation dataset (Fig. 3a and b).

Repeatability of ROI segmentation, feature 
selection, and radiomics signature construction

The evaluation of intra-/inter-observer repeatability of ROI 
segmentation was through calculating ICC. The intra- and 
inter-observer ICC were 0.816–0.947 and 0.778–0.925, 
respectively, which indicated satisfying repeatability of the 
segmentation. In the training dataset, the LASSO logis-
tic regression identified nine potential radiomics features 
with nonzero coefficients (Fig. 4a and b). There were three 

Fig. 3   The ROC of the training (a) and validation (b) datasets for the MRI

Fig. 4   The LASSO logistic regression model for radiomics feature 
selection. a The tuning parameter (λ) selection was based on a ten-
fold cross-validation in the LASSO model. The minimum criteria and 
one standard error of the minimum criteria (1-SE criteria) were used 
to place the vertical lines at the optimum values. A lambda of 0.068, 

with log(λ) = − 2.688 was chosen (1-SE criteria) for selecting fea-
tures. b The LASSO coefficient profiles. The value selected by cross-
validation was applied for drawing the vertical line and nine nonzero 
coefficients were shown
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shape-based features, one LoG filter feature and five wavelet 
filter features. In order to explore the contribution of the 
shape-based features, we built two Rad-scores: Rad-score 1 
consisted of all nine features and Rad-score 2 consisted of 
the remaining features after removing the shape-based fea-
tures. Then the AUC was used to evaluate the performance 
of Rad-scores. The AUC of Rad-score 1 was 0.872 (95% 
CI 0.821–0.922) for the training dataset and 0.807 (95% CI 
0.705–0.909) for the validation dataset. The AUC of Rad-
score 2 was 0.867 (95% CI 0.815–0.919) for the training 
dataset and 0.786 (95% CI 0.671–0.901) for the validation 
dataset. The performance of Rad-score 1 was better than 
Rad-score 2, and we chose Rad-score 1 as the final Rad-
score. The Rad-score calculation formula was as follows:

Rad-score = 1.087604 + 0.090569 × log-sigma-5–0-
mm-3D_firstorder_Kurtosis + 0.204631 × original_
shape_Maximum 2D Diameter Row – 0.222923 × origi-
nal_shape_Sphericity + 0.116812 × original_shape_Minor 
Axis Length + 0.140837 × wavelet-HLL_glcm_Difference 
Entropy + 0.379834 × wavelet-HLL_glszm_Size Zone NonU-
niformity + 0.017470 × wavelet-HLH_glszm_Zone Entropy 
– 0.041454 × wavelet-HHL_firstorder_Mean + 0.004327 × wave-
let-LLL_glcm_Informational Measure of Correlation 1

The Rad-scores of LARC patients were generally higher 
than those who had early-stage rectal cancer. A significant 
difference was found between LARC and early-stage rectal 
cancer Rad-scores (mean ± standard deviation) in both the 
training dataset (1.402 ± 0.868 vs 0.208 ± 0.680, respec-
tively, P < 0.001) and the validation dataset (1.476 ± 0.836 
vs 0.488 ± 0.782, respectively, P < 0.001).

Individualized radiomics nomogram development 
and validation

Univariate logistic regression analysis indicated that Rad-
score, tumor diameter, tumor location, CEA, and CA199 
level had predictive value for LARC. Further multivariate 

logistic regression analysis confirmed CEA level and Rad-
score as independent predictive factors (Table 2). Thus, we 
developed a nomogram that combined Rad-score and CEA 
(Fig. 5a). The AUC of the nomogram was 0.882 (95% CI 
0.835–0.930) for the training dataset and 0.846 (95% CI 
0.757–0.936) for the validation dataset (Fig. 5b and c). 

The calibration curve (Fig. 6a and b) and the H–L test 
results (P = 0.768 for the training dataset and 0.638 for 
the validation dataset) indicated good consistency between 
observation and prediction.

Clinical utility

The DCA for radiomics nomogram indicated that when 
the probability of LARC was between 0.23–0.99 and 
0.27–0.99 in the training (Fig. 7a) and validation data-
sets (Fig. 7b), respectively, using the nomogram to evalu-
ate pathological LARC had added benefit compared with 
treating all patients as early or local advanced stage.

Prospective trial analysis

The radiomics nomogram was used to perform prospective 
analysis on another 32 patients with rectal cancer, includ-
ing 18 males and 14 females. Table 3 presents the patient 
characteristics.

The AUC of the radiomics nomogram was 0.859 (95% 
CI 0.730–0.987) (Fig. 8a). The DCA showed that when the 
probability of LARC ranged from 0.06 to 0.97 (Fig. 8b), 
using the nomogram to evaluate pathological LARC had 
added benefit compared with treating all patients as early 
or local advanced stage, which suggested the nomogram 
had good clinical utility. The prospective analysis showed 
that this nomogram has the satisfying predictive ability in 
prospective conditions.

Table 2   Risk factors for patients 
with LARC​

P values with statistical significance are shown in bold
LARC​ locally advanced rectal cancer, OR odds ratio, CI confidence interval, CEA carcinoembryonic anti-
gen, CA199 carbohydrate antigen 199

Factors Univariate logistic regression Multivariate logistic regression

OR (95% CI) P value OR (95% CI) P value

Age 1.01 (0.98–1.04) 0.484 Not selected Not selected
Gender 1.40 (0.69–2.84) 0.352 Not selected Not selected
Tumor diameter 2.14 (1.60–2.87)  < 0.001 0.99 (0.68–1.43) 0.937
Location 2.02 (1.09–3.75) 0.026 1.47 (0.67–3.22) 0.339
Differentiation degree 0.71 (0.39–1.27) 0.249 Not selected Not selected
CEA level 4.08 (1.85–9.00)  < 0.001 2.68 (1.03–7.00) 0.044
CA199 level 5.83 (1.33–25.62) 0.019 1.95 (0.39–9.66) 0.416
Rad-score 8.41 (4.31–16.38)  < 0.001 7.45 (3.12–17.75)  < 0.001
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Discussion

In our study, we explored the performance of a radiomics-
based nomogram for the preoperative individual prediction 
of T stage in rectal cancer patients. The nomogram incor-
porated radiomics features and CEA levels. The results 
showed that this nomogram had good accuracy and clinical 

utility in both the retrospective analysis and prospective 
study. This indicated that radiomics-based nomograms can 
improve preoperative T stage prediction strategies in rectal 
cancer patients, which has important implications for clini-
cal decision making.

Computed tomography (CT), MRI, and positron emis-
sion tomography/CT are commonly used imaging methods 
in clinical routine work. MRI is the preferred imaging exam 

Fig. 5   Radiomics nomogram 
for predicting LARC. The 
nomogram combining CEA and 
Rad-score was built from the 
training dataset (a). The ROC 
curves of the training (b) and 
validation (c) datasets for the 
radiomics nomogram

Fig. 6   The calibration curves of 
the training (a) and validation 
(b) datasets
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for rectal cancer T staging [3, 4]; however, there are some 
drawbacks that limit its application in preoperative assess-
ment. Conventional MRI has difficulty in distinguishing 
tumor infiltration from fibrosis [26]. Most importantly, the 

accuracy of conventional MRI in the diagnosis of rectal can-
cer T staging is influenced by subjectivity [27].

Radiomics is a promising field that focuses on enormous 
quantitative information extraction from medical images 
and deeply explore the potential connections related to 
tumor occurrence and development [28, 29]. It can provide 
evidence to support clinical decision making and thus has 
high clinical significance [14, 19, 30]. In this study, we con-
structed and validated a radiomics nomogram, which com-
bined both the radiomics signature and clinicopathologic 
risk factors for personal prediction of T staging in rectal can-
cer patients. We used axial T2-weighted images to extract 
features of the entire tumor and the independent predictors 
of LARC were selected out by LASSO logistic method. This 
method allows us to combine radiomics features into a radi-
omics signature [31–33]. Multi-factor analysis that incorpo-
rates individual factors into a factor panel has been widely 
used in recent studies [34–36]. For example, Wang et al. 
[34] constructed an MRI-based radiomics model to predict 
the muscle-invasive status of bladder cancer and confirmed 
that the radiomics could be an efficient tool for preoperative 
prediction. Similarly, Xu et al. [35] developed a radiomics 
nomogram to predict intracerebral hematoma expansion and 
found that the nomogram could serve as a convenient meas-
urement. Pan et al. [36] used the LASSO logistic method to 
identify optimal radiomics features for preoperative clas-
sification of ovarian cystadenoma. The results showed that 
imaging biomarkers could classify ovarian serous cystad-
enoma and mucinous cystadenoma. In our study, we incor-
porated the Rad-score and CEA levels into a nomogram for 
preoperative prediction of LARC. The nomogram exhibited 
good discrimination in retrospective cohort studies and 
was confirmed in the prospective pilot analysis as well. 

Fig. 7   The DCA of the training (a) and validation (b) datasets

Table 3   Characteristics of patients in the prospective study

SD standard deviation, IQR interquartile range, CEA carcinoembry-
onic antigen, CA199 carbohydrate antigen 199

Clinical factors Prospective study

Age, mean ± SD, years 63.59 ± 10.04
Gender, no (%)
 Male 18(56.2)
 Female 14(43.8)

Tumor diameter, median (IQR), cm 4.5(4.0–5.5)
Location
 Lower 14(43.8)
 Middle 17(53.1)
 Upper 1(3.1)

Differentiation degree
 Poorly 3(9.4)
 Moderately 26(81.2)
 Well 3(9.4)

CEA level, no (%)
 Normal 23(71.9)
 Abnormal 9(28.1)

CA199 level, no (%)
 Normal 26(81.2)
 Abnormal 6(18.8)

Stage, no (%)
 T1–T2 10(31.3)
 T3–T4 22(68.7)
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Furthermore, our nomogram performed better than previ-
ous studies. Ma et al. [11] used MRI radiomics derived from 
T2-weighted images to predict pathological characteristics 
of rectal cancer. They extracted 1029 radiomics features and 
used the LASSO method to select optimal features. Eleven 
features were found to be related to T staging and the accu-
racy of T stage prediction was 0.762. Yin et al. [12] collected 
data from 115 rectal cancer patients in their study. Texture 
features based on apparent diffusion coefficient (ADC) maps 
and diffusion-weighted images (DWI) were used to predict 
different stages of rectal cancer, which resulted in an AUC of 
0.793. Finally, Sun et al. [13] explored the role of radiomics 
features in identifying tumor characteristics of rectal cancer. 
They demonstrated that it is feasible to use MRI-based radi-
omics features to predict T staging.

In our study, we constructed the nomogram based on 
the T2-weighted imaging, which is a routine sequence in 
rectal scanning. T2-weighted imaging has better stability 
in appearance. High-resolution T2-weighted imaging can 
provide clear visualization of rectal layers by offering good 
contrast between the tumor and surrounding tissue, making 
it one of the most important sequences for staging of rectal 
cancer [37, 38]. Contrast-enhanced T1-weighted images are 
obtained by scanning after intravenous injection of a contrast 
agent to determine angiogenesis inside tumors. However, 
for staging of rectal cancer, contrast-enhanced T1-weighted 
imaging is not recommended as a routine sequence [39]. In 
our study, we extracted features from original and filtered 
images, including wavelet filter and LoG filter images. The 
features derived from the wavelet filter images accounted 
for the majority of the final Rad-score. Wavelet filters have 

advantages in signal denoising and have been commonly 
applied in recent studies [40–42]. One prospective study that 
predicted tumor grading of rectal carcinoma had features 
obtained primarily from wavelet filter images in their radi-
omics signature [40]. In the study by Hamerla et al. [41], the 
most relevant features in their radiomics model for predict-
ing pathological response were also extracted from wavelet 
filter images. Furthermore, Liang et al. [42] constructed a 
prediction model for metachronous liver metastases in rectal 
cancer patients, and a large proportion of the selected fea-
tures was obtained from wavelet filter images.

In addition to radiomics features, we introduced CEA into 
the nomogram. It is one of the commonly used tumor mark-
ers in clinical practice [43]. CEA is a cell surface glycopro-
tein and is expressed at low levels in normal tissue but is 
up-regulated in most CRC lesions [44, 45]. Previous studies 
have demonstrated that CEA is correlated with rectal cancer 
staging [46–48]. In this study, we analyzed the performance 
of CEA in predicting LARC. After univariate and multivari-
ate logistic regression, we found that CEA was a predictive 
factor for LARC, fitting the results of previous studies. The 
model constructed by combining CEA with a radiomics sig-
nature showed good accuracy and calibration ability.

Some limitations exist in this study. First, the patients 
recruited in the study were from a single center, and there-
fore, our study lacks external validation. Second, the sam-
ple size was relatively limited. Third, our images were all 
scanned by one 3.0 T MRI scanner, which may lead to a 
limitation in model generalization. In the future, multi-
center, large-scale, and multi-vendor studies are needed to 
overcome these limitations.

Fig. 8   The ROC (a) and DCA (b) of the nomogram
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In conclusion, we constructed a radiomics-based nomo-
gram and validated its prediction ability and clinical utility. 
The nomogram is a novel method to predict LARC and can 
provide support for clinical decision making.
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