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ABSTRACT: Constructing high-quality libraries of molecular building blocks
is essential for successful fragment-based drug discovery. In this
communication, we describe eMolFrag, a new open-source software to
decompose organic compounds into nonredundant fragments retaining
molecular connectivity information. Given a collection of molecules, eMolFrag
generates a set of unique fragments comprising larger moieties, bricks, and
smaller linkers connecting bricks. These building blocks can subsequently be
used to construct virtual screening libraries for targeted drug discovery. The
robustness and computational performance of eMolFrag is assessed against the
Directory of Useful Decoys, Enhanced database conducted in serial and
parallel modes with up to 16 computing cores. Further, the application of
eMolFrag in de novo drug design is illustrated using the adenosine receptor.
eMolFrag is implemented in Python, and it is available as stand-alone software
and a web server at www.brylinski.org/emolfrag and https://github.com/liutairan/eMolFrag.

■ INTRODUCTION

Hit identification, lead generation, and lead optimization are
the key steps at the outset of a drug discovery process. Briefly,
compounds showing promising activity identified by high-
throughput screening as initial hits are filtered and modified to
generate lead compounds, which satisfy basic drug-likeliness
properties.1 These lead compounds are further optimized to
enhance the potency toward the target protein as well as to
reduce their nonselectivity and toxicity.2 Conventional hit
identification is not only limited to already synthesized
compounds often leading to low discovery rates, but it is also
expensive and requires time-consuming screening experiments.3

Consequently, virtual screening that can rapidly evaluate
millions of compounds has become an integral part of lead
identification protocols.4

In order to enhance the chemical diversity of virtual
screening libraries, large collections of drug-like compounds
can be generated through combinatorial chemistry.5 Since
constructing and screening the entire chemical space are not
feasible even with the most advanced computers, building
extensive yet targeted libraries is critical for the success of
virtual screening. A number of fragment- and atom-based
techniques have been developed to generate novel chemical
compounds for virtual screening, including binding-site point
connection methods (LUDI6), fragment connection methods
(LEA3D,7 LigBuilder,8 and eSynth9), sequential build-up
algorithms (LEGEND10 and SPROUT11), and random
connection techniques (CoG12 and Flux13). These de novo
methods require an initial set of building blocks or molecular

fragments, which ultimately control the properties of the
resulting screening compounds and their affinity toward the
target protein. Consequently, there is a great interest in efficient
fragmentation techniques to generate sets of chemically feasible
building blocks for the subsequent molecular synthesis.
Retrosynthetic combinatorial analysis procedure (RECAP14)
and breaking retrosynthetically interesting chemical substruc-
tures (BRICS15) are examples of systematic fragmentation
methods. In RECAP, compounds are dissected based on a set
of 11 bond types, following simple rules such as leaving cyclic
bonds and alkyl groups smaller than five carbons intact. These
rules ensure that major structural features of organic
compounds, such as ring motifs, are preserved. BRICS expands
the bond type criteria used by RECAP from 11 to 16 taking
into account the chemical environment of each bond type and
the surrounding substructures. Additional filters are also applied
in order to prevent generating small and unwanted fragments.
Other methods extract and classify chemical scaffolds by
pruning side chains and removing peripheral ring moieties.16

In general, the performance of fragment-based chemical
synthesis tools such as eSynth,9 CONFIRM,17 and AutoGrow18

could significantly be improved by employing building blocks
annotated with empirical connectivity patterns. Although this
information could help explore pharmacologically relevant
regions of the diverse chemical space,9 many existing
fragmentation tools, e.g. Fragmenter19 and molBLOCKS,20
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do not consider the chemical context of the fragments. In other
words, the connectivity information on a fragment is not stored
while extracting building blocks. To address this issue, we
developed eMolFrag, a new open-source molecular fragmenta-
tion software. eMolFrag decomposes either a single ligand or a
library of compounds into two types of chemical building
blocks, bricks and the connecting linkers. The resulting
complete and nonredundant sets of building blocks are
annotated with the comprehensive connectivity information
in order to facilitate the construction of novel compounds with
combinatorial synthesis software. eMolFrag has been paral-
lelized to decrease the computing time required to analyze large
collections of molecules.

■ METHODS
eMolFrag employs a graph-based notation, where molecules are
sets of nodes representing atoms connected by edges
corresponding to chemical bonds. A fragment is a substructure,
which has either all or only some atoms and bonds of a given
molecule; fragments are categorized as either bricks or linkers.
Given a collection of molecules, the complete set of unique
fragments is constructed in two steps shown in Figure 1. The

first step, labeled as Part I, involves creating an initial set of
fragments, whereas the second step, labeled as Part II,
guarantees the uniqueness of the resulting set of fragments.
Part I: Fragmentation. In eMolFrag, a set of molecules are

first decomposed into constituent fragments with the BRICS
algorithm,15 implemented in RDKit.21 Chemical compounds
are broken down into larger moieties called bricks connected by
linkers based on 16 chemical environments defined by the
BRICS model;15 a pseudocode for the fragmentation process is
given in the Supporting Information (Algorithm S1). A brick
fragment is a molecular construct having at least four non-
hydrogen atoms. Subsequently, bricks are removed from a
molecule and the remaining fragments are classified as linkers
(see Algorithm S2 in the Supporting Information). Broken
bonds are replaced by dummy atoms, which are placeholders
for those atoms removed from a particular bond. The complete
information, including the type of atoms involved in those
bonds that were broken, is stored for each brick in order to
provide empirical connectivity patterns. Linkers have different
auxiliary connectivity information, i.e. these fragments are
annotated only with the maximum number of bonds at various
positions. Examples of bricks and linkers are provided in the
Supporting Information (Examples S1 and S2, respectively).
We found that this approach allows to efficiently construct
series of new molecules, whose chemistry is similar to that of
parent compounds.
Part II: Mitigation of Fragment Redundancy. Since one

of the objectives of an effective fragmentation procedure is to

employ the resulting fragments in a synthesis procedure, the
cardinality of the final set of fragments is critical. On that
account, eMolFrag attempts to minimize the size of sets of
bricks and linkers by removing redundancy with a partitioning
and sieve-based removal scheme presented in the Supporting
Information (Algorithm S3). Two fragments are equivalent if
the Tanimoto coefficient (TC) calculated for topologically
constrained maximum common substructures by the kcombu
program22 is equal to 1.0. Information on equivalent atoms
provided by kcombu as well as their connectivity information is
then used to consolidate identical fragments into a single,
unique construct.

■ RESULTS AND DISCUSSION
Benchmarks against the DUD-E Database. We validate

the eMolFrag algorithm by conducting a self-reconstruction test
as described previously.9 Briefly, given an input molecule m, a
set of fragments extracted from m by eMolFrag are passed to a
fragment-based construction procedure with eSynth employing
its chemical rules.9 A molecule with the highest chemical
similarity to m measured by the TC calculated for Daylight
fingerprints23 is selected from a series of compounds
constructed by eSynth. Here, we employ a fingerprint-based
assessment of chemical similarity with OpenBabel24 because
this technique is computationally much faster than kcombu. A
TC of ≥0.8 indicates that a molecule highly similar to m was
generated, whereas a TC of 1.0 indicates that compound m has
been reconstructed. As a testing set, we use 20 408 active
compounds for 102 protein targets from the Directory of
Useful Decoys, Enhanced (DUD-E) database25 covering a
diverse chemical space of pharmacologically relevant molecules.
The performance of eMolFrag is compared to mol-

BLOCKS,20 another fragmentation software employing the
RECAP algorithm.14 Figure 2 shows a two-way box plot of the
number of atoms per fragment and the number of fragments
per molecule for these two programs. Fragments generated by

Figure 1. Flowchart of eMolFrag. Part I: Input molecules are
fragmented with the BRICS algorithm to generate a complete set of
building blocks. Part II: Fragment redundancy is removed according
to pairwise chemical alignments with the kcombu program. At the end,
nonredundant sets of bricks and linkers are reported along with the
consolidated connectivity information as well as lists of similar
fragments that were removed.

Figure 2. Two-way box plot of the number of fragments per molecule
against the number of atoms per fragment. Bioactive compounds from
the Directory of Useful Decoys, Enhanced database were fragmented
with eMolFrag (green) and molBLOCKS (red: the default protocol,
gray: an extensive mode).
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molBLOCKS typically contain 6−10 (the default protocol) and
6−11 (an extensive mode) atoms, whereas most fragments
extracted by eMolFrag consist of 2−7 atoms. The median
numbers of fragments per molecule are 3, 8, and 6 for
molBLOCKS (default), molBLOCKS (extensive), and eMol-
Frag, respectively. Finally, molecular synthesis with eSynth9 was
conducted employing fragments generated by eMolFrag for
active compounds in the DUD-E database. Encouragingly,
82.8% of active compounds were reconstructed with a TC of
1.0 and 92.2% with a TC of ≥0.8. An inspection of the failed
cases revealed that the major reason for not generating a
relatively small fraction of testing compounds is the fact that
the synthesis software does not allow to directly connect two
bricks. Overall, the self-reconstruction benchmarking results
demonstrate that eMolFrag properly extracts molecular frag-
ments providing sufficient connectivity information to rebuild
the majority of parent molecules.
Computational Performance. Decomposing large com-

pound libraries can be time-consuming depending on the
number of input molecules; therefore, we parallelized the
eMolFrag code. The serial and parallel performance of
eMolFrag is assessed by fragmenting subsets of DUD-E actives
with sizes varying from 100 to 12 800 molecules. All tests were
performed on a machine equipped with two 2.6 GHz 8-core
Sandy Bridge Xeon 64-bit processors, 32GB 1666 MHz RAM
and 500GB HD, running Red Hat Enterprise Linux 6. Figure 3

shows that the wall time for eMolFrag scales linearly with the
number of input molecules. The average processing speed of
the serial code ranges from 8.7 molecules/s for the smallest
data set to 4.8 molecules/s for the largest data set (see Table S1
in Supporting Information). The actual decomposition speed
(Part I in Figure 1) is faster for larger sets because the I/O
overhead is reduced by efficient data caching. However,
removing redundancy (Part II in Figure 1) from large data
sets requires significantly longer computing times compared to
small data sets, which in turn causes the overall speed to
decrease with the increasing number of input molecules.

Without removing redundancy, the average processing speed of
serial eMolFrag is 9.8 molecules/s for the smallest data set and
23.2 molecules/s for the largest data set. For comparison, a
serial version of molBLOCKS, which does not remove
redundancy, is capable of processing 6.6 and 12.5 molecules/
s for the smallest and the largest data sets, respectively. Thus,
eMolFrag is 1.2−1.9× faster than molBLOCKS. Further,
algorithms implemented in eMolFrag are polynomial in
complexity; the best-fit curves in Figure 3 are y = 0.022x1.238

(R2 = 0.99989) for serial and y = 0.013x1.201 (R2 = 0.99989) for
parallel execution. This near-linear scaling gives empirical
evidence of the efficient implementation of eMolFrag.
The impact of the number of computing cores on parallel

processing is assessed by comparing the performance of parallel
eMolFrag to the theoretical speedup estimated with Amdahl’s
law.26 The inset in Figure 3 shows that executing eMolFrag in
parallel for a fixed input data set of 3200 molecules and the
number of computing cores varying from 1 to 16 roughly
corresponds to a hypothetical code consisting of 47−60%
parallel calculations. Note that eMolFrag does not conform
exactly to Amdahl’s law because the workload related to
removing redundancy (Part II in Figure 1) is unevenly
distributed across computing cores. Although the total
execution time of eMolFrag diverges from Amdahl’s law, the
parallel processing is faster than the serial execution. The
average processing speed for the parallel code running on 16
computing cores ranges from 24 molecules per second for the
smallest data set to 11.8 molecules per second for the largest
data set (see Table S1 in the Supporting Information). This
shorter processing time for parallel eMolFrag becomes
particularly beneficial for larger data sets. For instance,
decomposing 20 408 active compounds from the DUD-E
data set for the self-benchmarking test takes 1 h and 18 min on
a single core compared to only half an hour on 16 computing
cores.

Application to Antagonists of the Adenosine Re-
ceptor. To illustrate the application of eMolFrag in de novo
drug discovery, we show that bioactive compounds can
successfully be constructed from molecular fragments extracted
from chemically dissimilar binders of the same target protein.
Here, we selected the human adenosine A2a receptor
(AA2AR), a member of the G protein-coupled receptor
(GPCR) superfamily containing targets for about 27% of all
FDA-approved drugs.27 Figure 4 presents individual steps of
the cross-validation procedure, in which CHEMBL144979, a
known bioactive ligand for AA2AR,28 is the target molecule.
Four other AA2AR antagonists, called donors, are shown in
Figure 4A. Since the chemical similarity of donors to the target,
measured by the TC reported by kcombu, is lower than 0.5,
CHEMBL144979 can be considered novel with respect to the
donor molecules.
Unique sets of 10 bricks and 7 linkers extracted by eMolFrag

from 4 donors are shown in Figures 4B and C, respectively. For
instance, the triazolo-quinazoline fragment highlighted in pink
carrying the chlorine moiety was obtained from
CHEMBL95229. This compound is a member of a series of
pyrazolo-triazolo-pyrimidines with subnanomolar affinity
against ARs created via N5-phenylcarbamoyl substitutions.29

Bricks contain information on atom types that can be attached
at various positions (small boxes in Figure 4B), whereas linkers
are annotated with the maximum number of allowed bonds
(small circles in Figure 4C). The sets of bricks and linkers are
complete and nonredundant, i.e. each unique fragment carries

Figure 3. Serial and parallel performance of eMolFrag. The main graph
shows the wall time for the complete fragmentation procedure plotted
against the number of input molecules. A serial code is compared to
the parallel processing on 16 computing cores. Parallel scaling for a
fixed size input data set of 3200 molecules is presented as the inset.
Upper and lower bounds for the ideal speedup calculated according to
Amdahl’s law are shown as dark and light gray lines, respectively.
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the connectivity information extracted from multiple donor
compounds. For example, the connectivity information for a
benzene ring, which is present in all donors, is consolidated by
eMolFrag into a single fragment shown in cyan in Figure 4B.
Subsequently, molecular fragments extracted by eMolFrag

were passed to eSynth9 in order to generate a series of
compounds. A serial version of eSynth produced 4 492 609
virtual compounds in 12 h. Encouragingly, the first compound
in Figure 4D (shown in a box) is CHEMBL144979; therefore,
the target molecule has been successfully constructed. Further,
the set of virtual molecules comprises 845 compounds, whose
TC to CHEMBL144979 is ≥0.7 and as many as 239 656
molecules with a TC of ≥0.5. Three randomly selected virtual
molecules are presented in Figure 4D to demonstrate the
chemical diversity of compounds generated by eSynth. It is
important to note that these retrospective cross-validation
benchmarks are designed to mimic real applications by
attempting to construct target molecules using building blocks
extracted from chemically dissimilar compounds. This case
study demonstrates that high-quality fragment sets generated
by eMolFrag can be used in fragment-based drug discovery to
create targeted screening libraries likely containing novel
bioactives.

■ CONCLUSIONS

eMolFrag is a fast and robust tool to extract molecular
fragments, classified as bricks and linkers, from small molecule
data sets. Subsequently, these fragments can be used to
construct targeted libraries for virtual screening. A unique
feature of eMolFrag is that it stores the connectivity
information for the extracted building blocks to help generate
new series of chemically feasible compounds. Although
eMolFrag was optimized to work with eSynth, a recently
developed molecular synthesis algorithm, it can also be
integrated into other cheminformatics toolkits utilizing
chemical fragments. eMolFrag is freely available as stand-
alone software and a Web server at www.brylinski.org/emolfrag
and https://github.com/liutairan/eMolFrag.
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Figure 4. Example of the successful construction of a bioactive of the adenosine receptor by eMolFrag and eSynth. (A) Donor molecules with the
chemical similarity to CHEMBL144979 measured by the Tanimoto coefficient (TC). (B) Bricks annotated with the list of atom types that can be
attached at various positions. (C) Linkers annotated with the number of the maximum allowed connections. (D) Examples of new molecules
synthesized using bricks and linkers. The first molecule shown in a box is a known bioactive of the adenosine receptor. Highlighted in different colors
are essential building blocks to generate CHEMBL144979 that are extracted from donor molecules by eMolFrag and used in molecular synthesis by
eSynth. Further, the connectivity information inferred from donors that is required to correctly assemble CHEMBL144979 is highlighted in bold in
B and C.
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