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Inflammatory Biomarker Profiling in Total
Joint Arthroplasty and Its Relevance to
Circulating Levels of Lubricin, a Novel
Proteoglycan
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Abstract
Lubricin, also known as proteoglycan 4, acts as an antiadhesive and boundary lubricant to prevent cartilage damage in healthy
joints. Following injury, a decrease in synovial fluid (SF) lubricin may lead to secondary osteoarthritis (OA). Inflammatory bio-
markers, such as IL-1b and TNF-a, are also implicated in the pathophysiology of OA. Interestingly, they have been shown to
suppress the expression and secretion of lubricin in SF. This study aims to compare circulating levels of inflammatory biomarkers
and lubricin between total joint arthroplasty (TJA) patients and healthy individuals. Doing so may better elucidate their roles in
OA and extend the understanding of inflammation as a regulator of lubricin. Deidentified plasma samples were obtained 1 day
preoperatively and 1 day postoperatively from patients undergoing TJA. Utilizing biochip array technology, they were profiled for
IL-2, IL-4, IL-6, IL-8, IL-10, VEGF, IFN-g, IL-1a, IL-1b, MCP-1, EGF, and TNF-a. Circulating lubricin levels were also measured using
enzyme-linked immunosorbent assay. Compared to healthy controls, IL-6, IL-8, VEGF, IL-1b, MCP-1, EGF, and TNF-a were
significantly increased pre- and postoperatively. Lubricin was significantly decreased. This may indicate that elevations in
inflammatory cytokines initiate a cascade of events, leading to decreased lubricin, which places the joint at increased risk of
developing OA.
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Introduction

Osteoarthritis (OA) is a slow progressive degenerative joint

disease of multifactorial etiology associated with cartilage

destruction, subchondral bone remodeling, and inflammation

of the synovium.1 Due to its predilection for lower extremity

joints, such as the knee and hip, OA is the leading cause of

lower extremity disability in older adults, and its incidence is

rising due to an aging population and increasing obesity.2

While lifestyle modifications, nutritional supplements, oral

drug therapies, intra-articular injections, and several surgical

interventions have demonstrated favorable outcomes on symp-

tomatology, there are currently no approved OA treatments

capable of slowing disease progression or delaying the need

for total joint arthroplasty (TJA).3,4 By 2030, the demand for

total hip arthroplasty (THA) is estimated to rise 174% to 572

000, while the demand for total knee arthroplasty (TKA) is

projected to rise 673% to 3.48 million.5

It has been hypothesized that OA begins, in part, following

an increase in coefficient of friction (COF) due to loss of

boundary lubricant in synovial fluid (SF).6 According to this

hypothesis, the absence of lubrication causes elevated shear

stress at the articular cartilage surface, which in turn disturbs

chondrocyte metabolic function and survival. Eventually, the
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combination of increased friction, proteoglycan loss within the

cartilage matrix, and chondrocyte apoptosis results in the full-

thickness cartilage damage characteristic of end-stage OA.7-9

Lubricin, a mucinous glycoprotein encoded by the proteo-

glycan 4 (PRG4) gene, acts as an antiadhesive and boundary

lubricant to prevent cartilage damage in healthy joints. Pro-

duced by synoviocytes and superficial zone chondrocytes, it

is present in SF and on the surface of articular cartilage.10

Patients with camptodactyly-arthropathy-coxavara-

pericarditis (CACP) syndrome, an autosomal recessive condi-

tion due to loss-of-function mutations in lubricin, develop early

cartilage failure. Recapitulation of CACP syndrome in PRG4

gene knockout mice has demonstrated precocious cartilage

changes, including surface cartilage fibrillation and the disap-

pearance of underlying superficial zone chondrocytes.11,12

Following injury, a decrease in SF lubricin concentration may

place the joint at an increased risk of wear-induced damage,

leading to secondary OA.13 Common traumatic knee injuries,

such as anterior cruciate ligament (ACL) tears and meniscal

injuries, are strong risk factors for the development of OA.14

Several studies have shown that native and recombinant lubricin,

when injected intra-articularly, has a disease-modifying effect in

rodent models of post-traumatic OA.15-18 Given the ability of

lubricin to reestablish boundary lubrication, provide chondro-

protection, and restore low COF, intra-articular injection of

lubricin may be a potential treatment for OA.10

Inflammatory cytokines, such as IL-1b and TNF-a, have also

been implicated in the pathophysiology of OA. Several studies

have identified elevated IL-1b levels in the SF, synovium, car-

tilage, and the subchondral bone layer of patients with OA.19 At

the cellular level, IL-1b activates matrix degrading enzymes,

induces chondrocyte apoptosis, and downregulates expression

of matrix components like type II collagen and aggrecan.20 In

addition, IL-1b stimulates the production of reactive oxygen

species that directly damage the articular cartilage.19 TNF-a has

also been observed at increased concentrations in the SF, syno-

vium, cartilage, and the subchondral bone layer of patients with

OA.19 Its action is similar to and synergistic with IL-1b, activat-

ing matrix metalloproteinases (MMPs), inducing chondrocyte

apoptosis, and blocking chondrocyte synthesis of type II col-

lagen and proteoglycans.19,21 Interestingly, IL-1b and TNF-a
have both been shown to suppress the expression and secretion

of lubricin. Treatment of bovine articular cartilage explants with

IL-1b and TNF-a decreased the levels of both cartilage surface-

associated and soluble lubricin.16,22 To date, a study comparing

plasma levels of inflammatory biomarkers and lubricin between

normal individuals and TJA patients pre- and postoperatively

has yet to be reported.

Materials and Methods

Methods

In accordance with the institutional review board of Loyola

University Chicago Health Sciences Division, deidentified

samples of plasma (n ¼ 105, age 36-86 years, with a mean age

of 66 years + 10.67) were obtained from patients undergoing

THA and TKA at Loyola University Medical Center and the

University of Utah Orthopedics Clinic. Plasma was isolated fol-

lowing blood sample collection into tubes containing 3.2%
sodium citrate during routine preoperative consultations and 1

day postoperatively. They were placed into multiple aliquots to

reduce the number of freeze–thaw cycles and stored at �80�C.

Patients undergoing TJA revision were excluded from this study.

Utilizing Cytokine Biochip Immunoassays from Randox

Laboratories Ltd (Crumlin, UK), samples were profiled for 12

cytokines and growth factors (IL-2, IL-4, IL-6, IL-8, IL-10,

VEGF, IFN-g, IL-1a, IL-1b, MCP-1, EGF, and TNF-a). Cir-

culating lubricin levels were measured using a PRG4 enzyme-

linked immunosorbent assay kit obtained from

MyBioSource.com.

Controls

Samples of normal, citrated plasma were obtained from healthy

individuals from the University of Utah Orthopedics Clinic (n

¼ 35, age 50-78 years, with a mean age of 64 years + 9.2,

nonsmokers) and George King Biomedical Inc (n¼ 48, age 18-

35 years, with a mean age of 32.5 years + 9.7, nonsmokers).

They were placed into multiple aliquots to reduce the number

of freeze–thaw cycles and stored at �80�C. The University of

Utah samples served as age-matched controls, while the com-

bination of University of Utah and George King Biomedical

samples served as non-age-matched, aggregate controls. A pool

of normal human plasma (NHP) composed of non-age-matched

pooled plasma served as a control as well.

Statistical Analysis

Statistical analysis was performed using Microsoft Excel and

GraphPad Prism Software version 7. Inflammatory biomarker

analysis compared TJA patient plasma values with age-

matched normal plasma values from the University of Utah

samples. Inflammatory biomarker analysis also compared TJA

patient plasma values with non-age-matched, aggregate normal

plasma values from the University of Utah and the George

King Biomedical samples. Lubricin analysis compared TJA

patient plasma values with pooled NHP values. Results were

expressed as means + standard error of the mean as well as

percentage changes + standard error of the mean from normal

mean. Analysis of variance tests were used to identify signif-

icant differences between the control and experimental groups.

A P value less than .05 was considered significant. Nonpara-

metric Spearmen correlation tests were also used to determine

correlations between 2 variables.

Results

Percentage Changes of Inflammatory Biomarkers in
TJA Patients From Normal Means

Preoperative levels of IL-2, IL-4, IL-6, IL-8, IL-10, VEGF,

IFN-g, IL-1a, IL-1b, MCP-1, EGF, and TNF-a all
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demonstrated positive percentage changes from their respec-

tive aggregate normal means. IL-8, IL-6, and TNF-a showed

the largest changes (3241% + 6.36, 2066% + 5.09, and

1939% + 3.39), followed by VEGF, EGF, IL-1a, and IFN-g
(513% + 0.76, 491% + 0.56, 290% + 2.11, 207% + 1.12).

IL-1b, IL-10, IL-2, and MCP1 followed with smaller changes

from their respective normal means (189% + 0.71, 117% +
0.67, 97% + 0.73, and 33% + 0.06). The smallest change was

demonstrated by IL-4 (6% + 0.13; Figure 1).

When compared to their respective age-matched normal

means, all preoperative levels of inflammatory biomarkers

again demonstrated positive percentage changes, with the

exception of IL-4. IL-8, IL-6, and TNF-a showed the largest

changes (2852% + 5.62, 2321% + 5.69, and 1997% + 3.49),

followed by VEGF, EGF, IL-1a, and IL-1b (323% + 0.53,

225% + 0.31, 192% + 1.58, and 166% + 0.65). IFN-g, IL-

10, IL-2, and MCP-1 followed with smaller changes from their

respective normal means (147% + 0.91, 122% + 0.68, 58%
+ 0.58, and 7% + 0.05). The only negative change was

demonstrated by IL-4 (�19% + 0.10).
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Figure 1. Percent changes in TJA patients pre-operatively from
(A) aggregate normal means and (B) age-matched normal means.
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Figure 2. Comparison of IL-6, IL-8, VEGF, and IL-1ß in TJA patients pre-operatively vs aggregate normals and age-matched normals.
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Comparison of Inflammatory Biomarkers in TJA Patients
Versus Aggregate Normal Controls

Preoperative levels of IL-6, IL-8, VEGF, IL-1b, MCP-1, EGF, and

TNF-a all demonstrated significant increases when compared to

aggregate normal controls (P ¼ .00040, P ¼ .00001, P < .00001,

P¼ .02007, P¼ .00003, P < .0001, and P < .0001; Figures 2 and 3).

Although not significant, preoperative levels of IL-2, IL-4, IL-10,

IFN-g, and IL-1a all appeared to trend toward an increase (Table 1).

Postoperative levels of IL-6, IL-8, IL-10, VEGF, IL-1b,

MCP-1, EGF, and TNF-a all demonstrated significant

increases when compared to aggregate normal controls (P <

.0001, P < .00001, P ¼ .00134, P < .00001, P ¼ .02455, P <

.00001, P < .00001, and P < .00001; Figures 4 and 5). Although

not significant, postoperative levels of IL-2, IL-4, IFN-g, and

IL-1a all appeared to trend toward an increase (Table 1). When

compared to their respective preoperative plasma concentra-

tions, only postoperative concentrations of IL-6, IL-8, and

VEGF demonstrated a significant difference (P < .00001,

P ¼ .010548, and P ¼ 0.027726).

Comparison of Lubricin in TJA Patients Versus Pooled
NHP

Pre- and postoperative levels of lubricin showed significant

decreases when compared to normal controls (P < .00001, P <

.00001). Postoperative levels of lubricin were not statistically chan-

ged when compared to preoperative levels (P¼ .39223; Figure 6).

Correlations Between Inflammatory Biomarkers and
Lubricin

IL-1b levels showed a significant negative correlation with lubri-

cin levels (Spearman r ¼ �0.66127, P ¼ .00650; Figure 7A).

TNF-a levels also showed a significant negative correlation with

lubricin levels (Spearman r¼�0.57647, P¼ .02150; Figure 7B).
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Figure 3. Comparison of MCP-1, EGF, and TNFa in TJA patients pre-operatively vs aggregate normals and age-matched normals.
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Discussion

The development of disease-modifying treatments of OA has not

progressed for decades. Unlike rheumatoid arthritis, for which

synthetic and biological disease-modifying antirheumatic drugs

have emerged to reverse or reduce the progression of joint dam-

age, OA remains ever elusive with its current gamut of

therapeutics limited to symptomatic relief.3,4,23,24 Identifying

pharmacologic targets, local or systemic, that can slow OA or

delay the need for TJA would be a major medical advance.

The objective of this study was to investigate circulating

levels of inflammatory biomarkers and lubricin in TJA

patients. Doing so further elucidated their individual roles in

Table 1. Aggregate Normal, Age-Matched Normal, Preoperative, and Postoperative Means + SEM for All Measured Inflammatory
Biomarkers.a

IL-2 (pg/mL) Aggregate normal
controls

1.36 + 0.17 IFN-g (pg/mL) Aggregate normal
controls

0.21 + 0.03

Age-matched normal
controls

1.70 + 0.14 Age-matched normal
controls

0.26 + 0.02

Preoperative 2.69 + 3.18 (P ¼ .23933,
P ¼ .56900)

Preoperative 0.64 + 1.55 (P ¼ .10567,
P ¼ .35198)

Postoperative 3.32 + 4.30 (P ¼ .33732,
P ¼ .69712)

Postoperative 0.73 + 2.03 (P ¼ .25300,
P ¼ .50237)

IL-4 (pg/mL) Aggregate normal
controls

1.64 + 0.12 IL-1a (pg/mL) Aggregate normal
controls

0.14 + 0.01

Age-matched normal
controls

2.14 0.10 Age-matched normal
controls

0.18 + 0.01

Preoperative 1.73 + 1.47 (P ¼ .72204,
P ¼ .28455)

Preoperative 0.53 + 1.71 (P ¼ .22264,
P ¼ .48392)

Postoperative 2.09 + 2.02 (P ¼ .33021,
P ¼ .94392)

Postoperative 0.72 + 1.97 (P ¼ .17438,
P ¼ .41636)

IL-6 (pg/mL) Aggregate normal
controls

1.16 + 0.10 IL-1b (pg/mL) Aggregate normal
controls

0.84 + 0.11

Age-matched normal
controls

1.04 + 0.06 Age-matched normal
controls

0.92 + 0.07

Preoperative 25.11 + 7.78 (P ¼ .00040,
P ¼ .02022)

Preoperative 2.44 + 2.47 (P ¼ .02007,
P ¼ .14524)

Postoperative 131.82 + 11.73 (P < .00001,
P < .00001)

Postoperative 3.43 + 3.21 (P ¼ .02455,
P ¼ .15409)

IL-8 (pg/mL) Aggregate normal
controls

2.92 + 0.10 MCP-1 (pg/mL) Aggregate normal
controls

107.43 + 4.37

Age-matched normal
controls

3.31 + 0.11 Age-matched normal
controls

133.24 + 4.80

Preoperative 97.60 + 13.80 (P ¼ .00001,
P ¼ .00410)

Preoperative 142.61 + 7.99 (P ¼ .00003,
P ¼ .42631)

Postoperative 187.07 + 17.26 (P < .00001,
P ¼ .00039)

Postoperative 164.04 + 9.76 (P < .00001,
P ¼ .06886)

IL-10 (pg/mL) Aggregate normal
controls

0.67 + 0.03 EGF (pg/mL) Aggregate normal
controls

3.39 + 0.50

Age-matched normal
controls

0.65 + 0.03 Age-matched normal
controls

6.16 + 0.67

Preoperative 1.45 + 2.14 (P ¼ .30792,
P ¼ .12343)

Preoperative 20.02 + 4.39 (P < .00001,
P ¼ .00006)

Postoperative 2.68 + 2.37 (P ¼ .00134,
P ¼ .03512)

Postoperative 23.97 + 5.12 (P < .00001,
P ¼ .00012)

VEGF (pg/mL) Aggregate normal
controls

7.09 + 0.47 TNF-a (pg/mL) Aggregate normal
controls

1.70 + 0.09

Age-matched normal
controls

10.26 + 0.57 Age-matched normal
controls

1.65 + 0.07

Preoperative 43.46 + 7.44 (P < .00001,
P ¼ .00059)

Preoperative 34.58 + 7.68 (P < .00001,
P ¼ .00126)

Postoperative 63.33 + 8.53 (P < .00001,
P ¼ .00003)

Postoperative 42.69 + 8.67 (P < 0.00001,
P ¼ .00161)

Abbreviation: SEM, standard error of the mean.
aP values obtained by analysis of variance (ANOVA) are displayed as (P, P0), where P refers to the comparison of total joint arthroplasty (TJA) patients versus
aggregate normal controls and P0 refers to the comparison of TJA patients versus age-matched normal controls.
Note: Statistically significant P values are bolded.

954 Clinical and Applied Thrombosis/Hemostasis 24(6)



the pathogenesis of OA and extended the understanding of

inflammation as a regulator of lubricin. In addition, further

support is provided for lubricin and anticytokine therapies as

potential disease-modifying treatments of OA.

In measuring plasma concentrations of inflammatory bio-

markers, IL-6, IL-8, VEGF, IL-1b, MCP-1, EGF, and TNF-a
were found to be significantly elevated preoperatively com-

pared to normal controls. This observation is consistent with

the current literature, which implicates each of these circulating

biomarkers in various pathophysiologic processes observed in

OA. IL-6 promotes bone resorption and shows synergy with IL-

1b and TNF-a,25,26 while IL-8 has been shown to induce carti-

lage degeneration.27 VEGF, more commonly known as a potent

angiogenic factor, can also act as a destructive factor to carti-

lage in OA. In vitro, it was shown to be induced in chondrocytes

by high-intensity impact stress and to act as an autocrine indu-

cer of MMPs.28 IL-1b, as mentioned before, activates matrix

degrading enzymes, downregulates matrix components, induces

chondrocyte apoptosis, and causes oxidative damage to articu-

lar cartilage.19,20 MCP-1, a monocyte/macrophage chemokine,

is thought to expedite cartilage damage by enhancing chondro-

cyte apoptosis while inhibiting their proliferation. Additionally,

stimulating its expression in wild-type chondrocytes was shown

to increase MMPs.29 High concentrations of EGF have been

found in the SF and synovium of patients having joint dis-

ease.30,31 And finally, TNF-a, as previously discussed, induces

the synthesis of MMPs and inhibits the synthesis of proteogly-

cans and type II collagen within the synovium.19,21

Plasma concentrations of IL-2, IL-4, IL-10, IFN-g, and IL-1a
were not significantly different between preoperative TJA

patients and normal controls. Nonetheless, these inflammatory

biomarkers all appeared to trend toward an increase. This sug-

gests that they too may demonstrate significant elevations if a

similar study were conducted with a larger TJA patient
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Figure 4. Comparison of IL-6, IL-8, IL-10, and VEGF in TJA patients post-operatively vs aggregate normals and age-matched normal.
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population and greater statistical power. Elevations would be

consistent with previous studies showing increased SF levels

of IL-2, IL-4, IL-10, IFN-g, and IL-1a in patients with OA.32-

35 In the case of IL-4 and IL-10, it is also possible that the anti-

inflammatory response was insufficient or lacking in these

patients, especially given the fact that they had OA extensive

enough to require TJA. Recent work has demonstrated the strong

chondroprotective effects of these cytokines. IL-4 was found to

inhibit proteoglycan degradation and MMP secretion,36,37 while

IL-10 was shown to reduce MMP production, inhibit chondro-

cyte apoptosis, and increase proteoglycan synthesis.19,38,39 Thus,

in their paucity or absence, it is plausible that patients progress

more rapidly toward end-stage OA and ultimately TJA. It may

be of future interest to examine the plasma of patients with early-

stage OA to determine if more of an equilibrium is maintained

between anti- and pro-inflammatory cytokines.

Altogether, these preoperative inflammatory biomarker find-

ings provide further evidence in support of the inflammatory
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Figure 5. Comparison of IL-1ß, MCP-1, EGF, and TNF-a in TJA patients post-operatively vs aggregate normals and age-matched normals.
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theory of OA. Traditionally classified as a noninflammatory

arthritis or disease of “wear and tear,” it is becoming more

apparent that inflammatory mediators also play a role in the

initiation and perpetuation of the OA process.40

Postoperatively, plasma concentrations of IL-6, IL-8, IL-10,

VEGF, IL-1b, MCP-1, EGF, and TNF-a were all found to be

significantly elevated when compared to normal controls. IL-2,

IL-4, IFN-g, and IL-1a, on the other hand, were not found to be

significantly different. This exposes a major limitation of the

current study; it lacks the ability to distinguish between

changes due to postsurgical trauma and changes due to other

sources of inflammation, like OA. However, in comparing pre-

and postoperative levels of inflammatory biomarkers, it may be

possible to isolate surgically induced changes. In this study,

only IL-6, IL-8, and VEGF demonstrated significant increases

between pre- and postoperative concentrations. This may indi-

cate that postoperative elevations of IL-6, IL-8, and VEGF

from normal samples were surgically induced, while the other

postoperative increases from normal samples were already

present in the circulation due to OA. Such a conclusion is

supported by research demonstrating that both IL-6 and IL-8

peak in the first 6 to 12 hours after TJA, then decrease to their

respective baselines by 48 to 72 hours postoperatively.41,42

Plasma levels of VEGF have also been shown to increase after

major surgery,43 though additional investigation is needed to

observe this following TJA specifically. Postoperative

increases in IL-10, IL-1b, MCP-1, EGF, and TNF-a are again

consistent with various pathophysiologic processes observed in

OA, as cited above.

In regard to lubricin, both pre- and postoperative circulating

levels were found to be significantly reduced when compared

to normal controls. This decrease was unexpected, as previous

work done in this laboratory has shown significant elevations in

pre- and postoperative lubricin levels when compared to nor-

mal controls.44 In both studies, lubricin antigen levels were

measured using a commercially available assay. It is of future

interest to validate this laboratory’s findings, using additional

methods of plasma lubricin measurement. This observed

decrease in plasma lubricin does draw comparisons to declines

in SF lubricin following ACL injury in animal models.13 This

may indicate that acute or chronic insults to the joint are

accompanied by local and systemic reductions in lubricin that

may initiate or perpetuate OA. Moving forward, the study of

plasma lubricin levels in relation to SF lubricin levels in

patients undergoing TJA could be a valuable area of

investigation.

Interestingly, the current study also found that decreases in

plasma lubricin correlated with increases in plasma IL-1b and

TNF-a. This parallels previous investigation of lubricin regu-

lation in which exposure of synoviocytes, chondrocytes, and

cartilage explants to IL-1b and TNF-a resulted in marked

reductions in secreted and cartilage-bound lubricin.22

Together, these findings indicate that inflammatory cytokines

may initiate a cascade of events that leads to the decreased

production of lubricin, placing the joint at an increased risk

of the cartilage wear characteristic of OA.

Conclusion

Herein, it is demonstrated that IL-6, IL-8, VEGF, IL-1b, MCP-

1, EGF, and TNF-a are found at elevated circulating levels in

TJA patients. Combined with existing literature implicating

each in the pathogenesis of OA, the data presented here suggest

a molecular basis of disease progression, with elevated levels

of inflammatory biomarkers potentially indicative of greater

degrees of OA. Furthermore, this study confirms that plasma

levels of IL-6 and IL-8 are increased following TJA. A post-

surgical increase in plasma VEGF was also identified. As far as

lubricin, decreased concentrations in pre- and postoperative

samples indicate that its decline may also play a role in the

pathogenesis of OA. Coupled with correlational analysis

revealing a link between lubricin and inflammatory biomarkers

IL-1b and TNF-a, the data presented here extend the under-

standing of inflammation as a downregulator of lubricin in the

setting of OA. This current study underscores the multifactorial

Figure 7. Correlations with Lubricin. (A) IL-1ß vs. Lubricin. (B) TNF-a
vs. Lubricin.
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nature of OA and further supports the potential of lubricin and

anticytokine therapies as effective disease-modifying treat-

ments of OA.
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