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Drivers of spatio‑temporal 
variation in mosquito submissions 
to the citizen science project 
‘Mückenatlas’
Nadja Pernat1,3,5*, Helge Kampen2, Florian Ruland3,4,5, Jonathan M. Jeschke3,4,5 & 
Doreen Werner1,5

Intensified travel activities of humans and the ever growing global trade create opportunities of 
arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. 
To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring 
programme was initiated in Germany in 2011, which has been complemented by a citizen science 
project, the ‘Mückenatlas’ since 2012. We analysed the ‘Mückenatlas’ dataset to (1) investigate causes 
of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases 
induced by opportunistic data collection. Our results show that the temporal variation of submissions 
over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-
scale climate conditions. Hurdle models suggest a positive association of submission numbers with 
human population, catch location in the former political East Germany and the presence of water 
bodies, whereas precipitation and wind speed are negative predictors. We conclude that most 
anthropogenic and environmental effects on submission patterns are associated with the participants’ 
(recording) behaviour. Understanding how the citizen scientists’ behaviour shape opportunistic 
datasets help to take full advantage of the available information.

Mosquito-borne diseases pose an increasing threat to human and animal health worldwide. Human-mediated 
dispersal, for example by global trade or travelling, are the main factors for the introduction of non-indigenous 
species such as the Asian tiger mosquito Aedes albopictus or the yellow fever mosquito Aedes aegypti1,2. Due 
to their adaptability and potentially facilitated by global warming, both species have succeeded in establishing 
populations in new regions3,4, and are potential vectors of a range of pathogens such as dengue or chikungunya 
viruses1. Comprehensive, long-term data collection about the distribution and phenology of invasive as well as 
native species that are competent vectors of pathogens5 are required to prevent infections, to assess and decrease 
impacts on human and animal well-being and to predict how particular vectors will spread.

To collect and update data as a basis for risk assessments, the German government initiated a still ongoing 
nationwide mosquito monitoring programme in 2011, consisting of targeted field efforts by scientists and a com-
plementary citizen science project. While developmental stages and adults have been actively collected by dipping 
and trapping throughout Germany since the start of the programme6, this kind of professional monitoring is lim-
ited by staff and funding and can only provide snapshots of mosquito populations in selected habitats. Moreover, 
lack of access to private properties and of data from the people’s immediate surroundings, where, for example, 
invasive species readily breed in artificial containers, hampers risk assessments. The importance of such data 
from densely populated areas is illustrated by the first West Nile virus infections in Berlin in 20197. To enhance 
data collection and to complement active surveillance by scientists, the citizen science project ‘Mückenatlas’ 
(mosquito atlas) started in 2012. Contrary to the majority of biodiversity monitoring projects involving citizens 
and working with online recordings via a website or an app, for instance eBird8 and iNaturalist on a global or the 
Spanish Mosquito Alert9 and the Austrian RoadKill10 on a national scale, ‘Mückenatlas’ participants do not upload 
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records or are involved in the identification of the reported specimens themselves. Instead, they catch and send 
physical samples that are then determined to species level by the project’s experts according to a standardised 
protocol11. In this way, the ‘Mückenatlas’ has the benefits of citizen science—large observation numbers and a 
large geographic scale—while taking a rather conservative approach to ensure data quality instead of controlling 
for data quality issues with tools such as crowdsourcing, external expert validation or in-process data vetting8,9.

Another advantage of opportunistic sampling by citizens is to increase the probability of detecting rare or 
unexpected events, such as the arrival of an invasive species or the return of a particularly rare taxon12. With 
regard to mapping biodiversity and detecting invasive species, the ‘Mückenatlas’ has already attested its effi-
ciency: submissions revealed new populations of Aedes japonicus (Asian bush mosquito) and Ae. albopictus11,13–17, 
produced first records of Ae. aegypti and Aedes koreicus in Germany18,19, and led to the rediscovery of very rare 
species after decades without documentation20,21.

On the flipside, random collections from citizens result in opportunistic datasets incorporating observation 
bias caused by recorder activity22 that vary in intensity depending on project design. Consequently, only small, 
species-specific fractions of the growing ‘Mückenatlas’ dataset have been analysed so far, e. g. to describe particu-
lar species findings23, to investigate nuisance sources24 or for population genetics25. Kerkow et al.26, for example, 
mitigated bias by combining ‘Mückenatlas’ observations of Ae. japonicus with conventional monitoring data to 
predict species distribution, to some degree discussing patterns resulting from biases of both—in this case over- 
and underrepresentation of land-use types. Other case studies of observation patterns focus on intrinsic and 
extrinsic motivations of citizen scientists27,28, less commonly on general environmental or anthropogenic factors 
associated with volunteers’ recordings for large-scale citizen science projects29,30. Analysing these driving factors, 
however, would help utilise opportunistic data collections to full extent and design future citizen science projects.

The ‘Mückenatlas’ submissions have so far neither been explored nor evaluated from a citizen science 
perspective31,32. This study contributes to our knowledge about the complexity of submission patterns for long-
term, large-scale citizen science projects with the particularity that, in contrast to other studies, there is no 
uncertainty concerning species identification. After the ‘Mückenatlas’ has been operating for more than seven 
years, we here aim at answering the following three questions: (1) Which trends and characteristics shape the 
opportunistic dataset? (2) Which factors drive the seasonal and annual variations in submission numbers? (3) 
Which factors drive the spatial distribution of submissions? These questions are tackled by a descriptive analysis 
of the dataset and by deploying hurdle models to test the association of several anthropogenic and environmental 
predictors with submission numbers.

Methods
‘Mückenatlas’ workflow.  Citizens are asked to catch mosquitoes in a closable container without physi-
cally damaging them, and to kill them by freezing for at least 24 h. A form that can be downloaded from the 
project’s website (http://www.mueck​enatl​as.com) and is also available at the project’s office must be completed 
with information about the catch. The participants then send their catch along with the submission form to the 
project’s laboratory where the sample is identified to species level morphologically33,34 or, in difficult cases, such 
as damaged specimens or cryptic species, genetically35. As a reward, every participant receives a personal letter 
or email including detailed information about the submitted mosquito(es). If desired, the participants also get 
a mark with their name or a pseudonym on the website’s collectors’ map. The data corresponding to the catch is 
uploaded to CULBASE, the German mosquito database.

Data preparation.  Data attributed with ‘MA’ (tag for ‘Mückenatlas’) were extracted from CULBASE on 
July 31, 2018, marking the end of the period of data entry for 2017. Each entry represents the submission of one 
or more specimen of one mosquito species from one location. We ignored specimen counts for this study as we 
focused on investigating submissions, irrespective of the exact number of specimens sent. The dataset consisted 
of a partly automatically generated suite of covariates composed of information from the submission form and 
database processing such as species, geo-coordinates, collection date and land-use types according to CORINE 
Land Cover data level 336. Furthermore, the collection site description provided by the participants on the sub-
mission forms were categorised to a biotope variable. When information on the catch location was missing, 
the home addresses of the participants were taken as geo-coordinates by default, but no biotope category was 
assigned to the corresponding entries. Unclear site descriptions, such as ‘hedge’ or ‘path’ with geo-coordinates, 
as well as interpretable descriptions without geo-coordinates, such as ‘forest nearby home’, were verified manu-
ally by Google Maps. If the catch location could not be verified, biotope category was set invalid. In total, the 
resulting dataset comprised 21,768 submissions and 15 covariates (Supplementary Table S1). Explorative and 
descriptive analysis of the covariates to depict submissions and identify temporal trends were conducted with R 
packages ggplot237, treemap38 and summarytools39 deploying R version 3.5.240.

Raster data.  To implement submission numbers as response variable for statistical testing, we drew a raster 
grid with a 5 km resolution across Germany and counted submissions in every grid cell to create a submission-
distribution raster file. Over 73% of the grid cells showed zero submissions, and the frequency distribution was 
highly skewed to the right (Fig. 1).

We selected four environmental and four anthropogenic predictors per grid cell a priori (Table 1, Supple-
mentary Fig. S1), which were considered candidates to explain the variability of submission distribution and 
numbers. Predictors were integrated as spatial raster values according to the response variable’s raster extent. The 
variable ‘population’ was chosen because numerous previous studies in citizen science data have shown a strong 
positive relationship between total human population and the number of records29,30, and we expected the same 
for our data. The two variables ‘mean age’ and ‘proportion of women’ were used to test patterns in participant 

http://www.mueckenatlas.com
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engagement according to demographic background. This selection builds on studies with partly contradic-
tory results which have investigated the age structure and gender of citizen scientists41–44, giving us the idea of 
uncovering large-scale trends through spatial analysis rather than through sociological and selective participant 
surveys. As a fourth anthropogenic predictor, we created a binary variable that assigned the grid cells to former 
political East or West Germany in order to investigate whether the project headquarters’ locations—both based 
in federal states located in former East Germany—might affect the engagement of citizens and to test for general 
and large-scale differences in demographic structure and climatic conditions. We selected the environmental 
predictors that are generally important for the development and occurrence of the vast majority of mosquito 
species. These include precipitation, temperature, wind speed and natural water bodies that might be suitable 
for mosquito breeding33. For the latter we used open hydrographical data from a Web Feature Service (WFS)45 
of a range of hydrological landscape features and included stagnant waters as well as floodplains and wetlands 
as areas presumably suitable for larval development. The preference for a binary variable over a numeric one or, 
in other words, whether or not there is a water body in the grid cell in favour of percentage coverage, was based 
on the assumption of a strong, positive correlation of the number of water bodies with submission numbers. 
Percentages would lead to meaningless associations due to the nature of the project, e.g. a 100% coverage of the 
grid cell with water would correlate with a maximum number of submissions, although no potential participants 
could live there. Wind speed turned out to be an interesting environmental factor in previous studies on predict-
ing mosquito spread26, as it induces flight restriction and therefore decreases the probability of a mosquito to 
be caught. For example, Ae. japonicus has not yet been detected in German areas with an average wind speed 
> 4.7 m/s, based on results from both passive and active surveillance schemes26. Data on human population, 
mean age and proportion of women were derived from the German census in 201146, while the German Weather 
Service47 (Deutscher Wetterdienst Climate Data Center) provided data on mean wind speed (1981–2000) as well 
as on mean temperature and precipitation for March to November, from 2012 to 2017, to describe the climatic 
conditions during the mosquito seasons.

The predictors were grouped into anthropogenic and environmental factors. This allowed us to consider (1) 
the participants as a driving factor for submissions and (2) the effect of environmental variables on the occurrence 

Figure 1.   Histogram showing the numbers of grid cells on a log-transformed y-axis against the numbers of 
submissions per grid cell (limited to 60).

Table 1.   Set of variables pre-selected as predictors.

Anthropogenic variable

Population (pop) Human population in 2011 within each grid cell

Population age (age) Mean age of human population within each grid cell in years

Proportion of women (fem) Mean proportion of women within each grid cell in percent

Region (east) Grid cell within the federal states located in former political East Germany
(0 = no, 1 = yes)

Environmental variable

Temperature (temp) Mean temperature for March to November 2012 to 2017 in °C

Precipitation (preci) Mean precipitation for March to November 2012 to 2017 in mm

Wind speed (wind) Mean wind speed 10 m above ground 1981 to 2000 in m/s

Presence of water (water) Standing water bodies, floodplains or wetlands in grid cell (0 = no, 1 = yes)
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of mosquitoes. However, this is a simplification of the ecological interactions of the underlying complex network, 
as every predictor might influence both participation behaviour and mosquito occurrence. For example, high 
wind speed might not only prevent mosquitoes from flying but also people from collecting mosquitoes outside, 
whereas a dense human population also provides a variety of habitats and hosts for container-breeding mos-
quitoes. Raster files of response variable and predictors were built with packages sf48, leaflet49, raster50, rgdal51 
and spatstat52.

Statistical analysis.  Predictors were applied to fit hurdle models using either the probability of a zero 
count (binomial) or the number of submissions per grid cell (truncated negative binomial), accounting for over-
dispersion and excess zeros in the data. Multicollinearity was checked by calculating variance inflation factors 
(VIF) and, consequently, the predictors ‘mean age’ and ‘temperature’ with returned values > 5 were removed. The 
hurdle models allowed us to examine whether a certain set of predictors has an effect on (1) the probability of 
a non-zero count in the zero and (2) the number of submissions in the count part. All possible combinations of 
predictors were explored for both modelling parts using Automated Model Selection (AMS; command dredge in 
R package MuMIn) that ranks models by AIC and Akaike’s model weight. Models were selected and realised by 
the R packages car53, countreg54, MuMIn55, MASS56 and pscl57.

Ethical approval.  Ethical approval was not required because the collected data were anonymised, location 
data were aggregated and further processed without geo-referencing. The use of personal data complies with the 
EU General Data Protection Regulations; no personal sensitive information was obtained during this project or 
shared outside of the research team.

Informed consent.  Insect samples were provided voluntarily by citizen scientists after consent was given to 
the processing of the sender data according to EU General Data Protection Regulation.

Results
Characteristics of and temporal variation in submissions.  Between January 23, 2012 (first submis-
sion to ‘Mückenatlas’) and December 31, 2017, a total of 21,768 submissions from 11,277 locations (geo-coor-
dinates) in 3221 municipalities were received. The number of specimens sent to the ‘Mückenatlas’ in the above 
time period adds up to 110,581; 3950 additional samples of arthropods submitted did not belong to the family 
Culicidae and were excluded from the study. Some submissions included several hundreds of specimens of the 
same species. This explains the difference between number of submissions recorded in the database and total 
species count, as we only created one CULBASE entry per species and submission, independently of the count 
which is recorded as a covariate. 2016 and 2017 represent the most productive years with 7756 (35.6% of all 
submissions from 2012–2017) and 5730 (26.3%) submissions, respectively, with June 2016 holding the monthly 
record of 2163 (9.9%) submissions (Fig. 2a). When submissions are added up according to month for the total 
observation period, most mosquitoes were submitted in July (4674, 21.5%), followed by August (4583, 21.1%), 
June (3405, 15.6%) and September (3341, 15.4%). The autumn months October and November still exhibit over 
1000 submissions each, and are followed by a considerable decline during winter and spring, before submission 
numbers rise again in May (Fig. 2b).

Figure 2.   Temporal variation in submission numbers. (a) Cumulative submission numbers from 2012 to 2017. 
(b) Total number of submissions per month over all study years.
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Almost every participant (92.9%, not applicable = 7.1%) provided information about the collection site, so 
that biotope descriptions could be considered during data analysis. According to the CORINE Land Cover Data 
level 3, most mosquitoes were caught in ‘discontinuous urban fabric’ (12,718, 58.4%), ‘non-irrigated arable land’ 
(3237, 14.9%) and ‘pastures’ (1247, 5.7%). In agreement, the most frequent specification of the collection sites 
as provided by the participants were ‘home indoors’ (13,305, 66.4%), followed by ‘home outdoors’ (e.g. garden, 
backyard, court; 3446, 17.2%) and ‘intersection home indoors/outdoors’ (e.g. house walls, windows, entrance 
doors; 839, 4.2%) (Fig. 3).

Engagement hotspots in submission distribution.  We further investigated the effect of ‘population’, 
as the map of total submission numbers strongly resembles a German human population map (Fig. 4a), with 
grid cells in densely populated areas, such as Berlin, Hamburg, Munich, the Ruhrgebiet and the Main-Neckar 
area displaying extremely high submission numbers. To disclose regions with high engagement independently 
of human population, we calculated a raster with per-capita submission rate, defined as number of submissions 

Figure 3.   Proportional treemap of categorised participants’ biotope information showing the 
overrepresentation of submissions from private surroundings. Only biotopes with portions ≥ 1.5% are presented 
individually, categories with a smaller share have been combined into ‘other’. Plotted with package treemap in R 
version 3.5.2.

Figure 4.   Federal states of Germany (SH Schleswig-Holstein, HH Hamburg, HB Bremen, NI Lower Saxony, 
NW North Rhine-Westphalia, HE Hesse, RP Rhineland Palatinate, SL Saarland, BW Baden-Wuerttemberg, BY 
Bavaria, MV Mecklenburg Western-Pomerania, BB Brandenburg, BE Berlin, ST Saxony-Anhalt, SN Saxony, 
TH Thuringia). (a) Raster grid of Germany (5 × 5 km2 cell size) of total submission numbers. (b) Raster grid 
of Germany (5 × 5 km2 cell size) showing per-capita submission rates (white grid cells = zero submission and 
zero/invalid population data). Both raster maps were created in R version 3.5.2., the German map outlining 
the federal states was drawn using QGis version 3.4.2. (Quantum GIS Geographic Information System, Open 
Source Geospatial Foundation Project. http://www.qgis.org/en/site/).

http://www.qgis.org/en/site/
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per person, based on the total human population in the respective grid cell. The resulting map (Fig. 4b) exhibits 
a considerably higher per-capita submission rate for eastern and south-eastern regions with a core area around 
the capital of Berlin, whereas the western part of the country stands behind. Although ranking first in absolute 
submission numbers (3119, 14.3%), the federal state of North-Rhine Westphalia as the most densely populated 
German region results in a low per-capita submission rate. People from Brandenburg (3075, 14.1%) and Bavaria 
(2917, 13.4%), both less densely populated federal states, participate more often, with a peak of 250 submissions 
in one of the two project’s hometowns, Müncheberg in Brandenburg (population: 6783), located approximately 
50 km east of Berlin. To check if these hotspots are due to urban dwellers making trips to these areas rather 
than local residents, an additional analysis with entries coming exclusively from the participants’ homes or gar-
dens was conducted. The corresponding map (Supplementary Fig. S2) shows that the hotspot density becomes 
weaker, indicating that indeed some participants seem to be travelling from urban to rural areas to catch mos-
quitoes. Nonetheless, the pattern of greater involvement in the above-mentioned residential areas remains.

Distribution patterns by hurdle models applying anthropogenic and environmental predic‑
tors.  The engagement hotspots suggest that the non-random distribution of submissions might also be 
caused by further anthropogenic and environmental variables, whose associations were therefore tested using 
hurdle models. A predictor was considered important when included in the four best ranked models based on 
the Automated Model Selection (AMS) with an accumulated AIC weight > 0.95 (Table 2). As expected from 
the previous analysis on engagement hotspots, the number of people living in a grid cell has an effect on both 
whether there is a submission and how many. Indeed, ‘population’ is included in both parts of the best 995 
models (24.9%) calculated by AMS (Supplementary Table S2 for complete AMS output). ’Region’ (East or West 
Germany), ‘presence of water bodies’ as well as ‘wind speed’ were also meaningful predictors of both submission 
numbers and submission probability. The importance of proportion of women and precipitation differs for each 
part of the hurdle models. Precipitation negatively affects the number, but not the probability of submissions. 
Conversely, the proportion of women in a grid cell may increase the probability of a submission from that unit, 
but does not influence record numbers.

To further explore relationships between predictors and response variables, we plotted the predictor values 
against the submission counts (Fig. 5). In accordance to model output, the resulting plots show a positive effect 
of human population and proportion of women on recordings, whereas increasing mean precipitation and mean 
wind speed per grid cell result in fewer submissions. The plots for mean age and mean temperature, both excluded 
from modelling due to multicollinearity, suggest a slightly and strongly positive association with submission 
numbers, respectively.

Discussion
With the tremendous and continuous numbers of mosquito submissions received between 2012 and 2017, the 
‘Mückenatlas’ is one of the most popular and successful citizen science projects in Germany. For the first time, 
we analysed the underlying dataset to characterise the origin and structure of the submissions, to reveal major 
spatial and temporal trends in submission numbers and to investigate what might drive these patterns.

The main characteristics of the data are the overrepresentation of indoor samples from the participants’ homes 
off densely populated areas. As shown in previous studies summarising popular citizen science projects focused 
on arthropods58,59, the ‘Mückenatlas’ participants seem to be genuinely interested in arthropods present in and 
around their homes. This interest is not confined to mosquitoes, as the participants’ messages on the submis-
sion forms indicate that the roughly 20% non-mosquito samples might be sent on purpose when people fail to 
identify a species they are curious about or suspect to be a pest. Such behaviour substantiates the high potential 
and success of large-scale and cross-taxonomic citizen science projects such as iNaturalist and supports the idea 
of a global community of citizen scientists recording species around their homes60.

It is of advantage to receive specimens found in the direct neighbourhood of people, as private properties 
are not directly accessible for scientists and at the same time highly important for research60. From a public 
health point of view submissions from people’s homes are of greater epidemiological relevance when address-
ing (arthropod-) vector-borne diseases61 than rare species in non-inhabited areas; the latter are more valuable 
for biodiversity research31,62. From a data science perspective, the over- and underrepresentation of certain 

Table 2.   Best ranked models according to Akaike’s model weight (cumulative AIC weight > 0.95). Each of the 
algebraic signs indicates a positive or negative association of predictors (pop = human population, east = binary, 
region of former political East or West Germany, water = binary, presences of stagnant water bodies, 
fem = proportion of women, preci = mean precipitation (March to Nov, 2012 to 2017), wind = mean wind speed 
(1981 to 2000) with submission numbers. In brackets: predictors not present in all of the best models.

Count hurdle model predictors (truncated negbin 
with log link)

Zero hurdle model predictors (binomial with logit 
link) Delta-AIC AIC weight

+ pop + east + water − preci − wind + pop + east + water + fem − wind 0 0.328

+ pop + east + water (+ fem) − preci − wind + pop + east + water + fem − wind 0.055 0.319

+ pop + east + water − preci − wind + pop + east + water + fem (+ preci) − wind 1.320 0.170

+ pop + east + water (+ fem) − preci − wind + pop + east + water + fem (+ preci) − wind 1.374 0.165
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land-use types create a spatial bias in the presence-only data to be considered when it comes to species distribu-
tion modelling26,29,63.

Our analysis to identify temporal trends revealed a noticeable variation in submission numbers over the 
years and months. The boost in submission numbers in 2016 may be the result of an increased public aware-
ness of mosquito-borne diseases64, caused by an extensive flood of news about the South-American ZIKA virus 
epidemic, possibly triggering the maximum of recordings in June 2016 and sustained high numbers into 2017. 
We believe people became worried about mosquitoes in their living environment and—in a way of self-pro-
visioning—approached the ‘Mückenatlas’ as an authority that could dissipate their concerns. In addition, the 
warm and humid weather in both 2016 and 2017 created beneficial conditions for many mosquito species in 
large parts of the country. This favourable climatic situation combined with the continuing public attention 
fuelled by the media may have kept the submission numbers high until the end of 2017. Temporal variation in 
citizens’ observation records can confirm65 or extend66 findings on the phenology of the target species. In our 
case, the records even reflect those mosquitoes that enter people’s homes in October and November to find an 
overwintering place, such as Culiseta annulata.

Based on the hurdle models we demonstrated how anthropogenic and environmental predictors relate to the 
spatial distribution of submissions. The positive correlation of human population with submission numbers was 
expected, especially since the visualisation revealed a spatial pattern of urban clusters known from other citizen 
science projects29,30. After controlling for the influence of human population, engagement hotspots became appar-
ent in East Germany, predominantly in the sparsely populated federal states of Brandenburg and Mecklenburg-
Western Pomerania67. This finding is corroborated by the models’ estimated positive association of the predictor 
‘east’ with submission numbers. In other words, a location in former East Germany increases the number and 
probability of submissions. We attributed this trend to the project’s institutional homes in Brandenburg and 
Mecklenburg-Western Pomerania: frequent regional media coverage and participation in regional (science) 
events may create a headquarter effect that leads to a strong project support and identification by local communi-
ties. Newman et al.68 discovered that place-related effects play a considerable role in citizen scientists’ motivations 
to participate, especially in programmes using volunteer data for conservation decisions. This ‘power of place’68 
may even present a stronger driver for participation than citizen concerns about invasive species: of the regions 
invaded by Ae. japonicus and Ae. albopictus, only the infested Southwest showed an increased engagement.

Considering the third investigated anthropogenic effect included in the models, a higher proportion of women 
per grid cell positively affects participation, but only the odds of a submission, not the number of submissions. 
However, it would be premature to conclude that women are more likely to contribute to the ‘Mückenatlas’. Much 
more information is needed to test associations of submissions with the participants’ demographic background, 
for instance to check if this weak positive correlation is due to the female surplus in urban areas.

Our model estimates imply that submission numbers could partly reflect environmental conditions. The pres-
ence of water is one key factors of mosquito development and occurrence33, suggesting the positive correlation 
for both model parts may not only be due to a higher probability of encountering mosquitoes near breeding 

Figure 5.   Scatterplots of the six non-factor predictors plotted against the number of submissions on a log-
transformed y-axis. In the case of ‘population’, both axes are log-transformed. The yellow and black diamonds 
indicate average values per submission frequency.
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habitats, but also in larger numbers. The prevalence of water bodies in the north-eastern part of Germany might 
further contribute to the stronger engagement in this area, where—contrary to other regions with similar land-
scape features69—management actions are not carried out (e.g. large-scale application of Bacillus thuringiensis 
israelensis by helicopter along sections of the river Rhine).

Of the environmental variables that negatively relate to the number of submissions, wind speed affects both 
the number and probability of submissions, because the absence or inactivity of mosquitoes in breezy coastal or 
mountainous regions is likely to result in few mosquito encounters. More surprising is the inverse correlation 
of precipitation with only submission counts, as mosquito breeding depends on the availability of water, with 
small natural sites such as tree holes or small ponds strongly prone to desiccation. Yet most submissions came 
from people’s private surroundings, houses or gardens, and therefore from areas that could have persisting water 
sources independent of precipitation. People inadvertently tend to create perfect mosquito habitats by garden 
design and irrigation, and the topmost mosquito taxa submitted to the ‘Mückenatlas’ (Culex pipiens complex, 
Cs. annulata or Ae. japonicus), readily breed in garden ponds and in a range of artificial containers such as 
water-filled rain barrels, flower-pot dishes, vases or bird baths70,71. The exclusive association of precipitation with 
submission counts again indicates a possible relationship with engaged communities in the north-eastern part 
of Germany, where precipitation is lower compared to the rest of the country72.

We aimed at reflecting mosquito seasonality by calculating the overall mean of precipitation (and tempera-
ture) from March to November for the years 2012 to 2017. While adequate for a first exploration of driving fac-
tors as conducted in this study, this simplification would be insufficient and inexact for predicting submission 
numbers, given the likely influence of climate on their temporal variation (as already discussed). Instead of using 
the standard approach with weather variables like seasonal means, modelling the distribution of submissions 
and also of species, could be improved by variable decomposition to allow for inherent spatio-temporal fluctua-
tions as well as for anomalies73, which would be especially useful to account for the phenology of semi-aquatic 
arthropods like mosquitoes.

Conclusions
The ‘Mückenatlas’ is an analogue citizen science project open to everyone, without any preparation or constraints 
like collection kits, educational training or sampling protocols. This study lays the foundation to future applica-
tions of this specific opportunistic dataset that does not struggle with data quality, but displays massive spatio-
temporal variation in citizen submissions of mosquito samples. Although environmental factors do play their 
part in spatio-temporal variation of ‘Mückenatlas’ submissions, it is the citizens and their recording activities 
that primarily shape the data.

Our findings have five important implications for (mosquito-related) citizen science monitoring projects. 
First, an unstructured, opportunistic programme such as the ‘Mückenatlas’ is well suited to collect data from 
several taxa over a long period of time and over a large area in order to mitigate uncontrollable effects such as 
climate variability, which, in the case of mosquitoes, strongly influences their occurrence and abundance. In 
contrast, studies on a smaller spatial scale, for specific species or habitats, or over a shorter period of time, would 
benefit from a structured approach to better anticipate the spatio-temporal effects of environmental factors 
through sampling protocols or pre-selection of place and time.

Second, the main anthropogenic causes of spatial bias in opportunistic data collections are human population 
and the preference of citizens to take part in projects that allow data collection at home or close by74. Citizen 
science monitoring programmes can prepare for this urban clustering and overrepresentation of observations 
from artificial surfaces by adapting protocol design and regulating the recruitment of participants (e.g. by creating 
sample units with fixed numbers of participants), by clearly defining their research questions and project goals, 
and by developing strategies for appropriate data analysis75,76.

Third, more engaged communities cause spatial bias, but these location-based effects could also be used to 
the advantage of the project, e.g. in the case of mosquito-related citizen science projects to tap local knowledge 
about mosquito abundance77.

Fourth, due to their impact on human health and well-being, mosquitoes are a regular media topic in many 
countries. The rush for the ‘Mückenatlas’ in 2016, probably triggered by the ZIKA epidemic, demonstrate the 
influence of the media, but also emphasise the usefulness of media for citizen science, whether for general 
recruitment, as a specific appeal for a particular region (e.g. on the frontline of an invader’s spread) or to draw 
attention to certain species of scientific interest. Eritja et al.78 used the media and place-based effects to activate 
the local community to search for Ae. japonicus after a first record in northern Spain.

Finally, if the data situation is suitable, a hurdle model can be used to test if certain variables influence the 
number and/or probability of an observation. This could be done, for example, in the improvement or planning 
of citizen science projects, e.g. by taking additional, more targeted measures to recruit from areas for which the 
model predicts low participation. By including demographic information, we tested the applicability in large-
scale spatial modelling in the context of citizen science. Although the approach is promising for identifying bias 
caused by national demographic trends, it cannot replace the accuracy of a social science survey of participants. 
For example, it would then also be possible to find out whether stronger regional engagement is associated with 
the attitude towards participatory formats of former citizens of East versus West Germany.

This study and many existing and emerging citizen science projects show that the public can provide valu-
able support in monitoring biodiversity, also of arthropod vectors, but there is still great potential to develop 
methods to improve data robustness.
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Data availability
For the time being, the raw data used for this study cannot be provided publicly, as the geo-references are con-
nected with the participants’ home addresses. Sharing the raw data would violate the personal privacy of the 
citizen scientists. However, the subset of spatial data (raster) used for modelling submission counts is available 
via the Open Research Data repository at the Leibniz-Centre for Agricultural Landscape Research (ZALF), 
Germany, https​://www.doi.org/10.4228/ZALF.DK.153.
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