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All-optical interrogation of brain-wide activity
in freely swimming larval zebrafish

Yuming Chai,1,2,5,* Kexin Qi,1,2,5 Yubin Wu,1,2 Daguang Li,1,2 Guodong Tan,1,2 Yuqi Guo,3 Jun Chu,3 Yu Mu,4

Chen Shen,1,2,* and Quan Wen1,2,6,*
SUMMARY

We introduce an all-optical technique that enables volumetric imaging of brain-wide calcium activity and
targeted optogenetic stimulation of specific brain regions in unrestrained larval zebrafish. The system
consists of three main components: a 3D tracking module, a dual-color fluorescence imaging module,
and a real-time activity manipulation module. Our approach uses a sensitive genetically encoded calcium
indicator in combination with a long Stokes shift red fluorescence protein as a reference channel, allowing
the extraction of Ca2+ activity from signals contaminated by motion artifacts. The method also incorpo-
rates rapid 3D image reconstruction and registration, facilitating real-time selective optogenetic stimula-
tion of different regions of the brain. By demonstrating that selective light activation of the midbrain re-
gions in larval zebrafish could reliably trigger biased turning behavior and changes of brain-wide neural
activity, we present a valuable tool for investigating the causal relationship between distributed neural
circuit dynamics and naturalistic behavior.

INTRODUCTION

One of the central questions in systems neuroscience is understanding how distributed neural activity over space and time gives rise to animal

behaviors.1,2 This relationship is confounded by recent recordings in several model organisms, which reveal that brain-wide activity is

pervaded by behavior-related signals.3–7 All-optical interrogation, which enables simultaneous optical readout and manipulation of activity

in brain circuits, opens a new avenue to investigate neural dynamics that are causally related to behaviors and neural representation of be-

haviors that are involved in different cognitive processes.8–11

All-optical neurophysiology has been successfully applied to probe the functional connectivity of the neural circuit in vivo and the impact of

a genetically or functionally defined group of neurons on the behaviors of head-fixed animals.12–14 Here, we extend this technique to freely

swimming larval zebrafish, which allows simultaneous targeted stimulation of the brain region of interest and readout of whole-brain Ca2+

activity during naturalistic behavior, such that all sensorimotor loops remain intact and active. Our approach leverages recent advancements

in volumetric imaging and machine learning: (1) with the advent of light-field microscope (LFM), brain-wide neural activity can be captured

rapidly and simultaneously; (2) deep neural network-based image detection and registration algorithms enable robust real-time tracking

and brain region selection for activity manipulation.

There have been several reports on whole brain imaging of freely swimming zebrafish.15–20 However, a serious problem can hinder the

wide use of this technique: swimming itself causes substantial fluctuations in the brightness of the neural activity indicator. These fluctuations

can interfere with the accurate interpretation of true neural activity in zebrafish.19 In an effort to overcome this issue, we have integrated an

imaging channel designed for simultaneous pan-neuronal imaging of a long Stokes shift and activity-independent red fluorescence protein

(Figure S1). This protein shares the same excitation laser as the Ca2+ indicator. The incorporation of a reference channel, alongside the im-

plementation of an adaptive filter algorithm, enables us to correct activity signals tainted bymotion artifacts resulting from the zebrafish’s swift

movements.

Figure 1 shows a schematic of our system that integrates tracking, dual-color volumetric fluorescence imaging, and optogenetic manip-

ulation. We performed simultaneous brain-wide Ca2+ signal and reference signal recording using the fast eXtended LFM (XLFM).16 An opto-

genetic module was incorporated into the imaging system to enable real-time activity manipulation in defined brain regions in unrestrained

larval zebrafish.
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Figure 1. Schematics of the dual-color whole-brain imaging and optogenetic system

The system integrated tracking, dual-color light-field imaging, and optogenetic stimulation. A convolutional neural network (CNN) was used to detect the

positions of fish head from dark-field images captured by the near-infrared (NIR) tracking camera. A tracking model converted the real-time positional

information into analog signals to drive the high-speed motorized stage and compensate for fish movement. The neural activity-dependent green

fluorescence signal and the activity-independent red fluorescence signal were split into two beams by a dichroic mirror before entering the two sCMOS

cameras separately. The dichroic mirror was placed just before the micro-lens array. Both the red and green fluorophores can be excited by a blue laser

(488 nm). An xy galvo system deflected a yellow laser (588 nm) to a user-defined ROI in the fish brain for real-time optogenetic manipulation with the aid of a

fast whole-brain image reconstruction and registration algorithm. See also Figure S1.
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RESULTS

Tracking system

To reliably maintain the head of a swimming fish within the field of view (FoV) of the microscope, we redesigned our high-speed tracking sys-

tem16 with two major changes. First, to correctly identify the position of the fish head and yolk from a complex background, we replaced the

conventional computer vision algorithms for object detection (that is, background modeling and adaptive threshold) with a U-Net21 image

processing module (STAR Methods). This approach greatly improves the accuracy and robustness of the tracking in a complex environment

while ensuring a high image detection speed (<3 ms). Second, we combined the current position of the fish and its historical motion trajec-

tory17 to predict fish’s motion (Figure 2A). This allows the system to preemptively adjust the stage position to keep the fish in view, even when

it is swimming quickly.
2 iScience 27, 108385, January 19, 2024



Figure 2. Tracking system

(A) Flowchart of the tracking system.

(B) A near-infrared (NIR) image captured by the tracking camera, with the tracking error highlighted. The cyan circle indicates the field of view (FoV) of the XLFM.

The tracking error is the distance between the center of the fish head and the center of the FoV. The scale bar is 2.5 (left) and 1 mm (right).

(C) The cumulative distribution of the tracking error, based on all time points or when the fish was in motion. ‘‘In motion’’ is defined as a tracking error that lasts for

at least 30 ms and exceeds 50 mm inmaximummagnitude. The data come from 34 fish, each of which was tracked for more than 10min. The red dashed line is the

maximum tolerable error, the distance beyond which the fish brain is not completely visible in the FoV. (D–G) Tracking example of a freely swimming larval

zebrafish stimulated by water flow.

(D) Swimming distance during example trajectory.

(E) The example trajectory. The yellow line indicates the example trajectory of the fish, and the gray lines indicate all other movements in the microfluidic chip.

(F) Top, NIR tracking video images. Scale bar, 2.5 mm. Bottom, reconstructed whole-brain fluorescence images obtained during this trajectory. Scale bar, 300 mm.

(G) Tracking error during this example trajectory. Note that the applied water flow (arrow in E) forced the fish to move backward (Video S1), an unexpected

movement pattern for the motion prediction model. As a result, the system shows a larger tracking error in the blue-shaded period. See also Figures S2 and S3.
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To quantify the tracking performance, we define the tracking error as the distance between the center of the fish head and the center of the

microscope FoV (Figure 2B right). The FoV of the XLFM is 800 mm in diameter, and the size of the brain along the rostrocaudal axis is about

600 mm. Therefore, a tracking error less than 100 mm is sufficient to capture the image of the entire brain. We tested our tracking system in
iScience 27, 108385, January 19, 2024 3
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several experimental paradigms, including spontaneous behavior, swimming in the presence of water flow, and during optogenetic stimu-

lation. We found that about 92.6% of the frames fell within 100 mm tracking error at all times (a total of 13,801,838 frames, Figure 2C). During

locomotion, 58.69% of the frames were within this range of tracking error (n = 26,930 bouts, 2,293,258 frames). As a comparison, the old

tracking system based on threshold segmentation and PID control was able to keep 25.4% of the frames within 100 mm tracking error (Fig-

ure S2A) in the presence of large background noise. On the z axis, the depth of field (DOF) of our XLFM is 400 mm.16 The brain of larval zebra-

fish is about 300 mm thick. When the centers of the fish brain are less than 50 mm away from the focal plane, it is within the range of the DOF of

the XLFM. Our current autofocus module operates at a speed of 100 fps and was able to bring 93.29% images within the error tolerance (Fig-

ure S2B, n = 15, total 2,113,097 frames).

Figures 2D–2G show the performance of the tracking system when a water flow stimulus was applied to the fish. On this occasion, a large

bubble appeared in themicrofluidic chamber (Figure 2F, top). Despite a distracting background, the image detectionmodule was still able to

accurately identify the position of the fish and keep the head of the fish within the microscope FoV (Figure 2F, bottom). Taken together, these

results demonstrate that our tracking system is highly reliable and can be used in a variety of behavior experiments.
Dual-color volumetric image alignment

Two-color fluorescence imaging (Figure 1) enables us to use a reference signal (Figure S1) to correct for Ca2+ signal artifacts caused by zebra-

fish movements. Figure 3A shows each step in the image processing pipeline. Briefly, the reconstructed 3D volumetric image frames of the

activity-independent red channel were registered and alignedwith a template. The pairwise transformationmatrix was then applied to the 3D

images of the green channel. The aligned green channel images were segmented into region of interest (ROI) based on the spatiotemporal

correlation of the intensity of the voxel (STAR Methods), and the Ca2+ signal in each ROI was extracted and corrected.

Aligning whole-brain image frames is one of the critical steps in extracting the Ca2+ signal accurately. However, the brain regions could

deform significantly and the fluorescence intensity of most ROIs could change significantly in swimming zebrafish. These factors make whole-

brain image registration a challenging task.

Here, we used CMTK toolkit22 and imregdemons function in MATLAB23 to complete the rigid and nonrigid registration of a 3D image,

respectively (STAR Methods). To test our alignment algorithm, we injected the Tol2-elavl3:h2b-EGFP plasmid into fertilized eggs of

elavl3:h2b-LSSmCrimson zebrafish. Due to the uneven distribution of the plasmid in the eggs, EGFP did not achieve whole-brain neuronal

expression in this generation of zebrafish, but rather showed expression patterns with different degrees of sparseness. We selected zebrafish

with moderately sparse expression of EGFP at 6 days post-fertilization (dpf) and recorded their dual-channel images during fish movement.

Due to the sparse expression of EGFP, individual neurons randomly distributed in different brain regions can be seen in the 3D reconstructed

images. After registering red channel frames with pan-neuronal expression of LSSmCrimson (Figure 3A), we applied the same transformation

to the sparse EGFP images (Figure 3B). This allowed us to view the alignment results for each neuron in the green channel (STAR Methods)

(Video S2), and to test and optimize our registration algorithm.

Figure 3C represents the aligned EGFP multi-frame images (Figure 3B) in different colors, overlaid to visualize the alignment effect.

Whiter colors indicate better alignment (Figure 3C). The sparsity of EGFP expression allows us to track about 160 neurons over time ac-

cording to the spatiotemporal continuity of an object (STAR Methods and Figure S4). We quantified the root-mean-square displacement

(RMSD), namely
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CkD r!k2D

q
, of the center of mass of a neuron relative to its coordinates in the reference frame (Figure 3D), where the blue

line indicates an average over all the neurons whose correspondents could be identified. The RMSD (Figure 3D) is much smaller than the

ROI size (8.8–18.3 mm, 25%–75% quantile) resulting from our segmentation algorithm (STARMethods). Together, these results suggest that

our data processing pipeline is effective in aligning whole-brain images of larval zebrafish and thus can extract Ca2+ signals frommost ROIs

accurately.
Motion artifact correction

Rapid movements of larval zebrafish (translation and tilt) within FoV can cause significant changes in fluorescence intensity in both green

and red channels, even when neural activity does not change.19 Here, we introduce an adaptive filter (AF) algorithm (Figure 4A) to correct

for motion artifacts (STARMethods). We use the AF algorithm to dynamically predict the green signal bgðnÞ from the signal in the red chan-

nel so that the difference between the predicted and the actual green signal in the current time frame n, eðnÞ = bgðnÞ � gðnÞ, is as small as

possible. In the absence of neural activity, eðnÞ is expected to fluctuate around 0. When there is neural activity, the resulting Ca2+ signal

would rise rapidly and eðnÞ would have a large positive value. We identified the predicted bgðnÞ as the time-dependent baseline of the

signal in the green channel due to movements of zebrafish. The Ca2+ activity was inferred from the normalized signal difference

ðgðnÞ � bgðnÞÞ∕bgðnÞ.
The AF algorithm uses the history-dependent correlation between the green fluorescence signals (jGCaMP8s24) and the red fluorescence

signals (LSSmCrimson) to correct for changes in motion-induced signals. These changes are caused by two major factors.

Inhomogeneous light field

When a larval zebrafish moves, the intensity of the excitation light varies across the FoV. In this case, the change of fluorescence intensity in

the green channel and that in the red channel differ by a proportionality constant, namely dgðnÞ = adrðnÞ. A simple ratiometric division25,26

between the green and red channels can largely correct for this effect.
4 iScience 27, 108385, January 19, 2024
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Figure 3. Dual-color image registration

(A) Dual-color image processing pipeline (STAR Methods). The flow chart highlights the following steps: 3D light-field reconstruction; multi-scale image

alignment; region of interest (ROI) segmentation; and Ca2+ signal extraction and correction. Black arrows indicate that identical operations can be applied

directly to a different channel.

(B) Aligned images of sparsely labeled EGFP zebrafish, guided by the reference channel (Video S2). Scale bar, 100 mm.

(C) 3D visualization of the alignment of (B). Scale bar, 100 mm.

(D) The root-mean-square displacement (RMSD) of the positions of the neuronal center of mass over time. This displacement was measured in relation to their

coordinates within a specified reference frame and averaged across all neurons that could be matched within a frame; the shaded region indicates SD. The red

curve shows the instantaneous swimming speed of larval zebrafish. See also Figure S4.
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Scattering and attenuation

When the larval zebrafish tilts its body, the fluorescence emitted from the same neuron is scattered and obscured by the brain tissues and

body pigments. This complicated time-varying process is likely to have a chromatic difference, leading to disproportionate changes in the

intensity between the green and red signals. The latter effect cannot be easily corrected for by a direct division. The history dependence

of the signal comes from the observation that motion-induced fluorescence changes can persist over multiple frames.

To verify the effectiveness of the motion correction algorithm, we constructed a transgenic zebrafish line with pan-neuronal nucleus

expression of EGFP and LSSmCrimson. We then simultaneously recorded the green and red fluorescence signals in a freely swimming larval

zebrafish. LSSmCrimson was used to remove the fluctuation of the EGFP signal caused by animal movements. The ideal corrected EGFP

signal, which does not change due to neural activity, would be close to 0. Figure 4B shows representative fluorescence signals from an
iScience 27, 108385, January 19, 2024 5
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Figure 4. AF algorithm for signal correction

(A) Schematics of the AF algorithm. The AF algorithm works by first estimating the motion artifacts in the green channel bgðnÞ using a weighted sum of the red

channel signal r(n) over a recent history. The weights w are dynamically updated so that the residual error, eðnÞ = gðnÞ - bgðnÞ, is minimized.

(B) Top, representative raw fluorescence signals from an ROI in freely swimming zebrafish with panneuronal expression of EGFP and LSSmCrimson. Bottom,

inferred activity traces. The AF method is more accurate than the conventional ratiometric method (Ratio) in removing motion artifacts.

(C) The histogram shows the distribution of the inferred ROI activity level, defined as the standard deviation of activity over time. Related to (B).

(D) Top, a raw EGFP fluorescence signal with randomly added synthetic neural activity (purple). Bottom, inferred activity trace (yellow). See also Figures S5–S7.
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ROI before and after correction. The AF algorithm significantly reduced the motion-induced green fluorescence change compared to the

ratiometric method. The improvement over the conventional method was quantified by plotting the distribution of the corrected signal fluc-

tuation (i.e., the standard deviation) across all ROIs (Figure 4C).

After demonstrating that our dual-channel motion correction algorithm can largely eliminate signal changes due to animalmovements, we

next show that the same algorithm can extract true Ca2+ signal due to neural activity. First, we overlay computer-generated randomly timed

neural activity on EGFP signals (Figure 4D, top), namely g0ðnÞ = gðnÞð1 + aðnÞÞ, where aðnÞ is synthetic neural activity. We then askedwhether

the AF algorithm could correctly identify these synthetic signals (Figure 4D, bottom) by examining the correlation coefficient r between aðnÞ
and the inferred signal. We identified three factors that contribute to the precision of the AF algorithm (Figure S7): a higher amplitude of Ca2+

activity, a higher correlation between the green and red channel signals, and a lower coefficient of variation (CV) of the red channel signal. We

established a criterion (see STARMethods) for screeningROIs using the two-channel signal correlation and theCVof the LSSmCrimson signal,

such that the inferred signal and the synthetic signal would exhibit a high correlation. Inferred results from brain regions that met this criterion

were considered reliable and used for further analysis.

Second, we wanted to investigate whether we could identify brain regions with similar stimulus-triggered Ca2+ activity patterns in freely

swimming larval zebrafish and in the same animal that was immobilized in agarose. We decided to use a spatially invariant external stimulus:

the blue excitation laser (488 nm, Figure 1). In other words, we suddenly turned on the blue excitation light when the zebrafish was in the dark,

thus inducing brain activity. The main advantage of this approach is that the blue excitation light bathes on the zebrafish head in a cylindrical

shape, so the blue laser remains a relatively invariant stimulus for the animal even if its body orientation changes. Furthermore, the sudden

onset of blue light in the dark is a powerful stimulus that can easily trigger brain activity.

Figure 5A shows the procedure of our blue light stimulation experiment. First, we presented a freely swimming larval zebrafish with a 20-s

blue-light stimulation (1 ms pulsed illumination at 25 Hz) followed by a 30-s dark period. The same animal was then immobilized with agarose
6 iScience 27, 108385, January 19, 2024
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Figure 5. Blue light stimulation

(A) Experimental paradigmof the blue light stimulation. A larval zebrafish was freely swimming under our trackingmicroscope when the blue excitation light (1 ms

pulsed stimulation, 2.5% duty cycle) was suddenly turned on. The light was turned on and off at 20/30 s intervals. The same animal was then immobilized in low

melting point agarose and an identical pattern of light stimulation was applied. Brain-wide Ca2+ activity was recorded in both conditions.

(B) Top: jGCaMP8s and LSSmCrimson raw fluorescence signals in 5 representative ROIs in which neurons showed prominent Ca2+ activity after light stimulus

onset. Shaded regions indicate the dark period. Bottom: inferred calcium activity using the AF algorithm. Left panels are recordings from the free-swimming

condition, while the right panels are from the immobilized condition.

(C) The spatial location of the brain regions in (B). Scale bar, 100 mm.

(D) Violin charts of trial-to-trial pairwise correlation between Ca2+ activity in freely swimming and immobile conditions. Left, correlations of raw jGCaMP8s signals;

right, correlations of AF inferred signals. Each violin chart represents the distribution of r for each of the 4 trials (see B) in 18 selected ROIs (a total of 72 data points,

see Figures S8–S10). See also Figures S8–S10.
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and the same visual stimuli were applied. Brain-wide Ca2+ activity was recorded in both trials.We identified ROIs in immobilized zebrafish that

showed prominent activity in response to the onset of repeated blue light stimulation (Figure 5B, right). We then examined neural responses

in the same ROIs when the animal was swimming freely. The similarity of the Ca2+ dynamics between different experimental conditions (Fig-

ure 5A) was quantified by correlation analysis (Figure 5D, left), where each data point represents a single trial from a single ROI. Many trials
iScience 27, 108385, January 19, 2024 7
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exhibited high correlation and similarity improved after we applied the AF algorithm to remove motion artifacts. However, we observed a

clear difference in the activities of several brain regions between the immobilized state and the freely behaving state. In the freely moving

state, significant jGCaMP8 activity did not manifest immediately after blue light stimulation, but emerged later when the zebrafish began

to move (e.g., the third trial of the red trace in Figure S8). The late appearance of activity in the green channel and a concurrent drop of

the red reference signal led to several large negative correlations in the AF-inferred result (Figure 5D, right).

Last but not least, we wanted to determine the direction of zebrafish’s turn—left or right—from its brain-wide neural activity recorded dur-

ing spontaneous movements (see STAR Methods). Using AF-inferred activity data from 50 widely distributed anatomical brain regions, we

could discriminate the direction of the zebrafish’s turn with a high degree of precision: 93.6% of classifications were correct on the test set

(Figure 6). In particular, while population activity can be used to decode a turning direction on a per-trial basis, individual ROI activities ex-

hibited remarkably high variability from one trial to the next (Figure 6C), making it hard to determine the turning behavior of larval zebrafish.

We will consider the implications of this observation in discussion.
Real-time optogenetic manipulation of unrestrained larval zebrafish

After introducing the dual-color AF method to extract brain-wide Ca2+ activity, we now describe the optogenetic system that enables real-

time manipulation of user-defined brain regions in unrestrained larval zebrafish (Figure 1). A user first selects the region to be stimulated on

the zebrafish brain browser (ZBB) atlas (Figure 7B, left).27 The system then translates the region into actual locations on the fish brain and de-

livers photostimulation through real-time image processing and coordinate transformation.

Figure 7A shows the workflow of the optogenetic module. We used the red channel fluorescence image for brain region selection. To

achieve online image processing, we speed up the reconstruction and registration algorithm by resizing the images, reducing the number

of iterations in the reconstruction algorithm,16 and using a deep neural network model to compute the affine transformation matrix.28 These

optimizations reduce the image processing time to 80 ms, faster than the acquisition speed of fluorescence imaging (10 Hz). After the coor-

dinates of the user-selected region on the ZBB atlas are translated into the coordinates on the real-time image, the position is converted into a

two-dimensional analog voltage signal. This signal is used to control the rapid deflection of the galvo mirror in the X and Y directions, which

completes the optical stimulation of a specified brain region. Note that the movement of larval zebrafish is characterized by bout and bout

intervals: a pattern of intermittent rapidmotion (300ms in duration) followed by pauses. Our current optogenetic system is designed to target

specific regions of the brain during these intervals (STAR Methods and Discussion). Once desired brain activity is triggered, zebrafish can

exhibit natural and unrestricted behavioral responses. Importantly, while the zebrafish remains stationary during bout intervals, the orienta-

tion of its head varies between bouts. Our algorithm aims to consistently and accurately target the designated brain regions in different

orientations.

Here, we used transgenic zebrafish with pan-neuronal expression of jGCaMP8s,24 LSSmCrimson, and the light-sensitive protein Chrim-

sonR29 (elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson3 elavl3:ChrimsonR-tdTomato, 7 dpf) to test the capability of our system. Aminimal

area was selected in the ZBB atlas (Figure 7B, left) and after coordinate transformation, a yellow laser beamwas applied to the corresponding

area on the fish head (Figure 7B, right). The full x width at half-maximum (FWHM) of the photostimulation intensity profile is 7.8 mm and the y

FWHM is 6.7 mm (Figure S11D).We could identify the activation of the corresponding region in the green channel before and after the onset of

optogenetic stimulation (Figures 7D, S11A, and S11B). During stimulation, our aim was to consistently target the same area (Figure S11C) and

Figure 7E shows the displacement (or error) between the actual position of the light spot and the target position during a 50-s experiment. The

shaded red regions indicate periods of swift fish motion during which the yellow laser was deflected out of the FoV to avoid targeting the

wrong area.
Optogenetic manipulation of nMLF

Finally, we demonstrate how our integrated system, which combines 3D tracking, brain-wide Ca2+ imaging, and optogenetic stimulation of a

defined brain region, can be used to probe the relationship between neural activity and behavior. We performed a transient (1.5 s) unilateral

optogenetic stimulation (Figure 8A) of the tegmentum region including nMLF,30,31 which quickly induced an ipsilateral turn within 2 s in the

vast majority of cases (Video S3). Figure 8B shows example bouts from 1 fish and Figure 8C plots the turning angle distribution from 6 fish.

Spontaneous turns in the absence of light stimulation did not show directional bias, and the magnitude of a turn was smaller (Figures 8B and

8C). As a control, when the same light stimulation was applied to zebrafish that did not express the light-sensitive protein ChrimsonR, the

animals’ movements did not show directional preference: they exhibited more forward runs and when they turned, the turning amplitude

was much smaller (Figures 8D and 8E).

All-optical interrogation enabled us to investigate how local optogenetic manipulation impacts brain-wide activity in unrestrained zebra-

fish. Figure 8F reveals the appearance of neural activity in brain circuits after optogenetic activation of nMLF. The trial-averaged active regions

were colored according to their response onset time, when the activity amplitude reached 20% of its maximum after optogenetic manipu-

lation. We found that evoked neural activity appeared in different regions of the brain, including the tegmentum, the optic tectum, the torus

semicircularis, and the cerebellum (Figure S13). In particular, a total of n = 1788 ROIs exhibited prominent Ca2+ activity during optogenetic

stimulation of the left or right nMLF region. The population neural activity pattern, which can be viewed as an n-dimensional vector a!ðtÞ,
exhibited higher Pearson’s correlation coefficient in trials when unilateral stimulation was applied to the same side of the brain than when

stimulation was applied to the opposite side (Figure 8G and legends).
8 iScience 27, 108385, January 19, 2024
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Figure 6. Population activity across multiple brain regions can be used to decode turning direction of zebrafish

(A) Confusion matrix of linear discriminant analysis (LDA).

(B) Spatial distribution of the 50 brain regions on zebrafish brain browser (ZBB). Scale bar, 100 mm.

(C) Activities in 8 brain regions labeled in (B). The thick line indicates the average activity over multiple trials while the thin line shows the AF-inferred activity in a

single trial. Green: left turn; Red: right turn. The vertical dashed line indicates the onset of the turn. See also Figure S12.
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DISCUSSION

Freely swimming zebrafish exhibit different internal states and behavioral responses to sensory inputs than head-fixed zebrafish.17,31 By

combining robust tracking in different conditions, Ca2+ signal correction based on dual-color fluorescence imaging, and optogenetic manip-

ulation of unrestrained zebrafish, our method enables more accurate readouts of brain activity associated with different behaviors, and all-

optical interrogation of the brain-wide circuit in a freely swimming larval zebrafish (Figure 9).

Our new tracking system keeps 92.6% frames within the tolerance range of tracking errors at all times, and 58.69% frames within this range

during locomotion (Figure 2C). We found that missing a small number of frames has a minimal effect on the extraction of Ca2+ activity. This is

because the movements of zebrafish are punctuated by intervals between bouts, and the actual movement only accounts for a small fraction

of the total recording time (16.6%, n = 34 fish). Furthermore, Ca2+ fluorescent activity is typically slow, allowing effective interpolation of lost
iScience 27, 108385, January 19, 2024 9
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Figure 7. Real-time optogenetic system

(A) Schematics of the optogenetic stimulation workflow.

(B) Transformation of a user-defined brain region on a ZBB atlas (left) to a real-time position in unrestrained zebrafish (right). The yellow rectangle shows the

stimulation pattern. Scale bar, 100 mm.

(C) Pseudo-color fish brain pixel averaged across 200 registered red channel fluorescence images. The white arrow indicates the location of the red fluorescence

excited by the laser beam (STAR Methods). Scale bar, 100 mm.

(D) Left, green channel image. Scale bar, 100 mm. Right, a zoomed-in image around the stimulated region (white rectangle) before (top) and during (middle)

yellow light stimulation. The color map (bottom) indicates the change in fluorescence intensity (STAR Methods). Scale bar, 50 mm.

(E) Top, images of the fish brain during optogenetic stimulation. Scale bar: 100 mm. Bottom, the displacement between the actual position of the light beam and

the targeted position. We deflected the laser out of the FoV during periods of rapid fish movements, indicated by the shaded red regions. See also Figure S11.
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frames to recapture real neural activity. We verified this conclusion by deleting the same fraction of frames during head-fixed and tail-swing

recordings (STARMethods). The interpolation error was less than 0.1 in almost all brain regions of head-fixed fish (98.6%) and freely swimming

fish (95.1%). Looking ahead, we will relax the tracking error tolerance by enlarging the FoV of the fluorescence imagingmodule. Moreover, we

will enhance the tracking speed by improving the algorithms for predicting zebrafish movements and a more responsive moving stage.

Extracting neural activity from Ca2+ signals in the presence of strong noise is a challenging task. Here, we tackle this problem using the

AFmethod. Adaptive filter algorithms in the biomedical field primarily target noise removal in various physiological signals. Examples include

the extraction of fetal ECG signals from overlaid maternal ECG signals and the separation of electroencephalogram signals from
10 iScience 27, 108385, January 19, 2024



Figure 8. Optogenetic activation of the unilateral nMLF region induced ipsilateral turning behavior and activity changes

(A) Stimulation regions and paradigm. The left and right midbrain regions including nMLF were alternatively stimulated (Video S3). Scale bar, 200 mm.

(B) Example bout trajectories from a elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson 3 elavl3:ChrimsonR-tdTomato fish.

(C) Histogram of bout angle from all elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson 3 elavl3:ChrimsonR-tdTomato fish (n = 6).

(D) Example bout trajectory from a elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson fish without the expression of opsin (ChrimsonR) in neurons.

(E) Histogram of bout angle from all elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson fish (n = 5, STAR Methods).

(F) Activity appeared after optogenetic stimulation of the unilateral nMLF region. Active regions were color coded according to their response onset time when

the corrected signal intensity reached 20% of their maximum after optogenetic manipulation. Scale bar, 100 mm.

(G) Pairwise Pearson’s r of brain-wide activity between time frames, defined as a!ðtÞ$ a!ðt0 Þ
k a!ðtÞkk a!ðt0 Þk

. Time frames include 500-ms periods (5 frames in each trial and 20

trials) after activating the unilateral nMLF region, as well as randomly selected 500-ms epochs when no optogenetic manipulation was performed. See also

Figure S13.
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electrooculogram signals.32–35 These applications use reference signals to estimate noise signals by dynamically adjusting the parameters for

optimal noise removal.

Ca2+ imaging in freelymoving small animals such asC. elegans,Drosophila, and zebrafish (where headmounting equipment is impractical)

has been approached differently. Some studies omitted signal correction entirely and others used the direct ratiometric method. Our inno-

vation lies in the integration of the AF algorithm into the calcium signal correction procedure. Compared to other motion correction

methods,36 the AF algorithm is fast and does not require prior knowledge. To enhance the performance of the algorithm, we constructed

a zebrafish line that achieves brain-wide expression of the long Stokes shift fluorescent protein. This ensures that the red emission reference

channel and jGCaMP8s, essential for calcium imaging, use an identical excitation light source. This shared excitation maximizes the correla-

tion of the change in fluorescence intensity due to the movement of zebrafish, allowing for a more accurate estimate of the motion artifact in

the signal of jGCaMP8s. In ourmethod,motion-induced interference signals contain a factor that ismultipliedwith the targeted signals (Equa-

tion 3), a distinction from earlier techniques where interference was only additive.
iScience 27, 108385, January 19, 2024 11
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Figure 9. Summary of the all-optical interrogation method

Robust tracking, accurate extraction of Ca2+ activity, as well as manipulation of neural activity in specific brain regions enable us to investigate the neural

mechanisms underlying different behaviors of freely swimming zebrafish.
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Improving the correlation and signal-to-noise ratio (SNR) of the green and red signals allows our AF algorithm to obtain more accurate

signal correction results (Figure S7). Using less pigmented and more transparent zebrafish, such as the casper line37 for brain imaging, helps

to reduce the chromatic aberration caused by pigmentation and tissue scattering, and could thus improve the correlation between red and

green signals. Using brighter red fluorescent proteins and Ca2+ indicators with a larger dynamic range38 would further improve SNR and thus

make the extraction of the activity signal more accurate. Another possibility is to use SomaGCaMP39 instead of nuclear-localized GCaMP,

which would increase the amount of fluorophore expression. The AF algorithm is not always accurate for all brain regions, especially when

the correlation and SNR of dual channel signals are low. To address this issue, we may need to develop refined models that use the statistics

of dual-channel signals. One possible improvement is to perform an in-depth statistical analysis of the data collected from the freely swim-

ming EGFP3 LSSmCrimson zebrafish.We could also extract features of neural activity-induced signal changes in jGCaMP8s3 LSSmCrimson

zebrafish paralyzed by bungarotoxin. This prior information, when combinedwith the location of each brain region, could be used to develop

a more accurate model for dual-channel signals.

Previous optogenetic experiments in zebrafish can be divided into two categories: (1) optogenetic manipulation of specific brain regions

with spatially patterned illumination in head-fixed zebrafish12,14 and (2) manipulation of freely swimming zebrafish with spatially localized

photosensitive proteins using full-field light.40,41 The first method can provide spatially accurate stimulation, but behavior responses are

restricted and not natural. The second approach allows optogenetic manipulation of naturalistic behavior, but generating fish lines express-

ing photosensitive proteins in desired brain regions is challenging and only one spatial pattern of stimulation can be applied to the fish. Our

system aims to overcome the limitations of both approaches: it allows selective light stimulation of specific brain regions and rapid switching

of stimuli between multiple regions in unrestrained zebrafish.

The current optogenetic module uses a laser without beam expansion, and manipulation of a selected brain region is achieved by high-

speed 2D galvomirror scanning, a design that greatly reduces the loss of laser energy and allows for ultra-high intensity of light projection. An

alternative method is to generate patterned illumination using the digital micromirror device,13,42 which could be less energy efficient. How-

ever, our design results in optogenetic manipulation without Z-resolution (Figure 7C). A set of lenses could be added before the galvo mirror

for beam expansion. This would allow the beam to converge only near the focal plane, and the rapid decrease in light intensity away from the

focal plane would enable neurons to be activated only near the focal plane. The position of the focal plane could be adjusted by moving the

lens with a piezo.

Our real-time optogenetic system is tailored to target specific brain regions during zebrafish bout intervals. Although we have the poten-

tial to enhance our closed-loop speed 10-folds (from 10 to 100 Hz), the zebrafish’s swift movements—with an instantaneous velocity of up to

100 mm/s and accelerations between 1 and 2 g—make it virtually impractical to precisely target a single brain region within one bout without

compromising the spatial resolution and accuracy. However, for many of our research interests, this limitation is not detrimental. Unlike

C. elegans or Drosophila larva, where constant movement is characteristic, larval zebrafish exhibit more intermittent bouts of activity. We

are confident that our system offers a versatile tool for optogenetic manipulation in zebrafish with dense and spatially distributed light-sen-

sitive channels, ensuring intervention in a more natural state of movement.

We use visible light for single-photon optogenetic manipulation, an approach that allows us to manipulate a wide range of brain re-

gions nearly simultaneously and has minimal thermal effects compared to infrared light. However, visible light is easily scattered by brain

tissue, making manipulation less spatially accurate, especially for deep brain regions. Recently developed two-photon optogenetics and

the holographic technique have enabled the manipulation of multiple neurons at different locations in a fixed 3D volume.9,12 Two-photon

microscopy has also demonstrated its ability to track and stimulate a single neuron in a freely moving Drosophila larva.43 The inherent
12 iScience 27, 108385, January 19, 2024
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nature of two-photon excitation can significantly reduce tissue scattering and improve manipulation accuracy.44 Combining two-photon

optogenetics with one-photon volumetric imaging in unrestrained zebrafish is a promising future direction if the spatial accuracy of opto-

genetic manipulation at the single-neuron level is critical; if speed and cost are critical, then single-photon optogenetics would be the

better choice.

Using linear discriminant analysis, we identified 50 brain regionswhose population activity could accurately decode the turning direction of

zebrafish (Figure 6). This result does not necessarily imply that the activity of the individual region is a good indicator of turning direction (Fig-

ure 6C); nor does it suggest a causal relationship between its activity and a specific turning behavior. Indeed, by selectively activating each of

the 50 brain regions, we found that most stimulations did not trigger behavior responses, except for brain regions 1 and 6 (Figures 6B and

S12A) that are located near the left and right torus semicircularis correspondingly. Optogenetic stimulation of either region induced more

vigorous swimming behavior (Figure S12B) with disproportionately large turning angles (Figure S12C). In particular, stimulating either region

could trigger a left or right turn (Figure S12C). On the contrary, we did not observe such behavior changes in control animals that did not

express light-sensitive channels ChrimsonR in neurons (Figures S12B and S12C). Together, our results highlight the potential of our integrated

system to probe the functional relationship between specific brain regions and behaviors.

Molecular biology approaches can be used to further improve the accuracy and adaptability of optical readouts and the manipulation of

defined neural populations. For example, the integration of nuclear localization sequences optimizes the confinement of calcium indicators

and RFP within the cell nucleus.45 This optimization could intensify the sparsity of fluorescence expression, thereby elevating the resolution of

the reconstructed images. With the aid of suitable promoters and the GAL4/UAS system, opsins can be expressed in defined brain regions or

cell types.46–48 This capability would enable us to explore the influence of anatomically and/or genetically defined cell assemblies on brain-

wide activity and animal behavior.

In conclusion, we anticipate that our all-optical technique, when combined with recent development in volumetric imaging

methods,17,19,49–55 would significantly advance the investigation of neural mechanisms underlying various naturalistic behaviors in zebrafish

and other model organisms.25,56–59
Limitations of the study

Our current optogenetic module does not possess a Z-resolution.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

MAXIscript T7 kit Thermo Fisher Scientific Cat #: AM1334

Deposited data

Datasets and analysis files This manuscript https://doi.org/10.6084/m9.Figureshare.24032118.v3

Experimental models: Organisms/strains

Zebrafish: Tg(elavl3:H2B- EGFP) This manuscript N/A

Zebrafish: Tg(elavl3:H2B- LSSmCrimson) This manuscript N/A

Zebrafish: Tg(elavl3: ChrimsonR-tdTomato) Jiulin Du N/A

Zebrafish: Tg(elavl3: H2B- jGCaMP8s) This manuscript N/A

Recombinant DNA

Plasmid: elavl3:H2B- EGFP This manuscript N/A

Plasmid: elavl3:H2B- LSSmCrimson This manuscript N/A

Plasmid: elavl3: H2B- jGCaMP8s This manuscript N/A

Software and algorithms

MATLAB Mathworks www.mathworks.com

OptoSwim This manuscript github.com/Wenlab/OptoSwim

CMTK NITRC www.nitrc.org/projects/cmtk

Python Python Software Foundation www.python.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, QuanWen (qwen@ustc.edu.cn).

Materials availability

All unique transgenic lines and plasmids generated in this study are available from the lead contact without restriction.

Data and code availability

� Calcium imaging and behavior data have been deposited at Figureshare and are publicly available as of the date of publication. DOIs

are listed in the key resources table.

� All original code has been deposited at GitHub and Figureshare and is publicly available as of the date of publication. DOIs are listed in

the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All larval zebrafish were raised in 0.5 3 E2 Embryo Media at 28.5�C and a 14/10 hr light/dark cycle. The 0.5 3 E2 Embryo Media consisting

of 7.5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO4, 75 mM KH2PO4, 25 mM Na2HPO4, 0.5 mM CaCl2, 0.35 mM NaHCO3. Larval zebrafish aged

6–11 days post-fertilization (dpf) were used for all experiments. Sex discrimination was not included since the sex of zebrafish is not specified

at this stage.

All the transgenic fish lines used in this article were generated as follows. The corresponding genes were amplified and cloned into elavl3

promoter and H2B sequence-containing vector. The corresponding plasmid (dosage of 20 ng/ml) was co-injected with Tol2 transposase

mRNA (dosage of 50 ng/ml, transcribed using MAXIscript T7 toolkit according to standard procedures) into one-cell stage nacre embryos

to make the corresponding transgenic line.

All experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of Science and Technol-

ogy of China (USTC).
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METHOD DETAILS

Hardware

The new systemwas an update of XLFM.16 The upgraded system consists of threemain components: a 3D trackingmodule, a dual-color fluo-

rescence imaging module, and an optogenetic manipulation module.

The 3D tracking module used a high-speed camera (0.8 ms exposure time, 340 fps, Basler aca2000-340kmNIR, Germany) to capture the

lateral motion of the fish. We developed a U-Net21 based system that could rapidly identify the position of the head and the yolk. The error

signal between the actual head position and the set point was then fed into the tracking model to generate output signals and control the

movement of a high-speed custom stage. The autofocus camera (100 fps, Basler aca2000-340kmNIR) behind a 5-microlens array captured 5

images of the fish from different perspectives. The z position of the fish can be estimated by calculating the inter-fish distance based on the

principle of LFM. The error signal between the actual axial position of the fish head and the set point was then fed into the PID to generate an

output signal to drive a piezo (PI P725KHDS, 400 mm travel distance) coupled to the fish container.

In the dual-color fluorescence imaging module, a blue excitation laser (Coherent, Sapphire 488 nm, 400 mW) was expanded and colli-

mated into a beam with a diameter of �25 mm. It was then focused by an achromatic lens (focal length: 125 mm) and reflected by a dichroic

mirror (Semrock, Di02-R488-25X36, US) in the back pupil of the imaging objective (Nikon N25X-APO-MP, 25X, NA 1.1, WD 2 mm, Japan),

resulting in an illumination area of �1.44 mm in diameter near the objective focal plane. This 488 nm laser was used to simultaneously excite

jGCaMP8s and LSSmCrimson. Along the fluorescence imaging light path, the fluorescence collected by the objective was split into two

beams by a dichroic mirror (Semrock, FF556-SDi01-25X36) before the microlens arrays and entered the two sCMOS cameras (Andor Zyla

4.2, UK) separately. Each lenslet array consisted of two groups of microlenses with different focal lengths (26 mm or 24.6 mm) to extend

the axial field of view while maintaining the same magnification for each subimage. Both lenslet arrays were conjugated to the objective

back pupil by a pair of achromatic lenses (focal lengths: F1 = 180 mm and F2 = 160 mm). Two bandpass filters (Semrock FF01-525/45 and

Semrock FF02-650/100) were placed before 2 cameras, respectively, to block light from other wavelengths.

A 588 nm laser (CNI MGL-III-588, China) reflected by a 2D galvo mirror system (Thorlabs GVS002, USA) was used for optogenetic manip-

ulation. The midpoint of two galvo mirrors was conjugated onto the back pupil of the imaging objective by a pair of achromatic lenses (focal

lengths: F1 = 180 mm and F2 = 180 mm). A dichroic mirror (Semrock, Di01-R405/488/594-25X36) reflected the 588 nm laser and transmitted

the green and red fluorescence.
A U-Net neural network to track fish position and orientation

We used a simplified U-Net21 model to detect the head and yolk of the fish. The model contains only two downsampling layers and two up-

sampling layers, which improves the detection speed. The heat map is used as the output of the model, showing the location of the target

point and the confidence level. To create a training dataset, we used customMATLAB tools (Natick,MA). First, we used k-means to extract the

key frames in the video. The key frames covered the variety of fishmovements and the complexity of the background. Second, we read the first

three keyframes of each video and manually marked the position of the fish’s head and yolk. We rotated the three keyframes until the fish’s

head was facing the same direction, calculated the average image, and rotated the average images at 5-degree intervals to create 72 tem-

plates. Then, the positions of the head and yolk of the fish in all keyframes were determined using template matching. We manually checked

the position marked on each keyframe and corrected for the wrong label. Finally, we created a training dataset by combining all labeled

frames and dividing them into subsets of test and training frames.

We used pytorch to build, train and test themodel. For training, we used the Adamoptimizer andMSE loss function, with a batch size of 32,

an initial learning rate of 0.001 and a gradual decay.We saved themodel with the lowest loss in the test set and stopped trainingwhen the loss

was no longer decreasing.We implemented themodels in our tracking systemusing TensorRT.We reduced themodel precision to Float16 to

improve inference speed without sacrificing inference accuracy.
Model predictive control (MPC)

We adopted the MPC method in17 to control the X-Y motorized stage. We modeled the motion of the stage and the fish, and then selected

the optimal stage input by minimizing future tracking error. The stage was modeled as a linear time-invariant system, whose velocity was pre-

dicted by convolving the input with the impulse response function of the system. The motion of the fish during a bout was modeled as a uni-

form linearmotion. Instead of directly predicting the trajectory of the fish brain, as in,17 we first predicted the trajectory of the fish yolk, which is

much straighter, especially at the beginning of a bout. We then predicted the fish brain position by shifting along the current heading vector.

The loss function to beminimized is the sum of squares of tracking error over six times steps into the future, plus an L2 penalty for stage input.

We replaced the L2 penalty on the future planned acceleration vector17 with the L2 penalty on stage inputs, which empirically reduced stage

vibration.
Assessment of interpolation

Given that a single bout typically concludes within 300 ms and our volumetric imaging rate was 10 Hz, the fish head could be partially or

completely out of the FoV in 1 or 2 frames during a rapid movement. Therefore, we performed two types of procedures to assess the impact

of missing frames during fish movement: In the context of head-immobilized zebrafish with tail-free movements, we deleted 1 or 2 frames
iScience 27, 108385, January 19, 2024 17
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each time the tail swings. From the calcium imaging data of freely swimming zebrafish, we arbitrarily selected a single frame or two successive

frames, deleted them, and subsequently replaced them with interpolated data (7.9% of the total frames were interpolated).

To assess the interpolation error, we calculated the mean relative difference between the interpolated signal and the actual jGCaMP8s

signal (Figure S3):

E =
1

N

XN
k = 1

jbIðnkÞ � IðnkÞj
IðnkÞ (Equation 1)

whereN is the total number of interpolated frames, nk is the index of interpolated frames, bI and I are the interpolated and actual fluorescence

intensity of an ROI, respectively.

Volumetric image registration

Accurate alignment of volumetric images of freely swimming zebrafish larvae is essential for subsequent signal correction and neural activity

analysis. Because the green and the red fluorescence signals are derived from splitting a single beam of light, the raw reconstructed volu-

metric images between the two channels differ only by a simple affine transformation. The red channel is activity-independent and the inten-

sity difference between frames is relatively smaller than that in the green channel. Therefore, we first performed multistep alignment on the

red channel and then applied identical operations on the green channel (Figure 3A). Direct alignment of raw images is time-consuming and

data-intensive. To address these challenges, we designed and implemented the following four-step registration pipeline.

Crop

We first rotated the reconstructed original 3D images (600 3 600 3 250 voxels) based on the orientation of the fish head recorded by the

behavior camera. This rotation aligned the rostrocaudal axis of all frames in the same direction. We then cropped and removed the black

space surrounding the fish. Finally, the images were resized to 3083 3803 210 voxels, which are the dimensions of the ZBB atlas template.27

Approximate registration

Weselectedone cropped imageand aligned itwith the ZBBatlas togenerate a unified template for thewhole sequence.Next, weuse theCMTK

toolbox to register each frame with the template using the affine transformation.22,60 Using the ’correlation ratio, CR’ as the registration metric,

we achieved the best result.61 With "OpenMP" multithread optimization, we were able to finish one frame of approximate registration in 25

seconds.62

Remove fish eyes

Because the rotation of fish eyes could seriously affect the next step of non-rigid registration, we used a U-net neural network to automatically

remove fish eyes.

Diffeomorphic registration

To handle the minute changes in an image caused by breathing, heartbeat, and body twisting, we found it necessary to refine our approximate

registration. We used the optical flow algorithmMaxwell’s demons to implement non-rigid registration in the final phase.23 To increase the pre-

cision of the optical flow method with our data, we generated a fresh alignment template. This was achieved by taking an average from every

tenth frame across every hundred frames within the image sequence. Subsequently, we lined up each segment of the sequence with the newly

created alignment templates. This algorithmwasdevelopedusingMATLABand can be speededupvia aGPU. In practice, the execution time for

each frame was averaged at 72 seconds on a single RTX 3090 GPU. Efficiency can be further optimized by deploying multiple GPUs.

To evaluate alignment accuracy, we first implemented our multistep registration pipeline in the red and green channels of a swimming

larval zebrafish. The green channel in this case contained the EGFP signals that were sparsely expressed in the neuronal nuclei. We used

the MATLAB toolkit "CellSegm"63 to perform cell segmentation and obtain the centroid coordinates of neurons expressed by EGFP in every

frame. We then matched each neuron’s positions in a post-registered time frame to its correspondent in a fixed template frame using the

Hungarian algorithm. We identified 164 G 15 (mean G SD) neurons in all time frames and 195 neurons in the template. Due to uneven dis-

tribution of excitation light in the FoV, scattering, and attenuation of fluorescence by brain tissue and body pigments, not all neurons’ cell

bodies were visible in every frame. We introduced the searching radius, a hyperparameter in the Hungarian algorithm that controls how

far the algorithm will look for matches. The root mean square displacement (RMSD) between the positions of pairs of matched neurons

and the matching ratio both increased with the searching radius and plateaued at a large radius (Figure S4C). We selected the result with

a 5-voxel search radius as our best estimate of alignment accuracy (Figure 3D; Figure S4C), because it was large enough to find most of

the true matches.

Segmentation

After applying multistep registration to the activity-dependent green channel, we performed cell segmentation based on temporal correla-

tion in the green channel, following the approach introduced in.64 We calculated the average correlation between each voxel and its 14
18 iScience 27, 108385, January 19, 2024
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neighbors to obtain a "correlationmap".We then implemented the watershed algorithm on this correlationmap to obtain a preliminary seg-

mentation result. For each voxel, we further analyzed its correlation with the average activity of that specific segmented region and obtained

the ’coherencemap’. Finally, we used a threshold filter on the coherencemap to obtain the final segmentation results, which was also applied

to the red channel.

Correlation-based segmentation was not suitable for the elavl3:H2B – EGFP 3 elavl3:H2B - LSSmCrimson fish data because the green

channel lacks the neural activity signals. Instead, we divided the entire image into 8 3 8 3 6 voxel regions. The grid size was close to the

mean segmented ROI size of our Ca2+ imaging data.
Normalized least-mean-square (NLMS) adaptive filter

We start by presenting a phenomenological model of the fluctuation of fluorescence signals in the activity-dependent green channel and the

activity-independent red channel. Noise in the red channel has two major contributions: motion-induced fluctuation of fish and independent

noise introduced along the optical pathway and by the sCMOS camera. Here wemodel the red LSSmCrimson signal rðnÞ from a given ROI at

time frame n as

rðnÞ = IðnÞbrðnÞ+ erðnÞ (Equation 2)

where erðnÞ is independent noise, IðnÞ is the local excitation light intensity and brðnÞ is the baseline fluorescence, which in theory only depends
on the number of fluorophores expressed in the neuron. However, fishmovements in 3 dimensions make both IðnÞ and brðnÞ time dependent.

We model the green jGCaMP8s signal gðnÞ from the same ROI in a similar way by incorporating the Ca2+ activity aðnÞ.

gðnÞ = IðnÞ�bgðnÞð1+ aðnÞ Þ �+ egðnÞ (Equation 3)

where egðnÞ is independent noise and bgðnÞ is the baseline. If the emission light fields of the green and red fluorophores captured by the

imaging objective and the camera are identical, then we can identify bgðnÞ = abrðnÞ, where a is a proportionality constant. Therefore, a sim-

ple division between the green and red signals is sufficient to extract Ca2+ activity, provided that the independent noise is small. In practice,

due to various scattering of brain tissue and obstruction of body pigments, we are agnostic about the relationship between bgðnÞ and brðnÞ;
but it is reasonable to assume that they are strongly correlated in a complicated and time-dependent way, which is consistent with our obser-

vation and analysis of the raw EGFP and LSSmCrimson signals.

Under the assumption that motion-induced fluctuations are strongly correlated between the green and the red channels, and such fluc-

tuation is history dependent, we decided to use an adaptive filter (AF) to extract Ca2+ activity corrupted bymotion artifacts.We aim to predict

the green channel signalgðnÞ from the red channel rðnÞ using the normalized leastmean squares (NLMS) AF algorithm.65 TheNLMS algorithm

continuously subtracts the predicted signal bgðnÞ from gðnÞ so that the residue eðnÞ = gðnÞ � bgðnÞ is minimized. The predicted bgðnÞ is a

weighted sum of the history-dependent red signal:

bgðnÞ = XM� 1

k = 0

uðkÞrðn � kÞ (Equation 4)
= u!ðnÞ r!ðnÞ
where M is the filter length and here we set M = 2. We iteratively update the weight (i.e., filter) vector u! using gradient descent:

u!ðn+ 1Þ = u!ðnÞ+ m

k r!ðnÞk2+d
r!ðnÞeðnÞ (Equation 5)

We follow66 to determine the iteration step size m. Once bgðnÞ was computed, we made the following assumption that:

bgðnÞzIðnÞbgðnÞ (Equation 6)

As a result, the Ca2+ activity is given by

aðnÞzgðnÞ
bgðnÞ� 1 (Equation 7)

provided that egðnÞ � bgðnÞ, namely the independent noise is much smaller than motion-induced fluctuation.
Performance of AF algorithm

To identify the factors that affect the inference ability of the AF algorithm, we added randomly timed synthetic signals with fixed amplitude to

the EGFP signals of freely swimming zebrafish. We then evaluated the AF inference performance by calculating the cross-correlation (Pear-

son’s r) between the AF inferred signal and the synthetic signal for each ROI. We visually represented each ROI’s correlation as colored scat-

tered points in two dimensions with the correlation between dual-channel signals on the y-axis and the coefficient of variation (CV) of the red

channel on the x-axis for different synthetic signal amplitudes (Figure S7, left column). ROIs with a higher correlation between dual-channel
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signals and smaller CV typically exhibit better AF inference performance. As the amplitude of the synthetic signal increases (defined as the CV

of an ROI’s EGFP signal multiplied by a constant), the overall inference performance also increases (Figure S7, right column).

To establish a criterion for the screening of ROIs with a potential high AF inference performance, we binarized the r between AF inferred

signal and synthetic signal with a threshold value of 0.5. We considered ROIs with a r greater than 0.5 to have a good inference performance

(Figure S6). We then used polynomial logistic regression to perform a binary classification task, which can be modeled as:

gðx1; x2Þ =
1

1+e� f ðx1 ;x2Þ

where f is a cubic polynomial function with fitted coefficients, and x1, x2 are CV of the red channel and Pearson’s r of dual-channel signals

respectively. For visualization purposes, the pink regime in Figure S7 corresponds to g> 0:7 while the blue one corresponds to g< 0:7;

the dashed line dividing the two regimes can be viewed as a decision boundary. The area under the ROC curve (AUC) was used to quantify

the classification performance.

We found that the measured medium amplitude of jGCaMP8s in head-fixed larval zebrafish was about 4 times the CV of EGFP signals in

freely swimming zebrafish (Figure S5).We therefore selected the fittedmodel when the amplitude of synthetic neural activity is four times (43)

the CV of the EGFP signals (Figure S7C). Note that when the samemodel (Figure S7C) was applied to synthetic signals whose amplitudeswere

sampled from a defined statistical distribution instead of a fixed amplitude, we found a similar classification performance.
Decoding turning direction through linear discriminant analysis

We simultaneously recorded spontaneous locomotion and whole brain Ca2+ activity of elavl3:H2B-jGCaMP8s zebrafish. Taking the head

orientation before the bout as 0�, a turn angle >20� after the bout was defined as a right turn bout, and a turn angle <20� after the bout

was defined as a left turn bout. We attempted to perform a linear discriminant analysis of these two turn directions using brain activity. First,

we used a one-way ANOVA to identify 566 brain regions with significant differences in activity during the two types of bouts.We then used the

activity of these 566 brain regions to perform LDA analysis (using theMATLAB function fitcdiscr). We divided the brain activity data during the

left-turn bout and the right-turn bout into five equal parts in chronological order, respectively, and then took one part of each to form the test

set and the remaining data to form the training set. This yielded 25 unique combinations of training and test sets. The average accuracy per-

formed on the test set was used as the evaluation criterion for the LDAmodel. The accuracy of LDA using the 566 brain regions was 87.9%.We

then selected the 50 brain regions with the highest absolute values of the coefficients in the model and redid the linear discriminant analysis

with an accuracy of 93.6%. The results of the 25 tests were pooled to obtain the confusion matrix chart in Figure 6A.
Galvo voltage matrix

We placed a fluorescence plate under the microscope objective and adjusted the stage height and laser intensity to maximize the brightness

and minimize the size of the fluorescence spot excited by the optogenetic laser. The galvo input is a voltage pair (GalvoX, GalvoY). We varied

the galvo voltage input with an interval of 0.1 V and a range of �1.5 V to +1.5 V in both the X and Y directions. We recorded 10 frames per

voltage pair. The raw recorded images were resized to 5123 512 pixels and reconstructed.We took the coordinates of the brightest point on

the image of each voltage pair. If there was no bright spot in the FoV, the voltage pair was deleted. As a result, the correspondence between

some of the galvo input voltage pairs and image coordinates was known. Assuming a linear transformation relationship between the voltage

pairs and the coordinates, we found the affine transformation matrix using the known points. Then, we calculated the galvo voltage pair cor-

responding to each point in the image and stored it as the GalvoX and GalvoY voltage matrices.
Online optogenetics pipeline

A customC++ programwas used to implement the optogenetic system. After the images were captured by the red fluorescence camera, the

image reconstruction and alignment process were implemented in the GPU, while the coordinate transformation and the control of the galvo

were implemented in the CPU.

The image processing algorithm was run on an RTX 3080 Ti GPU using CUDA 11. We resized an image from 2048 3 2048 pixels to 512 3

512 pixels using the AVIR image resizing algorithmdesignedby Aleksey Vaneev (https://github.com/avaneev/avir). Due to the reduced image

size andmemory consumption, we could use the PSF of the whole volume to do the deconvolution with a total of 10 iterations. The size of the

reconstructed 3D image is 200 3 200 3 50 voxels. It took about 75 ms to reconstruct one frame.

We used TCP to communicate between the tracking system and the optogenetic system. We rotated the fish head orientation of the 3D

image to match that of the ZBB atlas using the fish heading angle provided by the tracking system. We then found the maximum connected

region by threshold segmentation and removed redundant pixels outside the region. The size of the image after cropping was 953 763 50

pixels, which is the same as the ZBB atlas. Finally, we aligned the 3D imagewith the standard brain by affine transformation using a transformer

neural network model. Rotation, cropping, and affine alignment took about 10 ms.

The coordinate transformation first calculated the inverse of the affinematrix and the rotationmatrix. The user-provided coordinates of the

region on the ZBB atlas were thenmultiplied by the transformation matrix. Finally, the transformed coordinates were shifted by the upper left

corner coordinates of the cropped image. This converted the coordinates of the specified region selected in the ZBB atlas to the coordinates

of the actual fish brain.
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The voltage pairs to be applied to Galvo were read from the GalvoX andGalvoY voltagematrices. The voltage signals were then delivered

to the 2D galvo system (Thorlabs GVS002, USA) using an I/O Device (National Instruments PCIe-6321, USA). The galvo system converted the

voltage signals into angular displacements of two mirrors, allowing rapid scanning of a specified area.

Zebrafish movements consist of bout and bout intervals, namely rapid swimming periods separated by pause periods. To avoid targeting

the wrong brain region, we decided to deliver light stimulation only during the bout interval. Wemaintained a queue of length 50 that stored

the fish heading angle from the tracking system. The average of the heading angle of the fish in the queue was calculated. If the difference

between the received fish heading angle and the average in the queue was greater than 5 degrees, the fish was considered to have entered a

bout during the delay, and the laser beam was deflected out of the field of view.
Spatial accuracy of optogenetic stimulation

We selected an ROI of 13 1 pixel to test spatial precision during continuous optogenetic stimulation in unrestrained zebrafish. A notch filter

(Thorlabs NF594-23) was used to exclude the scattering light from the 588 nm laser in Figures 7C and 7D. This filter was removed in order to

accurately observe the position of the laser in Figure 7E. It is important to point out that our current optogenetic module does not possess a

Z-resolution (see Discussion for potential improvement).

We computed pairwise voxel intensity difference (DF/F) between the average green channel image before stimulation and that during

stimulation. Voxels with a value less than 20 were considered noisy background and set to 0. We show a single X-Y and Y-Z plane in Figure 7D.
Bout detection and behavior analysis

Weuse the displacement of the tracking stage ds(t)between consecutive frames to detect themovements of the zebrafish, and create a binary

motion sequence by thresholding ds(t) at 20 mm. To identify the bouts, we merged adjacent binary segments to obtain a complete bout

sequence. To characterize bouts, we calculated the angle between the heading direction at the beginning of a bout and the heading direction

of each frame during a bout (Figures 8B and 8D). The bout angle (Figures 8C and 8E) was defined as the angle between the heading direction

at the beginning of a bout and at the end of the bout. Positive values represent right turns.
Brain activity analysis during optogenetic stimulation

Whole brain neural activity were obtained from inferred signals using the AF algorithm, and unreliable regions of the brain were excluded

from further analysis.

To characterize brain-wide activity evoked by optogenetic stimulation, we first identified brain regions with significantly elevated neural

activity immediately after optogenetic activation of the ipsilateral nMLF. We compared Ca2+ activity in these regions with activity at times

without optogenetic manipulation and used a rank sum test with multiple comparison correction to identify significant differences. We

then calculated the mean activity trace for each ROI by averaging over multiple trials. Finally, we calculated the time (latency) it took for

each ROI to reach 20% of its maximum activity. The latency for each ROI is colored in Figure 8F.

To characterize brain-wide activity and its differences during optogenetic-induced turns, we used a rank sum test withmultiple comparison

correction to compareCa2+ activity from3 frames before to 3 frames after the start of a bout andCa2+ activity at othermoments.We identified

1788 ROIs that exhibited significantly elevated calcium activity during turns.

Next, we selected 5 frames of data after the onset of unilateral nMLF photostimulation: 10 trials during left stimulation and 10 trials during

right stimulation, for a total of 100 frames. We also selected 10 time segments, each of which contains 5 frames (50 frames in total), randomly

selected from the remaining frames without optogenetic manipulation. We calculated the Pearson’s r between every pair of the population

activity vectors. The results were represented by the similarity matrix (Figure 8G) using the frame index.
Optogenetic activation of the brain regions decoding turning direction

To test the relationship between the 50 brain regions identified by LDA and the behavior of zebrafish, we sequentially activated each brain

region optogenetically, with a maximum 2.5-second illumination period per trial, and each brain region was tested at least five times. The

presence or absence of zebrafish movement during light exposure as well as latency were used as screening criteria for further experiments.

Regions 1 and 6 were selected for experiments in 7 elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson3 elavl3:ChrimsonR-tdTomato fish. As a

control group, the same brain regions were illuminated on 10 elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson fish. Finally, the frequency of

the bout, that is, the total number of bouts during stimulation divided by the total activation time, the fraction of turning bouts (with a steering

angle |q| > 20�), and the steering angle of each bout were calculated under different conditions. A fish in the control group did not move

during each optogenetic activation trial and was excluded from the analysis.
QUANTIFICATION AND STATISTICAL ANALYSIS

MannWhitney U test with Bonferroni-Holm adjusted p value was used and data are expressed as the meanG SEM in Figures S12B and S12C

right. A two-sample Kolmogorov-Smirnov test was used in Figure S12C left. Data are expressed as the root mean square displacement

(RMSD) G standard deviation (SD) in Figures 3D and S4B. Data are expressed as the mean G SD in Figure S13.
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