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Abstract: Although persistent pain is estimated to affect about 20% of the adult population, current
treatments have poor results. Polypharmacology, which is the administration of more than one drug
targeting on two or more different sites of action, represents a prominent therapeutic approach for
the clinical management of persistent pain. Thus, in the drug discovery process the “one-molecule-
multiple targets” strategy nowadays is highly recognized. Indeed, multitarget ligands displaying a
better antinociceptive activity with fewer side effects, combined with favorable pharmacokinetic and
pharmacodynamic characteristics, have already been shown. Multitarget ligands possessing non-
opioid/opioid and opioid/opioid mechanisms of action are considered as potential drug candidates
for the management of various pain conditions. In particular, dual-target MOPr (mu opioid peptide
receptor)/DOPr (delta opioid peptide receptor) ligands exhibit an improved antinociceptive profile
associated with a reduced tolerance-inducing capability. The benzomorphan-based compounds LP1
and LP2 belong to this class of dual-target MOPr/DOPr ligands. In the present manuscript, the
structure–activity relationships and the pharmacological fingerprint of LP1 and LP2 compounds as
suitable drug candidates for persistent pain relief is described.

Keywords: benzomorphan; mu opioid receptor; delta opioid receptor; multitarget ligands; biased
agonism; pain

1. Introduction

In pain transmission the multitude and complexity of involved neuronal mechanisms
provide several possible targets for pharmacological intervention [1]. Thus, different
antinociceptive drugs with distinct mechanisms and sites of action can provide pain relief.

For instance, nonsteroidal anti-inflammatory drugs (NSAIDs) are recommended for
acute and chronic musculoskeletal and post-surgical pain management [2,3]. Neuropathic
pain and post-herpetic neuralgia (PHN) relief may be evoked with local anesthetics such
as the well-known lidocaine patch [4,5]. Additionally, ligands acting on the α2-δ subunit of
voltage dependent calcium channels are often used in the management of neuropathic pain,
such as diabetic neuropathy and PHN [6,7]. Other analgesic/adjuvant agents used to treat
persistent pain states are represented by monoamine reuptake inhibitors such as TCAs (e.g.,
amitriptyline, clomipramine, desipramine and imipramine), and serotonin-noradrenaline
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reuptake inhibitors (SNRIs) (e.g., duloxetine, milnacipran and venlafaxine) [8–10]. How-
ever, opioid analgesics continue to be first-line agents for the relief of acute nociceptive
pain and chronic cancer pain, and most of them are MOPr (mu opioid peptide receptor)
agonists, such as morphine (Figure 1) [11].
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Although MOPr agonists represent the first treatment option for nociceptive pain
management, their use in long-term treatment of persistent pain states is limited by side
effects [12,13]. It has been proved that antinociception and side effects are both elicited by
MOPr activation. Building upon these observations and considering that a single-target
antinociceptive agent may not provide optimal antinociception, multidrug analgesic ap-
proaches or polypharmacology have been introduced into clinical practice for the treatment
of both acute and persistent pain [14]. Various clinical trials, performed on patients that
underwent minor surgery, revealed additive or synergistic analgesic effects by the combi-
nation of NSAIDs with systemic opioids [15], revealing the ability of NSAIDs to reduce
the dose of opioids, with subsequent reduction of opioid-induced side effects. Similarly,
in patients with persistent pain conditions such as neuropathic pain and PHN, an im-
proved analgesic efficacy was reported for a multidrug regimen consisting of morphine
or oxycodone with pregabalin [16], gabapentin with nortriptyline [17]. Moreover, the
co-administration of two opioid drugs improved the analgesia MOPr-elicited by reducing
the incidence of side effects [18,19]. The co-administration of oxycodone and low-dose
naloxone (a non-selective opioid antagonist) decreased the development of constipation
while maintaining a valuable analgesic effect, thus improving the safety and tolerability
of the treatment [20,21]. However, a polypharmacology approach provides risks related
to different pharmacokinetic/pharmacodynamic relationships between co-administered
drugs that could lead to unpredictable biological variability [22,23].

In this perspective the past medicinal chemistry paradigm “one-target, one-disease”
has been reconverted into “one-molecule, multiple targets” through the development of
multitarget ligands [24,25]. Multitarget ligand—a single antinociceptive drug able to act on
different receptor sites, also with different mechanisms of action—could represent a valid
approach for pain management. In comparison with the multidrug therapy approach, these
compounds display more predictable pharmacokinetic and pharmacodynamic properties
with an improved patient compliance and lowered risk of drug–drug interactions [26].

Investigations in recent years showed that ligands targeting different opioid receptor
types simultaneously could represent suitable candidates for the treatment of persistent
pain [27]. First, favorable interactions between MOPr and DOPr were demonstrated by
numerous pharmacological studies. An improved side effects profile associated with an
increased antinociceptive effect resulted from the co-administration of an MOPr agonist
with a DOPr antagonist [28]. Also, the co-administration of a MOPr agonist and a DOPr
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agonist could produce antinociception with reduced side effects [29,30]. Later, dual-target
ligands with MOPr/DOPr (delta opioid peptide receptor) agonist or MOPr agonist/DOPr
antagonist activity also showed an improved antinociception and a low propensity to
develop side effects. For instance, DPI-3290 [31] (Figure 1), with a balanced MOPr/DOPr
affinity profile and the ability to inhibit the contractility of electrically stimulated guinea
pig ileum (GPI) and mouse vas deferens (MVD), produced a significant antinociceptive
effect, totally and partially blocked by naloxone (NLX) and naltrindole (NTI), respectively.
The MOPr agonist/DOPr antagonist UMB 425 [32] (Figure 1), subcutaneously (s.c.) ad-
ministered, showed a significant antinociceptive effect. Moreover, the development of
bifunctional MOPr agonist/DOPr antagonist peptidomimetics was also described [33].

This review aims to point out the progress in the search for opioid multitarget ligands
for persistent pain relief, with a focus on the dual-target MOPr/DOPr ligands LP1 and
LP2. A description of the development process to discover these dual-target ligands
was presented through the synthesis and biological evaluation of compounds with a
benzomorphan scaffold. In fact, modifications on N-substituent of the benzomorphan-
based ligands led to highlighting some requirements proper for the multitarget profile.
Moreover, the in vitro and in vivo profiles of LP1 and LP2 are presented. Thus, this review
could represent a useful example of the discovery process of new opioid ligands with a
safer profile.

2. Dual-Target Benzomorphan-Based Ligands LP1 and LP2

Benzomorphan, with morphan, phenylmorphan and phenylpiperidine, originate from
morphine structure simplification [34]. The benzomorphan nucleus, aliases 2,6-methano-3-
benzazocin-8-ol, provide a rigid backbone for probing the pharmacophoric requirements
in opioid receptor interaction, represented by the aromatic ring, the saturated or morphan
segment, and the nitrogen substituent. The (−)-(2R,6R,11R) configuration, identical to that
of (−)-morphine, is preferable for the interaction with opioid receptors. The (+)-(2S,6S,11S)
antipode was able to interact with other targets [35], such as the sigma 1 receptor (σ1R).
For example, the synthesis of (+)-(2S,6S,11S)-LP1 analogue [(+)-LP1] gave a compound
with a nanomolar σ1R binding affinity (Ki

σ1 = 5 ± 0.32 nM) [36].
In the rigid benzomorphan scaffold, the importance of (a) basic nitrogen and (b)

phenolic group, at a reciprocal distance comparable to similar functional groups of Tyr1 of
endogenous opioid peptides, was highlighted [34]. Moreover, basic nitrogen substituents
and modifications in the phenolic group are critical for opioid receptor recognition.

Unlike morphine and morphinan analogues, in benzomorphan series the presence of a
phenolic group is not crucial for opioid activity. Indeed, in benzomorphan compounds with
phenolic group replaced by acetoxy or amine groups, an equivalent or increased antinoci-
ceptive effect was described [37,38]. However, the phenolic group replacement with a
methyl group or halogens resulted in a reversal of the trend. Also, the N-substituent nature
is critical in the efficacy profile of the resulting benzomorphan compounds. For instance, an
improved opioid receptor interaction was reported as a consequence of methyl substitution
with more hydrophobic groups [39]. Otherwise, in morphans and morphinans, a switched
agonism to antagonism functional profile was consequent to the introduction of steric hin-
drance groups, such as N-cyclopropylmethyl, -allyl, -dimethyl allyl, -cyclobutylmethyl [40].

In this context, Pasquinucci et al. [41] designed and synthesized a series of benzomor-
phan derivatives and demonstrated the importance of the nature, size, electronic and steric
properties of benzomorphan N-substituent in the achievement of a specific functional
profile from agonism to antagonism via mixed agonist/antagonist ligands at MOPr, DOPr
and KOPr (kappa opioid peptide receptor).

An aromatic ring and/or alkyl residues linked by an N-propanamide or N-acetamide
spacer were first introduced, and an N-phenylpropanamide substituent resulted in a
potent MOPr agonist/DOPr antagonist ligand (named LP1, 1 Figure 2) able to counteract
nociceptive pain and behavioral signs of persistent pain with low tolerance-inducing
capability [42]. All other amide substituents led to reduced MOPr affinity, and in the
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N-propanamide series the phenyl substitution with a cyclohexyl ring as the increase of
the distance between phenyl ring and the benzomorphan core were detrimental [41]. The
secondary amide introduction with a higher steric bulk of the amide substituent was also
unfavorable. Moreover, shortening of the spacer in the N-acetamide series produced a
significant loss of MOPr affinity. LP1 also exhibited good DOPr affinity, while all the other
compounds had no affinity (Table 1).
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Bulkier aromatic groups, such as naphthyl, quinoline and isoquinoline rings, at the
N-propanamide spacer, were not tolerated and the bulkier size of the N-substituent moved
the functional profile from agonism to antagonism versus MOPr [43,44]. In particular, in
LP1, the phenyl replacement with the 1-naphthyl ring switched to a selective and potent
MOPr antagonist (2, Figure 2), with a Ki of 38 ± 4 nM and an antagonist potency value
(pA2) of 8.6 in presence of MOPr agonist DAMGO. Moreover, subcutaneously administered,
it antagonized the antinociceptive effects of morphine with an AD50 of 2.0 mg/kg in a
mouse-tail flick test (Table 1).

The LP1 analogue 3 (Figure 2), lacking the amide functionality and with a tertiary
N-ethylamine group as flexible spacer supporting the phenyl ring, exhibited a selective
MOPr agonist profile [45]. In vitro a Ki

MOR of 6.1 nM in a competitive binding assay,
and an IC50 value of 11.5 nM and an Imax of 72% in measurement of the cyclic adenosine
monophosphate (cAMP) accumulation in human embryonic kidney (HEK293) cells stably
expressing MOPr, were detected. In a tail flick test, compound 3 exhibited naloxone-
reversed antinociceptive properties with an ED50 of 4.33 mg/kg. Thus, the presence of
a second positive charge at the N-substituent, as well as shorter and more flexible N-
substituent spacers, addressed the ligand–opioid receptor interaction, mainly at MOPr
(Table 1).

Finally, LP1 analogues variously o/m/p polymethylated at the phenyl ring of the N-
substituent, and analogues featured with tertiary N-benzylpropanamide substituents were
synthesized (Figure 2) [46]. Biased and unbiased MOPr agonists toward ERK1,2 activity
stimulation and on adenylate cyclase inhibition were obtained.
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Table 1. In vitro data and tail flick test of benzomorphan-based ligands.

Compd Ki (nM) ± S.D. IC50 (nM) ± S.D. ED50 mg/kg
GPI e MVD e Tail Flick Test

MOPr DOPr KOPr MOPr DOPr

LP1(1) a 0.83 ± 0.05 29.1 ± 1 110 ± 6 6.8 ± 0.03 b pA2 of 7.2 2.03

(2) b 38 ± 4 210 ± 30 800 ± 160 pA2 of 8.6 - AD50 2.0

IC50 (nM) ± S.D.
cAMP inhibition

(3) c 6.1 ± 0.5 147 ± 5.7 31 ± 1.3 11.5 ± 2.5 - 4.33

IC50 (nM) ± S.D.
GPI e MVD e

LP2 (4) d 1.08 ± 0.10 6.60 ± 0.60 15.22 ± 0.80 21.5 ± 1.3 4.4 ± 0.7 0.9
(5) d 2.47 ± 0.3 9.6 ± 0.5 7.30 ± 0.2 49.2 ± 2 10.8 ± 1.3 1.3
(6) d 0.5 ± 0.2 0.8 ± 0.2 2.22 ± 0.2 9.9 ± 0.9 11.8 ± 1 1.0
(7) d 60 ± 1.3 160 ± 2.8 10.51 ± 0.9 194.4 ± 33 793.5 ± 43 -

a [41]; e [42]; b [43]; c [45]; d [47]; GPI guinea pig ileum, MVD mouse vas deferens. Data reproduced with permission from a Copyright 2010,
Elsevier, e Copyright 2012, Elsevier, b Copyright 2016, Elsevier, d Copyright 2017, Elsevier.

LP1 analogues that maintained the phenyl ring in the N-substituent of the benzomor-
phan scaffold linked to a shorter ethyl spacer bearing a methoxyl (4) or hydroxyl (5,6) or
methyl group (7) at carbon 2 were synthesized (Figure 3) [47]. In respect to hydroxyl groups,
to explore spatial determinants in the proximity of phenyl rings the isomers with chiral
(R) or (S) stereochemistry (5 and 6, respectively) were also evaluated [48]. In particular,
the introduction of the flexible 2R/S-methoxyethyl spacer led to a dual-target MOPr ago-
nist/DOPr agonist (named LP2, 4) endowed with a significant long-lasting antinociceptive
effect in nociceptive and persistent pain models [47] (Table 1).
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In competition binding assays, all synthesized compounds (4–7) bounded to the
MOPr and KOPr and significantly improved DOPr interactions. In comparison with
(R) isomer (6), the analogue with the (S)-2-hydroxy-2-phenylethyl as N-substituent (6)
showed the best MOPr, DOPr and KOPr affinity profile, with Ki values of 0.5, 0.8 and
2.22 nM, respectively [48] (Table 1). Thus, the role of the stereocenter in N-substituent
seems to be important in their binding properties. In GPI and MVD assays, all compounds
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showed high opioid agonist potency, and their effects were reversed by the selective
opioid antagonists naloxonazine (NLX), nor-binaltorphimine (norBNI) and NTI [47]. In
respect to the lead compound LP1, the N-substituent nature of compounds 4, 5 and 6
shifts the DOPr profile from antagonism to agonism (IC50 = 4.4 nM, 10.8 nM and 11.8 nM,
respectively). In the mouse-tail flick assay, the antinociceptive effect of compounds 5 and 6
was maximal at 30 min post-administration, and pretreatment with naloxone (3 mg/kg s.c.)
fully reversed the agonistic activity. ED50 was measured for compound 5 (1.3 mg/kg i.p.)
and compound 6 (1.0 mg/kg i.p.) in respect to the ED50 value of morphine (2.7 mg/kg s.c.)
and LP1 (2.03 mg/kg s.c.). In this series of ligands, the increased flexibility of the N-
substituent and the presence of a hydroxyl or methoxyl group at carbon 2, as hydrogen
bond donor and acceptor, allow an optimal interaction with the opioid binding pocket.

2.1. Pharmacological LP1 Fingerprint
2.1.1. In Vitro Biological Evaluation

Radioligand binding assays highlighted the critical importance of the N-
phenylpropanamide substituent for LP1 (1) affinity and selectivity versus different opioid
receptor types [41]. In these in vitro experiments, performed using rat brain membrane
and [3H]-DAMGO and [3H]-DPDPE, high and moderate LP1 affinity for MOPr and DOPr
(Ki

MOPr = 0.83 ± 0.05 nM and Ki
DOPr = 29 ± 1 nM) was established.

Knowing the MOPr and DOPr affinity, the functional profile of LP1 was studied
measuring the LP1 ability to (a) affect forskolin-stimulated adenylyl cyclase activity in
HEK293 cells stably expressing MOPr or DOPr [49] and (b) stimulate [35S]GTPγS bind-
ing in membranes from HEK293 cells expressing either MOPr or DOPr [42]. The MOPr
selective agonist LP1 inhibited, dose-dependently, cAMP accumulation in HEK293 cells
stably expressing the MOPr. In a similar manner, a dose-dependent inhibition of cAMP ac-
cumulation in HEK293 cells stably expressing the DOPr treated with LP1 was also detected.
However, LP1 was approximately 100-fold less potent than DPDPE at inhibiting cAMP
accumulation. Similarly, in isolated cell membranes expressing the MOPr, LP1 produced
a significant dose-dependent stimulation of [35S]GTPγS binding, however displaying an
EC50 value and maximal efficacy lower than that detected with DAMGO. Similarly, in
HEK293 cell membranes expressing the DOPr, LP1 at a concentration of 10 nM resulted
in 30% inhibition of [35S]GTPγS binding and displayed a weak effect on adenyl cyclase
activity. Collectively, these results demonstrate the bifunctional MOPr/DOPr profile of LP1
as assessed both by [35S]GTPγS binding and adenylyl cyclase measurements.

The functional profile of LP1 was also verified through ex-vivo experiments on isolated
organs [43]. In a GPI assay, LP1 showed a MOPr agonistic profile with a pEC50 of 6.1 ± 0.1
comparable to that of DAMGO (pEC50 of 6.8 ± 0.03). On the other hand, in the electrically
stimulated MVD, LP1 was inactive as an agonist, even at the highest doses. A single
concentration (10−6 M) of LP1 displaced a rightward shift of the concentration-response
curve of DPDPE with a pEC50 value of 3.9 ± 0.2, thus producing an antagonistic potency
profile with a pA2 value of 7.2.

The electrophysiological properties of LP1 (from 1 fM to 100 µM) were also evaluated,
using its ability to induce activity changes in primary neuronal cultures from frontal cortex
and spinal cord neuronal networks by micro-electrode array (MEA) neurochips [50]. LP1
induced biphasic changes in the general spike and burst activity. LP1 was more potent
in the spinal cord (EC50

SC1 = 0.35 fM) than in the frontal cortex (EC50
FC1 = 44 pM). A

higher concentration caused a strong activity reduction with an EC50
SC2 = 28 nM and

EC50
FC2 = 1 µM. Correlations, by comparing the activity pattern “fingerprint” of LP1 to

those of 105 substances in the “NeuroProof GmbH”database, were performed by evaluating
the LP1 effects compared with the other compounds, depending on the concentration used.
At lower concentrations (10−15–10−10 M), LP1 revealed an inhibitory effect similar to the
MOPr agonist dermorphin characterized by a multitarget MOPr/DOPr profile. Significant
similarities to DOPr agonist ligands were not found. These results agree with the MOPr
and DOPr multitarget profile LP1.
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As all in vivo investigations were performed by s.c. administration of LP1 oxalate salt,
due to LP1 freebase low water solubility, another in vitro evaluation was also performed
to improve its water solubility [51]. Oxalate salt, in vivo, could cause cytotoxicity such
as plasma membrane damage and organelle injury mainly in the kidneys. To evaluate
easy formulations for safe administration, the interactions of both oxalate salt and free-
base LP1 with a bio-membrane model were investigated. Multilamellar vesicles (MLV) of
dimyristoylphosphatidylcholine (DMPC) were used as biological membrane models and
potential drug carriers. Using a differential scanning calorimetry (DSC) technique, infor-
mation about the possible use of an easy delivery system for LP1 freebase was obtained by
measuring the dissolution and diffusion in and between the lipidic phases of oxalate salt
and freebase LP1. Both compounds were able to interact with the biomembrane model,
although the interaction was more prominent for LP1 freebase, which is in agreement with
its lipophilicity and non-peptide structure. Coherently, due to the lower water solubility,
the aqueous medium did not promote the uptake of LP1 freebase, unlike LP1 oxalate salt.
These data demonstrated that LP1 freebase was effectively delivered by the liposomal
carrier to a biomembrane model, with a good transfer profile potentially allowing its brain
delivery after systemic administration.

2.1.2. In Vivo Pharmacological Evaluation

The interesting in vitro profile of LP1 prompted us to further investigate in vivo its ef-
fects in different behavioral pain models. Comparably to morphine (ED50 = 2.03 mg/kg s.c.),
in tail flick test LP1 elicited a significant antinociceptive effect (ED50 = 2.7 mg/kg s.c.) which
was completely reversed by NLX [41]. In the same animal pain model, selective MOPr,
DOPr and KOPr antagonists confirmed the in vitro results for LP1-induced antinocicep-
tion [49]. As shown in Figure 4 (panel a), a clear and unequivocal MOPr involvement
in the LP1 effect was highlighted. Indeed, the pre-treatment with the selective MOPr
antagonist NLZ, at the dose of 35 mg/kg, completely antagonized LP1 antinociception.
The DOPr functional profile of LP1 was also confirmed by a tail flick test. In fact, the
antinociceptive profile of LP1 was not modified by the selective DOPr antagonist NTI at
the dose of 1 mg/kg s.c., whereas LP1 counteracted the antinociception induced by the
selective DOPr agonist DPDPE (20 µg/5 µL i.c.v), as shown in Figure 4, panel b. The
selective KOPr antagonist norBNI (10 mg/kg s.c.) partially prevented LP1 antinociceptive
effects. KOPr involvement in LP1 antinociception was not coherent to binding data, but
it could be indirectly related to MOPr activation. In fact, it has been demonstrated that
MOPr stimulation induces the release of endogenous dynorphins that act on KOPr to elicit
antinociception [52,53]. These results confirm the LP1 dual-target profile i.e., to act as an
MOP agonist/DOPr antagonist.
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The low tolerance-inducing capability of LP1 prompted its evaluation in animal mod-
els of persistent pain, such as neuropathic and inflammatory pain [50]. In chronic con-
striction injury (CCI) rats, at the 14th day after surgery when allodynic thresholds de-
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Figure 4. LP1 pharmacological evaluation in tail flick test: (a) effect of NLZ (35 mg/kg s.c.) on LP1 (3 mg/kg s.c.)
antinociception; (b) effect of LP1 (3 mg/kg s.c.) on DPDPE (20 µg/5 µL/rat i.c.v.) antinociception in rats pre-treated with
NLZ (35 mg/kg s.c.). Data are expressed by the time-course curve of mean ± S.E.M. tail flick latencies (s). * p < 0.05 vs.
saline-treated rats. # p < 0.05 vs. saline-treated rats. + p < 0.05 vs. DPDPE-treated rats. Reproduced with permission from
Parenti C. et al. Life Sci. 2012, 90, 957–61, published by Elsevier.
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The LP1 antinociceptive effect was also determined in naloxone methiodide (NX-M)
pre-treated rats [49]. A significant reduction of LP1 antinociceptive effect was reported after
i.c.v. administration of NX-M (5 µg/5 µL), a quaternary derivative that does not readily
cross the blood–brain barrier (BBB), whereas the s.c. injection of NX-M (3 mg/kg) did not
affect tail flick latencies (Figure 5, panel a). Thus, these data demonstrated that the LP1
compound exerts its action predominantly in the central nervous system (CNS).
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flick latencies (s) * p < 0.05 vs. saline-treated rats. ** p < 0.05 vs. LP1-treated rats; (b) effects of morphine (#) (n = 8) and LP1
(N) (n = 10) on development of antinociceptive tolerance. Data are expressed as the mean ± S.D. * p < 0.05 vs. saline-treated
rats (n = 8); # p < 0.05 vs. saline-treated rats (n = 8). Reproduced with permission from Parenti C. et al. Life Sci. 2012, 90,
957–61 (panel a) and Pasquinucci L. et al. Bioorg. Med. Chem. 2010, 18, 4975–82 (panel b), published by Elsevier.

LP1 tolerance-inducing capability was defined by tail flick test in comparison to
morphine [42]. A significant loss of antinociceptive effect was detected on the third
day of treated rats with morphine injection (10 mg/kg, s.c. twice a day), while LP1,
administered at the dose of 4 mg/kg s.c. with the same experimental protocol, maintained
its antinociceptive profile until day 9 (Figure 5, panel b). Thus, LP1 produced the same
morphine antinociceptive effect with a less pronounced development of tolerance.

The low tolerance-inducing capability of LP1 prompted its evaluation in animal
models of persistent pain, such as neuropathic and inflammatory pain [50]. In chronic
constriction injury (CCI) rats, at the 14th day after surgery when allodynic thresholds
decreased, LP1, s.c., produced a significant antiallodynic effect (ED50 = 3.2 mg/kg at
45 min). The maximal effect was recorded at 45 min and 60 min after treatment. In the
same animal model, at day 8, when hyperalgesic thresholds decreased, LP1 caused a
significant anti-hyperalgesic effect in response to a radiant heat stimulus with plantar test
(ED50 = 2.7 mg/kg at 45 min). To evaluate the contribution of opioid receptor types in LP1-
induced antiallodynic and antihyperalgesic effects, the multitarget LP1 profile was assessed
using selective opioid antagonists (Figure 6, panel a and b, respectively). The selective
MOPr antagonist NLZ completely antagonized LP1 anti-allodynic and antihyperalgesic
effects. In contrast, 1 mg/kg s.c. of the selective DOPr antagonist NTI did not alter the LP1
effects, and the selective KOPr antagonist norBNI only slightly blocked the antiallodynic
and antihyperalgesic effects of LP1.

In an analogous manner, LP1 s.c. administered in the left paw, significantly reduced
allodynic (ED50 = 2.8 mg/kg) and hyperalgesic (ED50 = 3.1 mg/kg) thresholds in a model
of inflammatory pain induced by carrageenan [50]. The antinociceptive effects of the
multitarget LP1 profile was assessed using selective opioid antagonists, (Figure 7, panel
a and b, respectively). As in CCI rats, NLZ completely reversed LP1 antiallodynic and
antihyperalgesic effects, while the selective DOPr antagonist NTI did not modify the LP1
effect, and norBNI partially blocked its antiallodynic and antihyperalgesic effects.
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(1 mg/kg s.c.) and norBNI (10 mg/kg s.c.) on the antiallodynic (a) and antihyperalgesic (b) effect of LP1 (3 mg/kg s.c.)
injected 15 min prior to i.pl. carrageenan (2%/0.1 mL/rat). Graphs show values at 3 h. Mechanical and thermal thresholds
were measured with von Frey’s filaments and Plantar test, respectively. Results are expressed in grams(g) (mechanical
allodynia) or in seconds(s) (thermal hyperalgesia) and represent the mean ± S.E.M. * p < 0.05 vs. carrageenan treated-rats;
# p < 0.05 vs. LP1-treated rats. Reproduced with permission from Parenti C. et al. Neuropharmacology 2013, 71, 70–82,
published by Elsevier.

Moreover, the LP1 anti-hyperalgesic effect was also rescued through mouse PGE2-
induced heat hyperalgesia and compared to morphine (Figure 8, panel a) [46]. In agreement
with previous findings, both morphine (1–3 mg/kg, s.c.) and LP1 (1–4 mg/kg, s.c.) induced
a dose-dependent increase in paw withdrawal latency in PGE2-treated mice, reaching
values similar to those detected in control animals.
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As constipation is known as an opioid-induced side effect [54], LP1 effects on gastroin-
testinal transit were also tested (Figure 8, panel b) [46]. Immediately after the evaluation
of the behavioral responses to heat stimulus, mice received intragastrically an activated
charcoal solution. Morphine, at a dose without antinociceptive effect (1 mg/kg), already
inhibited intestinal transit, and this effect dose-dependently increased up to the highest
dose tested (3 mg/kg). In contrast, LP1 inhibited gastrointestinal transit only at the highest
dose tested (4 mg/kg), which induced a maximal antihyperalgesic effect. These results
indicated that the MOPr agonist/DOPr antagonist LP1 is an effective compound in both
nociceptive and persistent pain models, and displays a more favorable and safe profile
lacking the adverse effects of morphine.

2.2. Pharmacological LP2 Evaluation
2.2.1. In Vitro Biological Evaluation

LP2 came about through structure–activity relationship (SAR) studies performed on
LP1. Analogously to LP1, its efficacy profile was in vitro defined [47]. Firstly, the opioid
receptor subtype affinity profile of the benzomorphan-based compound LP2 was evaluated
by competitive radioligand binding assays (Table 1). LP2 retained the MOPr affinity of the
lead compound LP1 (Ki

MOPr = 1.08 nM versus Ki
MOPr = 0.83 nM, respectively) while its

affinity for DOPr was increased. In fact, the DOPr Ki value of LP2 was four times lower
than the Ki value of LP1 (Ki

DOPr = 6.6 nM vs. Ki
DOPr = 29.1 nM, respectively). LP2 differs

from LP1 by the nature and chiral feature of the N-substituent. In LP2, the lack of the amide
group in its N-substituent is well tolerated by MOPr and significantly improved DOPr
interaction. Moreover, in comparison to LP1, the increased flexibility of the N-substituent
could allow an optimal interaction with the DOPr binding pocket.

The LP2 functional profile was determined in the presence and absence of a fixed
concentration of selective MOPr (NLX), DOPr (NTI) and KOPr (norBNI) antagonists ex
vivo by GPI and MVD assays. Initially, LP2 showed high opioid agonist potency in
GPI (IC50 = 21.5 ± 1.3 nM) and MVD (IC50 = 4.4 ± 0.7 nM) assays. Indeed, increasing
concentrations of LP2 produced a significant and concentration-dependent inhibition
in electrically stimulated GPI and MVD measurements. LP2 retained a significative
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MOPr potency, although it resulted in an eleven times lower effect in comparison to LP1
(IC50 = 1.9 ± 0.6 nM). Significantly, in respect to the lead compound LP1, the N-substituent
nature of LP2 shifted the DOPr profile from antagonism to agonism. Thus, LP2 resulted as
a dual-target MOPr/DOPr agonist, unlike LP1 that was a MOPr agonist/DOPr antagonist.

The DOPr agonist profile of LP2 could be important for its evaluation in chronic
pain animal models, considering that DOPr agonists were reported to be able to induce
potent antihyperalgesics properties in these assays. Unfortunately, some agonists, such as
SNC80 and (+)BW373U86, have pro-convulsant properties that have limited their clinical
development. However, literature data described these pro-convulsant properties as
“ligand specific” [55,56], and therefore the development of a DOPr agonist without these
adverse effects is nowadays a valuable approach [57,58]. Moreover, G-protein biased opioid
agonists were identified, and the potential relationship between the in vitro bias profile and
in vivo antinociception and side effects was hypothesized [59]. The development of biased
agonists able to target specific signaling pathways was pursued, and G protein-biased
DOPr agonists seems to be an approach to develop ligands effective in chronic pain states
with a reduced adverse effect profile. Literature data suggested that receptor internalization
is mediated by arrestin activation, and low-internalizing agonists showed a decreased
tendency to induce convulsions. For example, DOPr agonists such as PN6047, with limited
arrestin signaling, was identified as a useful compound for the treatment of chronic pain,
without displaying proconvulsant activity or other opioid-mediated adverse effects [60].

Thus, the functional activity of LP2 was further investigated using a BRET assay [48]
to evaluate LP2 ability to promote receptor/G-protein or receptor/β-arrestin 2 interactions.
For that reason, concentration-response experiments to evaluate receptor/G-protein inter-
action were performed in membrane extracts from SH-SY5Y cells stably co-expressing the
MOPr or DOPr/RLuc and Gb1/RGFP fusion proteins. To evaluate receptor/β-arrestin 2
interactions, SH-SY5Y cells stably expressing the MOPr or DOPr/RLuc and the β-arrestin
2/RGFP fusions were used. The intrinsic activity of the tested compound was evaluated as
a fraction of the DADLE maximal-stimulated BRET ratio (α = 1).

LP2 promoted MOPr/G-protein interactions and mimicked the maximal effect of
DADLE (pEC50 = 6.89), being 10 times more potent with a pEC50 of 7.90. LP2 stimulated
the MOPr/β-arrestin 2 interaction, mimicking the stimulatory response of DADLE with
slightly lower efficacy but with a 5 times higher potency. Thus, LP2 displayed a modest
(<10 times) bias toward the G-protein. In parallel experiments, LP2 behaved as a full
DOPr agonist (pEC50 = 7.02) with similar potency and efficacy as DADLE (pEC50 = 7.23).
Moreover, in DOPr/β-arrestin 2 interactions, LP2 mimicked the maximal effects of DADLE
(pEC50 = 7.69 and pEC50 = 5.65, respectively) being, however, less potent. Thus, in DOPr
LP2 showed a statistically significant and large (200-times) bias toward the G-protein.
Thus, the LP2 dual target MOPr/DOPr agonist with a biased profile could provide a safer
treatment opportunity.

2.2.2. In Vivo Pharmacological Evaluation

The dual target MOPr/DOPr agonist LP2 was also evaluated in vivo by tail-flick
test in mice [47]. LP2 produced a dose-dependent antinociceptive effect, and the max-
imal antinociceptive threshold was reached between 45 and 60 min after injection and
lasted until 180 min after treatment. Compared to morphine and LP1, LP2 evoked a
potent antinociceptive effect with an ED50 of 0.9 mg/kg i.p. In contrast to morphine,
whose antinociceptive effect started to decline 60 min post-administration, LP2 showed
a longer lasting antinociceptive effect, measured also at 180 min after administration.
NLX (3 mg/kg s.c.) pretreatment prevented the induced antinociceptive LP2-effect. Thus,
our in vivo evaluation was consistent with the in vitro data and suggested that the LP2
antinociceptive effect is mediated by the MOPr and DOPr, and that it is more potent than
morphine and LP1.

In addition, LP2, for its pharmacodynamic profile and in vivo effect in nociceptive
pain, was investigated in a model of inflammatory pain sustained by mechanisms of central
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sensitization, i.e., the mouse formalin test [61]. This test involves the i.pl. injection of a
dilute solution of formalin (5%, 10 µL) that induces a biphasic response reflecting two
different forms of pain. A rapid pain response is induced immediately after formalin
injection that lasts 10 min (phase I) and represents a form of acute pain due to the direct
activation of nociceptors. In addition, a late pain response to formalin injection starts
after 10–15 min and lasts until 50–60 min from the injection of formalin (phase II). This
second phase of pain behavior is considered more relevant from a clinical point of view,
because it represents a form of more persistent, tonic, inflammatory pain sustained by the
development of mechanisms of nociceptive sensitization.

LP2, i.p. administered at the dose of 0.5, 0.65, 0.75, 0.85, 1 mg/kg 15 min before
formalin injection, dose-dependently reduced both phases of the mouse formalin test with
an ED50 value of 0.88 mg/kg and 0.79 mg/kg in phase I and phase II, respectively.

To evaluate the systemic effect of LP2, the non-selective opioid receptor antagonist
NLX (3 mg/kg, i.p.) was administered. It significantly antagonized the antinociceptive
effects of LP2 in both phases of the mouse formalin test (Figure 9, panel a). Mice pretreat-
ment with NX-M allowed to evaluate a possible antinociceptive LP2 effect outside CNS.
NX-M (5 mg/kg, i.p.) indeed antagonized the LP2 antinociceptive effect at a lower dose of
0.75 mg/kg, but not that at the dose of 1.0 mg/kg, suggesting that the LP2 antinociceptive
effect is partially mediated by peripheral opioid receptors (Figure 9, panel b). Collectively,
these results suggest that LP2 is effective in the formalin test and that its antinociceptive
effects were mediated both at central and peripheral levels.
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were also evaluated during the time-course of neuropathic pain [62]. The total number of 
Cl Casp3-positive cells were reduced in ipsi-lateral dorsal horn at 16 dpl (2.8 ± 0.5% CCI-
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Figure 9. LP2 pharmacological evaluation in formalin test: (a) the antinociceptive effect of LP2 is blocked by NLX
pretreatment. Results are mean± S.E.M. (n = 6–8 per group) * p < 0.05; * p < 0.01 vs. vehicle, ◦ p < 0.05; ◦◦ p < 0.01; ◦◦◦ p < 0.001
vs. LP2; (b) the antinociceptive effect of LP2 is partially blocked by NX-M pretreatment. Results are mean ± S.E.M. (n = 6–8
per group) * p < 0.05; ** p < 0.01 vs. vehicle, ◦ p < 0.05 vs. LP2. Reproduced with permission from Pasquinucci L. et al. Eur. J.
Pharmacol. 2019, 847, 97–102, published by Elsevier.

The effects of LP2 in the experimental model of neuropathic pain induced by the
unilateral sciatic nerve CCI on male Sprague–Dawley rats was also evaluated [62]. Rats
received a daily i.p. injection of 0.9 mg/kg of LP2, starting at 11 until 21 days post-ligatures
(dpl). A significant increase of the allodynic withdrawal threshold in CCI rats as compared
to CCI-vehicle rats was determined from 11 up to 21 days post ligature (dpl) (Figure 10).
Moreover, a repeated LP2 administration seems to maintain antinociceptive effects.
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Figure 10. Withdrawal thresholds measured with von Frey’s filaments on sham-vehicle, CCI-vehicle
rats and CCI-LP2-treated rats at 0, 11, 16, and 21 dpl. Data are shown as mean ± SEM of n = 4
rats per group. *** p value < 0.001, **** p value < 0.0001 vs. sham-vehicle, and ### p value < 0.001
vs. CCI-vehicle. Reproduced with permission from Vicario N. et al. Mol. Neurobiology 2019, 56,
7338–7354, published by Springer, 2019.

The effects of LP2 treatment in the spinal cord of ipsi- and contra-lateral dorsal horns
were also evaluated during the time-course of neuropathic pain [62]. The total number
of Cl Casp3-positive cells were reduced in ipsi-lateral dorsal horn at 16 dpl (2.8 ± 0.5%
CCI-LP2 vs. 6.0 ± 0.4% CCI-vehicle) and at 21 dpl. (4.0 ± 1.1% CCI-LP2 vs. 8.6 ± 0.9%
CCI-vehicle), confirming the neuroprotective effects of LP2 treatment during CCI-induced
neuropathy (Figure 11, panel a). Pro-apoptotic signaling in ipsi-lateral dorsal laminae
exert pro-gliosis effects on spinal cord astrocytes in ipsi-lateral dorsal horns [61]. During
the time-course of neuropathic pain, both GFAP and Cx43 levels were increased from the
early phases of chronic pain [63], suggesting that astroglial communication mediated by
Cx43 plays a key role in promoting pain chronicization during neuropathies. Dual-target
opioid ligand LP2 reverted Cx43 levels earlier than GFAP astrogliosis, which was still
ongoing after 5 days of treatment and significantly reduced only at 21 dpl (Figure 11, panel
b,c). Thus, in this pathological condition, LP2-mediated Cx43 reduction seems to affect
reactive astrogliosis in neuropathies. Immunofluorescence analysis on spinal cord sections
revealed reactive Cx43 activation in ipsi-lateral dorsal horns of CCI-vehicle rats with high
Cx43-GFAP co-localization profiles, which was significantly reverted by LP2 treatment
at 21 dpl. These data confirmed a significant and long-lasting modulation of astrogliosis,
mediated by the MOPr/DOPr ligand LP2.
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Figure 11. (a) LP2 reduces cleaved caspase 3-positive neurons in ipsi-lateral dorsal horns of CCI rats: quantification of Cl
Casp3 and DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride) double cells over DAPI in ipsi-lateral dorsal horns of
sham-vehicle, CCI-vehicle, and CCI-LP2-treated rats at 16 and 21 dpl. Data are shown as mean percentage ± SEM of n = 3
rats per group. Dpl, days post-ligatures; ** p value < 0.01 and *** p value < 0.001 vs. sham-vehicle and # p value < 0.05 and
## p value < 0.01 vs. CCI-vehicle. MOPr and DOPr targeting with LP2 reduces GFAP and Cx43 levels in ipsi-lateral dorsal
horns of CCI rats: quantification of GFAP (b) and Cx43 (c) fluorescence intensity in ipsi-lateral dorsal horns of sham-vehicle,
CCI-vehicle, and CCI-LP2- treated rats. Data are shown as mean FC over sham-vehicle ± SEM of n = 4 rats per group. Dpl,
days post-ligatures; FI, fluorescence intensity; FC, fold change. * p value < 0.05, ** p value < 0.01, and *** p value < 0.001 vs.
sham-vehicle. # p value < 0.05 and ## p value < 0.01 vs. CCI-vehicle. Reproduced with permission from Vicario N. et al. Mol.
Neurobiology 2019, 56, 7338–7354, published by Springer, 2019.

3. Conclusions

There is an unmet clinical need to develop novel pharmaceuticals for persistent pain.
Our data showed that the novel dual targeting of MOPr/DOPr benzomorphan-based
ligands LP1 and LP2 could represent an example of a “context-dependent antinociceptive
drug”. Opioids that combine MOPr agonist–DOPr antagonist activity or MOPr/DOPr
agonist activity may be effective antinociceptive agents that are able to attenuate MOPr-
mediated side effects. Both LP1 and LP2 have been shown to be effective in animal models
of inflammatory and neuropathic pain, and LP1 showed a safer profile of side effects.

In addition, MOPr/DOPr agonist profile of LP2 could be useful in persistent neu-
ropathic pain conditions associated with several comorbidities, such as depression. In
fact, the effectiveness of DOPr agonists in models of anxiety and depression was estab-
lished [60,64]. Notably, we recently demonstrated a role of LP2 vs. TGF-β involved in
depression [65].
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