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Protein ubiquitination and the subsequent degradation are important means by which aberrant proteins
are removed from cells, a key requirement for long-term survival. In this study, we found that the overall
level of ubiquitinated proteins dramatically decreased as yeast cell grew from log to stationary phase.
Deletion of SCH9, a gene encoding a key protein kinase for longevity control, decreased the level of
ubiquitinated proteins in log phase and this effect could be reversed by restoring Sch9 function. We
demonstrate here that the decrease of ubiquitinated proteins in sch9Δ cells in log phase is not caused by
changes in ubiquitin expression, proteasome activity, or autophagy, but by enhanced expression of stress
response factors and a decreased level of oxidative stress. Our results revealed for the first time how Sch9
regulates the level of ubiquitinated proteins and provides new insight into how Sch9 controls longevity.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The homeostasis of intracellular proteins needs to be precisely
regulated to maintain proper cell functions [1]. The deficiency in re-
moval of aberrant or unwanted proteins will result in the accumula-
tion of those deleterious proteins and subsequent malfunction of cell
machinery. This process is also referred as proteotoxicity [2]. The
ubiquitin proteasome system (UPS) is one of major proteolytic systems
which selectively scavenge intracellular proteotoxic proteins. The
proteins to be degraded are first recognized and ubiquitinated by a set
of enzymes including ubiquitin activating enzyme (E1), ubiquitin
conjugating enzyme (E2) and ubiquitin ligase (E3). Ubiquitinated
proteins, especially those of polyubiquitinated through K48 linkage,
are bound to 26S proteasome and degraded in an ATP dependent
manner [3–5]. In addition to proteasomal degradation, recent studies
have revealed that ubiquitinated protein aggregates are selectively
degraded via autophagy [6,7]. The proteotoxicity caused by the in-
competence of removing aberrant proteins by UPS or autophagy is
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involved in the pathology of many human diseases such as cataracts,
macular degeneration, Alzheimer’s, Parkinson’s, and Huntington’s
syndromes [2,8–10]. Despite extensive studies have investigated how
proteotoxicity contributes to those diseases prevalent in aging human
population, relative rare information is acquired regarding the effects
of proteotoxicity on longevity. The interventions such as calorie re-
striction (CR) and rapamycin treatment which extend lifespan from
yeast to mammalians have also been demonstrated to decrease the
incidences of several age-related diseases in rodents or primates,
suggesting those interventions may regulate the proteostasis [11–17].
Indeed, CR modulates redox state, removal of oxidized protein and the
UPS in yeast cell [18]. And rapamycin has been well established to be
an autophagy inducer [19].

One of the key regulators for longevity and aging in yeast cell is
Sch9, a homolog of mammalian protein kinase S6K1 [20–22]. Sch9
senses nutrition and stress signals from Pkh1/2 and TORC1 and is a
direct substrate of them [21,23,24]. Pkh1/2 phosphorylate the ac-
tivation loop of Sch9 to activate the kinase while TORC1 phos-
phorylates the serine/threonine residues at the hydrophobic motif
to fine tune the activity [21,25,26]. Sch9 regulates multiple aspects
of cell metabolism to affect the growth and lifespan. It has been
demonstrated that Sch9 controls translation by regulating ribo-
some biogenesis [27,28]. Sch9 also decreases the phosphorylation
of translation initiation factor eIF2a to maintain its function [21].
Several stress response regulators, including Rim15, Msn2/4, Gis1
and Hcm1, are downstream effectors of Sch9 [29–33]. Therefore
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Sch9 plays a key role in stress response. On the other hand the
deletion of Sch9 enhances the respiration of mitochondria during
growth by increasing the translation of mtDNA-encoded OXPHOS
complex subunits, which in turn promotes the generation of su-
peroxide [34–36].

There is only limited information regarding the role of Sch9 in
protein ubiquitination. Cdc34, an E2 ubiquitin conjugation enzyme
also called Ubc3, is found to be a substrate of Sch9 and the in-
teraction between Cdc34 and Sch9 is proposed to regulate the
transition between cell division and cell cycle arrest [37,38].
However, it is unclear if and how Sch9 regulates the protein ubi-
quitination. Considering the importance of both Sch9 and protein
ubiquitination for cell homeostasis, here we studied if Sch9 reg-
ulates protein ubiquitination and investigated the mechanism of
the regulation.
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Results

Sch9 regulates the level of ubiquitinated proteins during cell growth

When yeast cells are cultured in rich medium (YPD), growth
progress from log phase, where cells divide every �90 min,
through the diauxic shift to stationary phase where division ceases
[39–41]. Dramatic changes of cellular events occur during the
transition from log phase to stationary phase, including the dy-
namics of ubiquitinated proteins (Fig. 1A, B and S1). When wild
type (WT) cells entered to diauxic phase 24 h after inoculation, the
overall protein ubiquitination level dropped more than 50% and
did not decrease further during the stationary phase (Fig. 1A –C).

To probe the mechanisms by which the dynamics of ubiquitinated
proteins is regulated during cell growth, the effect of protein kinase
tin
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Sch9, a key regulator for cell growth [42], on protein ubiquitination
was investigated. The deletion of SCH9 decreased the overall level of
protein ubiquitination in log phase cells, but displayed no further
decline in stationary phase cells (Figs. S1 and 1C, compare lanes 4–6 to
1–3, and Fig. 1D). Adding SCH9 back to the mutant stain restored the
ubiquitination level to that of WT cells, confirming the role of Sch9 in
regulating the dynamics of ubiquitinated proteins during cell growth
(Figs. S1 and 1C, compare lanes 7–9 to 1–3, and Fig. 1D). The decrease
in Sch9 protein level during the transition from log to stationary phase
(Fig. 1A, the middle panel, and Fig 1B) when overall protein ubiquiti-
nation level went down also suggests the involvement of Sch9 in the
regulation of protein ubiquitination.

The alteration of the dynamics of ubiquitinated proteins by Sch9 does
not depend on the ubiquitin expression or proteasomal activity

Although overall protein ubiquitination is decreased in sch9Δ cells
(Fig. 1), the level of free ubiquitin in these cells was indistinguishable to
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that in cells expressing Sch9 (Fig. 2A), suggesting that the decrease of
ubiquitinated proteins does not result from a shortage of free ubiquitin.
The proteasome pathway is one of the major pathways which regulate
the dynamics of intracellular polyubiquitinated proteins [1,43]. The
decline of ubiquitinated proteins in sch9Δ cells may be caused by the
enhanced proteasomal degradation. However, the proteasome activ-
ities inWT, sch9Δ, and sch9Δ(Sch9) cells are indistinguishable (Fig. 2B),
indicating that the decreased protein ubiquitination in sch9Δ cells is
not due to enhanced proteasome activity. In agreement with this re-
sult, we found that inhibiting proteasome activity by MG132 on sch9Δ
cells could not restore the ubiquitinated proteins to the same level as
that in WT and sch9Δ(Sch9) cells (Fig. 2C and D).

Enhanced autophagy by deletion of SCH9 does not contribute to the
decrease of ubiquitinated proteins

Besides proteasome, autophagy is another major intracellular
proteolytic system which degrades ubiquitinated proteins [6].
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Genome-wide studies have suggested that the deletion of SCH9 en-
hances the expression of autophagy related genes [36]. We also found
that the transcription of Atg8 gene, the homolog of mammalian LC3
which is a key factor of autophagy [44], was upregulated to 3 folds
upon SCH9 deletion (Fig. 3A). It has been demonstrated that PKA and
Sch9 cooperatively regulate the induction of autophagy [45]. By using
the Atg8-GFP protein as an autophagy activity reporter [46], we found
that sch9Δ cells generated more degradation product which dimin-
ished when autophagy was inhibited by the deletion of Atg1,
confirming that sch9Δ cells have higher autophagy activity than WT
cells (Fig. 3B, compare lane 3 to lane 1). If the enhanced autophagy
contributes to the decreased ubiquitination in sch9Δ cell, shutting
down autophagy should be able to restore the ubiquitination level.
However, the depletion of ATG1 did not elevate the level of ubiquiti-
nated proteins in sch9Δ cells despite its autophagy blocking effect
(Fig. 3C and D), suggesting that the enhanced autophagy in sch9Δ cells
was not the direct mechanism by which the ubiquitinated proteins are
decreased.
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Suppression of oxidative stress by the deletion of SCH9 results in the
decrease of ubiquitinated proteins.

Previous gene chip studies have shown that sch9Δ cells have
enhanced expression of stress response genes [36]. By using
quantitative PCR we found that the mRNA level of several stress
response genes, including GPX1 (Phospholipid hydroperoxide
glutathione peroxidase), HSP104 (disaggregase), HSP12 (12 kD
small heat shock protein), TSA2 (Stress inducible cytoplasmic
thioredoxin peroxidase) and CTT1 (Cytosolic catalase T) increased
2–30 fold in sch9Δ cells (Fig. 4A). Consistently, the catalase activity
of Ctt1 elevated �50% upon SCH9 deletion while adding Sch9 back
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decreased the catalase activity of Ctt1 back to a level similar to that
in WT cells (Fig. S2A and B). These results suggest that sch9Δ cells
have stronger capability of ROS scavenging and protein refolding
and therefore may generate less damaged proteins as substrates
for ubiquitination.

Consistent with the increased expression of peroxidase and cata-
lase in sch9Δ cells, we found that the deletion of SCH9 resulted in
�40% less intracellular DCF staining (Fig. 4B upper panels and C,
compare column 3 to 1), a wildly used fluorescent probe for the de-
tection of intracellular ROS and redox signaling [47,48], suggesting that
sch9Δ cells are more capable of scavenging intracellular oxidants. This
is also confirmed by the results that sch9Δ cells generate �60% less
DCF signals than WT cells in the presence of exogenous H2O2 (Fig. 4B
lower panels and C, compare column 4 to 2). Additionally, our parallel
experiments of measuring intracellular fluorescence product derived
from DHR123, another widely used fluorescent probe for intracellular
oxidative stress [49–51], also demonstrated consistent results (Fig. S3A
and B).

H2O2 is a major intracellular ROS which emerged as a central hub
in redox signaling and oxidative stress [52]. The enhanced CTT1 ex-
pression in sch9Δ cells suggest that the lower protein ubiquitination
and oxidative stress may be contributed by the lower H2O2 level. To
unveil if the difference of intracellular redox statuses betweenWT and
sch9Δ cells is related to the different levels of intracellular H2O2, the
oxidation of DCF and DHR123 in both strains was compared in the
presence or absence of elevated catalase T activity. By overexpressing
Ctt1 in WT cells, the catalase T activity was elevated to a level similar
to that in sch9Δ cells (Fig. S4A and B) and the oxidation of DCF and
DHR123 was decreased �20% and �30% respectively (Figs. 5A and B,
and S5A and B). However, enhancing the catalase T activity in sch9Δ
cells did not further decrease the oxidation unless exogenous H2O2

was added into the cell culture (Figs. 5A and B, and S5A and B). These
results suggest that the enhanced H2O2 removal in sch9Δ cells con-
tribute to their alleviated oxidative stress.

The role of H2O2 in protein ubiquitination was further con-
firmed by the observation that the ubiquitination in WT cells was
stimulated in a medium containing 0.5 mM H2O2 when the ubi-
quitination of sch9Δ cells was not elevated at the same condition
(Fig. 5C and D). Consistently, the oxidation of DCF and DCR123 only
increased slightly in sch9Δ cells but dramatically in WT cells in the
presence of 0.5 mM H2O2 (Figs. 4B and C, and S3A and B). On the
other hand, if the concentration of environmental H2O2 increased
to 2.5 or 5 mM, the level of protein ubiquitination in both WT and
sch9Δ cells were elevated while it still exhibited lower level in
sch9Δ cells at the respective H2O2 concentration (Fig. 5E and F).
Consistently, the oxidation of DCF and DHR123 was lower in sch9Δ
cells than in WT cells but increased in both strains in the presence
of 2.5 or 5 mM H2O2 (Fig. 5G). These results suggest that sch9Δ
cells are less sensitive to H2O2 induced ubiquitination.

The level of ubiquitinated proteins is correlated to intracellular pro-
tein carbonylation in log phase cells, but not in stationary phase cells

To investigate the correlation between decreased oxidative
stress and protein ubiquitination in sch9Δ cells, the concentrations
Fig. 5. H2O2 contributes to the enhanced intracellular oxidation and ubiquitination
of sch9Δ cells. (A, B) Microscopy (A) or spectrofluorimeter analysis (B) of DCF
fluorescence on WT (TB50a) and sch9Δ (TS120-2d) cells transformed with pEGH-
CTT1 or control vector with or without 1 hour treatment of 0.5 mM H2O2. Bars:
100 mm. (C–F) WT and sch9Δ cells were treated with or without H2O2 at indicated
concentrations for 1 h and the total ubiquitination were tested by western blotting
(C, E) with respective quantifications (D, F). (G) Spectrofluorimeter analysis of DCF-
or DHR123-stained cells with or without treatment of H2O2 at indicated con-
centrations for 1 hour (All cells were collected at log phase with an OD600 nm of 0.5.
*P o 0.05, **p o 0.01, “ns” no significance).
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of carbonyl groups in oxidized intracellular proteins in WT and
sch9Δ cells were evaluated. In log phase, the level of protein car-
bonyl in sch9Δ cells was �30% lower than that in WT cells. Adding
Sch9 back restored the level of protein carbonyl to a similar level
as that in wild type cells (Fig. 6A).

When WT cells progressed into stationary phase, the level of
protein carbonyl increased more than two folds, while it still ex-
hibited �70% lower in sch9Δ cells (Fig. 6A). The increased levels of
protein carbonyl in both WT and sch9Δ cells in stationary phase
are correlated to the enhanced oxidative stress at this stage
(Fig. 6B and C), most likely caused by the enhanced respiration
[11]. Despite the different levels of redox signaling between wild
type and sch9Δ cells during stationary phase, the levels of ubi-
quitinated proteins were similar in both strains and significantly
lower than those in cells of log phase (Fig. 1C and see Discussion).
Discussion

Protein ubiquitination is a key post-translational modification
involved in many aspects of cell behavior and malfunctional ubi-
quitination is related to a broad range of human diseases, in-
cluding diabetes, neuron degeneration diseases, and several types
of cancer [53]. Therefore, it is interesting to note that the level of
ubiquitinated proteins dropped to 50% if yeast cells lack a single
gene SCH9. The role of Sch9 in regulating protein ubiquitination
was verified by the observation that ubiquitinated proteins were
recovered after putting Sch9 back into sch9Δ cells. Sch9 is
emerged as an important regulator for lifespan of yeast cell [20].
So the understanding about how it affects the protein ubiquiti-
nation may lead to a broader perspective into the mechanisms of
aging.

To understand how Sch9 is involved in the dynamics of protein
ubiquitiniation we first ask if the decreased level of ubiquitinated
proteins in sch9Δ cells is due to the enhanced degradation or at-
tenuated formation of them. The proteasome is the major cellular
apparatus that digests polyubiquitinated proteins [1,43]. However,
we do not find any difference in the proteasome activities between
wild type and sch9Δ cells. The fact that proteasome inhibitor does
not restore the ubiquitination level in sch9Δ cells also indicates
that there is no enhanced proteasomal degradation in sch9Δ cells.
Beside proteasomal degradation, recent studies have suggested
that ubiquitinated protein can be degraded by autophagy as well
[6,7]. Previous studies also indicated that Sch9 is involved in the
regulation of autophagy [45]. Our data verify that the deletion of
SCH9 promotes the expression of the autophagy-related gene ATG8
and the activity of autophagy. However, when we delete ATG1 in
sch9Δ cells to abolish the autophagy, the ubiquitination level
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remains constant. These data suggest that the decreased level of
ubiquitinated proteins in sch9Δ cells is not due to increased de-
gradation. We did not determine if there was enhanced deubi-
quitination enzyme activity in sch9Δ cells since previous gene chip
analysis did not suggest so [27,36].

Since our results indicate that neither the supply of free ubi-
quitin nor the degradation of ubiquitinated proteins is related to
the decline of ubiquitinated proteins in sch9Δ cells, it seems that
this phenomenon is caused by the attenuated ubiquitination. By
reviewing the gene expression profile of sch9Δ cells, we do not
find any signs suggesting that the ubiquitin conjugating system is
altered [27,36]. Previous studies have revealed that Sch9 phos-
phorylates ubiquitin conjugating enzyme Cdc34 at S97 [54].
However many other kinases including PKA, Gcn2, Mkk2, Snf1, and
Vps15/Vps34 may also contribute to the phosphorylation of S97
[54]. Additionally, since both phosphorylated and depho-
sphorylated forms of S97 in CDC34 are required for the activity of
the enzyme [54], the ubiquitination activity of Cdc34 has little
chance to be altered largely by the single deletion of SCH9.

It is more likely that sch9Δ cells produce less aberrant protein
for ubiquitination. Consistent with this hypothesis and previous
gene chip analysis [27,36], our quantitative mRNA measurements
and catalase activity analysis indicate a much stronger oxidative
stress response with higher expression of heat shock proteins and
antioxidant enzymes in sch9Δ cells. We verify that sch9Δ cells
exhibit less intracellular oxidation using fluorescent probes DCF
and DHR123 which have been wildly used as probes for ROS. The
observation that overexpressing catalase Ctt1 decrease the fluor-
escent signals of DCF and DHR123 (Fig. 5A and B) also supports
that both chemicals are effective in probing ROS. However, the
oxidation of DCF or DHR123 may also be affected by hemeproteins
and iron mobilization in some systems [55]. Therefore more evi-
dences are required to validate the contribution of oxidative stress
on protein ubiquitination regulated by Sch9. We then verify that
less protein oxidation is produced in sch9Δ cells, likely due to the
higher expression of peroxidases and other antioxidant. The effect
of redox signaling on protein ubiquitination is further tested by
monitoring the levels of ubiquitinated proteins in the presence of
exogenous H2O2. 2.5 and 5 mM of environmental H2O2 are able to
stimulate the oxidation of ROS probes and increase protein ubi-
quitination in both WT and sch9Δ cells, while 0.5 mM H2O2 only
affects that in WT cells. Our data here suggest that the enhanced
oxidative stress response in sch9Δ cells sets a higher threshold for
H2O2-induced ubiquitination.

Although the deletion of SCH9 enhances mitochondrial re-
spiration by activating Hcm1 and probably Hap4 to promote the
superoxide production [32,33], it may also stimulate the stress
response via Rim15 and its downstream factors [30]. The increased
level of superoxide may also enhance the oxidative resistance as
an adaptive ROS signaling [11]. Together, the deletion of SCH9
causes the up-regulation of the intracellular antioxidants and the
decrease of H2O2, which damages intracellular proteins and sub-
sequently causes ubiquitination. The plausible mechanisms by
which Sch9 regulates protein ubiquitination are summarized in
Fig. 7.

The effects of either H2O2 or Sch9 on protein ubiquitination
during cell growth do not extend to stationary phase. Both WT and
sch9Δ strains maintain a relative lower level of ubiquitination
despite different levels of oxidative stress during stationary phase.
A plausible explanation for this phenomenon is that the oxidation-
induced ubiquitination preferentially happens during protein
synthesis when proteins are folding to native conformation and is
therefore more susceptible to oxidative stress [56]. Additionally,
during stationary phase although WT cells do not express de-
tectable Sch9 (Fig. 1A), they still present more intracellular oxi-
dation than sch9Δ cells (Fig. 6B and C). It is likely that sch9Δ cells
at stationary phase have taken advantage of the elevated anti-
oxidant system during the prior growth phases which induces less
protein ubiquitination and benefits the survival.
Materials and methods

Strains, plasmids, and media

The Saccharomyces cerevisiae strains used in this study are lis-
ted in Table 1. Plasmids pRS316 and pRS416-SCH9 were kind gifts
from Dr. Robbie Loewith (University of Geneva, Geneva, Switzer-
land) [21]. Plasmid pUG36-Ura/ATG8 was used to detect autop-
hagy as described by us previously [57]. Galactose-inducible multi-
copy plasmids expressing CTT1 (pEGH-CTT1) was purchased from
GE Healthcare (GE Healthcare, Huntsville, AL). Plasmid pEGH was a
gift from Dr. Guozhen LIU (University Agriculture of Hebei, China)
[58]. Cells were grown in YPD (1% yeast extract, 2% peptone, 2%
glucose) or synthetic dextrose complete medium (SDC) medium as
described previously [30,59]. Cells transformed with plasmids
carrying URA3 were grown in the SDC medium lacking uracil
[30,59]. For inducing expression of galactose-inducible multi-copy
plasmids, pEGH and pEGH-CTT1, carbon source in routine SDC
medium was replaced by 1% galactose and 1% sucrose. For MG132
treatments, cells were grown in SDC medium using L-proline in-
stead of ammonium sulfate as the sole nitrogen source and a small
amount of sodium dodecyl sulfate (SDS; 0.003%) was added to
enhance the permeability of yeast cells [60].

Construction of yeast mutant strains

The atg1Δ sch9Δ (DBY746 with atg1Δ::KanMX, sch9Δ::HIS3)



Table 1
S. cerevisiae strains.

Strain Genotype Source

DBY746 MAT alpha leu2-3.112 his3Δ1 trp1-289 ura3-52 GALþ [67]
atg1Δ DBY746 with atg1Δ::KanMX [57]
PF102 (1-1) DBY746 with sch9Δ::URA (URA3 silencing) Gift from Dr. Robert C. Dickson. Made from PF102 [68] by selecting for Ura- phenotype.
atg1Δ sch9Δ DBY746 with atg1Δ::KanMX, sch9Δ: :HIS3 This study
TB50a MATa trp1 his3 ura3 leu2 rme1 [21]
TS120-2d TB50a with sch9Δ::KanMX [21]

B. Qie et al. / Redox Biology 5 (2015) 290–300298
strain was generated by the transformation of atg1Δ (DBY746 with
atg1Δ::KanMX) strain with a PCR product generated by amplifi-
cation of the HIS3 cassette from the pRS303 plasmid using oligo-
nucleotides designed to add homologous bases to regions directly
flanking the SCH9-coding sequence (Tables 2, 15 and 16). The
mutant was confirmed by PCR using 5′ UTR forward primer and
HIS3-ORF-specific reverse primer [61].

Protein extraction and Western blotting analysis

Yeast cells grown overnight at 30 °C in SDC medium (Figs. 1C,
2A and C, and 3C) or YPD medium (Figs. 1A, and 5C and E) were
diluted into 20 ml of medium in 100 ml flask to give an initial
OD600 nm of 0.005. Cultures were incubated at 30 °C in an air
thermostatic shaker (200 rpm) until desired OD600nm was
achieved. Cells at their logarithmic growth phase were collected
when the OD600 nm reached 0.5. Cell-free yeast extracts were
prepared by using a modified published procedure [59,62]. 10 ml
cells at OD600 nm of 0.5 were treated with cold TCA as described
above, then suspended in 500 ml of water followed by the addition
of 500 ml of 0.2 M NaOH. Thoroughly mixed samples were in-
cubated for 30 min at room temperature, concentrated by cen-
trifugation and suspended in 200 ml of lysis buffer (0.5 M Tris–HCl,
pH 6.8, 5% glycerol, 2% SDS, 1% β-mercaptoethanol). After heating
at 95 °C for 5 min, samples were centrifuged and the supernatant
was mixed with 4� Laemmli Buffer (44.4% glycerol, 4.4% SDS, 10%
β-mercapto-ethanol, 0.02% bromophenol blue and 277.8 mM Tris,
pH 6.8). For most Western blotting assays protein was loaded in
equal amounts onto a 10% SDS-PAGE gel, except 15% for detecting
free ubiquitin. Separated proteins were transferred onto a PVDF
membrane (Millipore, MA) followed by standard Western blotting
protocols with primary antibodies including polyclonal rabbit anti-
Sch9 antibodies (1:2000, a gift from Dr. Robert C. Dickson), anti-
GFP antibodies (1:5000, Zen BioScience, China), monoclonal
mouse anti-Ub antibodies (1:2000, Santa Cruz biotech, MA) or
monoclonal mouse anti-actin (1:5000, Zen BioScience, China).
Table 2
Primers for PCR.

No. Primer name Oligon

1 CTT1-F 5′-TGC
2 CTT1-R 5′-ACG
3 GPX1-F 5′-GAT
4 GPX1-R 5′-CAT
5 TSA2-F 5′-CAA
6 TSA2-R 5′-TCG
7 HSP104-F 5′-GGA
8 HSP104-R 5′-CCA
9 ACT1-F 5′-CGT

10 ACT1-R 5′-AGC
11 ATG8-F 5′-TGT
12 ATG8-R 5′-AGA
13 HSP12-F 5′-CGC
14 HSP12-R 5′-TCA
15 sch9-UP35-pRS303(HIS3)-F 5′-CGT
16 sch9-DW34-pRS303(HIS3)-R 5′-AAG
Secondary antibodies include alkaline phosphatase-linked anti-
rabbit or anti-mouse IgG (1:2000, Zen BioScience, China).

RNA extraction and RT-qPCR analysis

Total RNA was extracted from cells with RNAiso Plus (TaKaRa
Bio, China). Before the extraction, 20 ml cells (OD600nm of 0.5) were
pretreated with 50 U of lyticase at 30 °C for 30 min to increase
extraction efficiency. For each reverse transcription reaction 2.0 mg
of total RNA was reverse transcribed to cDNA using a PrimeScript
RT reagent kit with gDNA eraser (Takara Bio, China). The primers
for real-time quantitative PCR (RT-qPCR) were designed using
Primer Premier 5.0 and synthesized commercially (BGI, China).
The primer sequences are indicated in Table 2. PCR reaction was
performed in a total volume of 25 ml, containing 100 ng cDNA,
12.5 ml SYBR Premix Ex TaqII (TaKaRa Bio, China), 9.5 ml dH2O and
0.2 mM specific primers using Bio-Rad CFX manager real-time PCR
system with 1 cycle at 95 °C for 30 s followed by 40 cycles at 95 °C
for 5 s and 60 °C for 30 s. Data were collected and analyzed by Bio-
Rad CFX manager software using the 2�ΔΔC

T method [63]. The
expression of each mRNA was normalized to that of Actin (ACT1)
and data are representative of results from three separate
experiments.

Measurement of intracellular reactive oxygen species (ROS) by DCFH-
DA and DHR123 staining

Detection of ROS in cells was based on the oxidation of DCFH-
DA by intracellular ROS, resulting in the formation of the fluor-
escent compound 2′,7′-dichlorodihydrofluorescein (DCF) [47].
Cells (OD600 nm of 0.5) were harvested and washed with PBS, then
incubated with 10 mM H2DCF�DA (Fanbo Biochemicals, China) for
1 h at 30 °C in dark. After washed three times with PBS (2.7 mM
KCl, 1.75 mM KH2PO4, 10 mM Na2HPO4 and 136.75 mM NaCl, pH
7.4), the pellet was resuspended in 1 ml PBS. 10 ml of cells was
added to a microscope slide, and DCF fluorescence was monitored
ucleotide sequence

AAGACTTCCATCTGCTG-3′
GTGGAAAAACGAACAAG-3′
TGTGGCCTTTCCCTGTG-3′
TCCAGACTTCCCGCTTAC-3′
GCCCCACCATTTAAGAA-3′
GTGGAGGCAAATAAAAC-3′
TGGTGCCTTTGAAAGAA-3′
AAGCAGAATCTGGCAAT-3′
TCCAATTTACGCTGGTT-3′
GGTTTGCATTTCTTGTT-3′
GATTTGCGAAAAAGCTG-3′
CATCAACGCCGCAGTAG-3′
AGGTAGAAAAGGATTCG-3′
GCGTTATCCTTGCCTTT-3′
ATAAGCAAGAAATAAAGATACGAATATACAATATGACAGAGCAGAAAGCCCTAGTA-3′
AAGAGGAAGGGCAAGAGGAGCGATTGAGAAACTACATAAGAACACCTTTGGTGGAG-3′
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using CEWEI LWD200-37FT fluorescence microscope (CEWEI,
China). Alternatively, the prepared cells were lysed by glass beads
and the fluorescence was measured at 488/525 nm excitation/
emission using an f4500 fluorescence spectrometer (Hitachi, Ja-
pan). The fluorescence intensity was normalized according to the
protein concentration measured by Bradford method.

Detection of intracellular ROS is also achieved by dihy-
drorhodamine 123 (DHR123) staining, based on the oxidative
conversion of DHR123 to its corresponding two-electron oxidized
fluorescent product, rhodamine 123 [51]. Cells (OD600 nm of 0.5)
were harvested and washed with PBS, then incubated with 10 mM
DHR123 (Keygen Biotech, China) for 1 h at 30 °C in dark. The
procedures of monitoring DHR123 fluorescence using fluorescence
microscope or fluorescence spectrometer were same as the DCF
fluorescence measurements, except that 507 and 529 nm were
used as excitation and emission wavelengths, respectively.

Catalase activity assay

The catalase activity was measured by native gel electrophor-
esis as described previously [64]. Briefly, the native gel consisting
of 4% stacking gel and 8% separating gel was pre-electrophoresed
for 1 h at 40 mA, 4 °C. 107–108 cells were washed twice in 5 ml PBS
and resuspended in 50 mM phosphate buffer (pH 7.8) before they
were lysed by ten cycles of vortexing with 0.5 mm acid-washed
glass beads (Sigma-Aldrich, USA) for 30 s followed by 30 s of
cooling on ice. After centrifugation (6000� g, 4 °C, 5 min), the
supernatants containing 200 mg of protein per sample was loaded
with the sample loading buffer (50% glycerol, 0.05% bromophenol
blue, 0.25 M Tris and 4 mM EDTA, pH 6.8) and 10 U of bovine
catalase (Solarbio, China) was loaded as a standard. Samples were
electrophoresed for 3 h at 40 mA, 4 °C in the pre-electrophoresis
buffer (0.2 M Tris, 1 mM EDTA, pH 8.8) followed by another 2 h of
electrophoresis in the electrophoresis buffer (0.05 M Tris, 1.8 mM
EDTA, 0.3 M glycine, pH 8.3). After electrophoresis, the gel was
incubated in 0.003% H2O2 (vol/vol) for 10 min. After rinsing twice
gently with ddH2O, the gel was stained with 2% ferric chloride and
2% potassium ferricyanide at room temperature. The stained gels
were scanned with the scanner (Microtek Scanmaker i800). The
intensities of bands were quantified by Image J and the catalase
activities of samples were standardized by comparing to the band
of standard catalase with known activity on the same gel.

Proteasome chymotrypsin-like activity assay

20 ml cells were harvested at OD600 nm of 0.5 and resuspended
in lysis buffer (50 mM Tris pH 8.0, 5 mM MgCl2, 0.5 mM EDTA, and
1 mM ATP) at a ratio of 1.5 ml buffer per gram of wet cell mass. Cells
were lysed by vortexing for 5 min at 4 °C with 0.5 mm acid-washed
glass beads (Sigma-Aldrich, USA). Chymotrypsin-like activity of cell
lysate was determined by measuring the release of fluorophore
7-amido-4-methylcoumarin (AMC) from 100 mM of N-succinyl-Leu-
Val-Tyr-7 (LLVY) amido-4-methylcoumarin (Sigma-Aldrich, USA).
Fluorescence was measured by an f4500 fluorescence Spectrometer
(Hitachi, Japan) at excitation/emission wavelengths of 380 nm/
440 nm. To deduct the influence of non-specific release of AMC, the
proteasome inhibitor MG132 (75 mM, Selleck Chemicals, USA) was
added to the isopyknic lysate as the control [65].

Protein carbonylation detection

Cells were lysed as described above for a catalase activity assay
and the protein carbonylation was quantified by DNPH alkaline
method as described [66]. Briefly, 400 ml of DNPH (10 mM in 0.5 M
H3PO4) (KeLong Chemical, China) was mixed with 400 ml of protein
solution. The mixture was incubated in the dark at room
temperature for 10 min and followed by the incubation with 200 ml
of NaOH (6 M) for 10 min. The absorbance was read at 450 nmwith
the UV spectrophotometer (APL Instruments, China). The con-
centration of carbonyl groups was normalized by the protein con-
centration of respective sample measured by Bradford method.

Statistical analysis

All data from at least three independent experiments are pre-
sented as averages7SD. Statistical analysis and comparisons were
performed using two-tailed, unpaired Student t tests. Western blot
images were plot and analyzed using ImageJ software. The anti-
ubiquitin immunoblots were quantified by the whole lanes.
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