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Fixed point networks are dynamic networks encoding stimuli via distinct output patterns.

Although, such networks are common in neural systems, their structures are typically

unknown or poorly characterized. It is thereby valuable to use a supervised approach

for resolving how a network encodes inputs of interest and the superposition of those

inputs from sampled multiple node time series. In this paper, we show that accomplishing

such a task involves finding a low-dimensional state space from supervised noisy

recordings. We demonstrate that while standard methods for dimension reduction

are unable to provide optimal separation of fixed points and transient trajectories

approaching them, the combination of dimension reduction with selection (clustering)

and optimization can successfully provide such functionality. Specifically, we propose

two methods: Exclusive Threshold Reduction (ETR) and Optimal Exclusive Threshold

Reduction (OETR) for finding a basis for the classification state space. We show that

the classification space—constructed through the combination of dimension reduction

and optimal separation—can directly facilitate recognition of stimuli, and classify complex

inputs (mixtures) into similarity classes. We test our methodology on a benchmark data-

set recorded from the olfactory system. We also use the benchmark to compare our

results with the state-of-the-art. The comparison shows that our methods are capable

to construct classification spaces and perform recognition at a significantly better rate

than previously proposed approaches.

Keywords: attractor networks, classification of fixed point networks, olfactory neural circuits, stimuli

classification, recordings from neural population, neural dynamics, recognition of stimuli, mixed stimuli

1. INTRODUCTION

Robust neural networked systems encode their dynamics by attractors in a low-dimensional state
space. Attractors represent the response of a neural network to various inputs, as well as reflecting
particular states of the system. Such networks are common in neuronal systems that process sensory
stimuli, command motor systems, or store memory (Amit, 1992; Wills et al., 2005; Churchland
et al., 2012). The manifestation of attractors ensures robustness of network performance, such that,
for a range of network initializations and stimuli, it exhibits reliable dynamics. The simplest type of
attractors are fixed points, triggered by injection of input signals (e.g., step functions) into a subset
of network nodes, which after a transient response, produce a steady state pattern in output nodes.
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In neuronal networks, these patterns are identified as neural
codes (Averbeck et al., 2006). The network is considered selective
when it distinguishes between stimuli via distinct fixed points. In
particular, fixed point networks produce similar fixed points for
similar stimuli and distinguishable ones for distinct stimuli. The
similarity is typically defined by a metric in a low-dimensional
space. Such functionality is the primary principle upon which
fixed point networks incorporate recognition and quantification
of mixed stimuli. In addition, these networks are “robust” as they
perform under high dynamic input variability, with low signal to
noise ratio (SNR).

A fascinating question is how to infer the low-dimensional
state space—and fixed points within it—from the network’s
time series data. It is particularly relevant when it is of
interest to functionally characterize black-box networks, where
connectivity and node dynamics are unknown, and sampling
the network response to various stimuli is the only resort.
Supervised sampling is often used as a structural approach
for the construction of low-dimensional state space. In such
an approach, distinct inputs are independently applied to the
network, while network activity is being sampled (i.e., time-
series of multiple node dynamics). For each input, the fragment
of sampled time-series corresponds to a matrix with “nodes”
and “time” dimensions, and the data-set of sampled responses
corresponds to a collection of matrices (see Figure 1). The
classification task for such a collection is to find the most
informative low-dimensional state space where the number of
distinct fixed points is the number of distinct inputs; thus the low-
rank space could be used for examining the transient dynamics
reaching these fixed points. Such a space would be considered
optimally selective when both fixed points and associated
transient dynamics with each fixed point are maximally separated
(orthogonal). For example, for a collection which constitutes
responses to three inputs, we expect to find three basis vectors,
each representing a single stimulus.

FIGURE 1 | Supervised classification of fixed point network responses. Left to right: Distinct input signals, stimuli Si (here i = 2), are injected into network’s input

nodes and produce fixed point dynamics in output nodes (n1 and n2 are samples of output nodes). For each stimulus, output nodes timeseries are recorded in a

response matrix, with dimensions of nodes × time, where each node is a row of the matrix. Response matrices to S1 and S2 stimuli are shown as color maps and

time series of sampled nodes n1 and n2 (rows 1 and 2 of each response matrix) are shown in insets. As the number of output nodes increases, finding a separating

hyperplane between the dynamics represented in the nodes’ space becomes complex as illustrated in the rightmost plot.

For neuronal sensory networks, the collection would typically
correspond to the instantaneous firing-rates (peri-stimulus time-
histograms) of multiple neurons when the system is stimulated.
We chose here to work with the olfactory neuronal network
in insects, due to its particularly robust and intriguing neural
coding. Within the network, the antennal lobe, the primary
processing unit of olfactory information, receives input from
olfactory receptor neurons and responds with output activity
that discriminates between odorants, and classifies olfactory
stimuli. Experiments have shown that such classification is
associated with behavior, and could adapt over time or after
training (Riffell et al., 2013, 2014). Furthermore, analysis ofmulti-
unit electrophysiological recordings from output (projection)
neurons shows that the network employs input induced fixed
points to classify the stimuli (Mazor and Laurent, 2005).

Since the collection consists of matrices, a natural
methodology for inferring low-dimensional classification
space is composing the collection into a single matrix and
employing classical multivariate matrix decomposition methods
to identify dominant orthogonal patterns, e.g., Singular Value
Decomposition (SVD), or sparse representations with L1
minimization (Sirovich, 1987; Shlizerman et al., 2012). However,
in practice, due to the ambiguity in SVD (indifference for
particular data structure and sensitivity to low SNR), the
resulting SVD modes are mixed and unable to discriminate
single inputs from the collection. Alternatively, dimension
reduction could be applied on each of the matrices and produce
unambiguous, low-rank representations. However, this approach
introduces another problem of gathering the obtained patterns
into a single, joint, meaningful representation. This is a generic
problem of finding an optimal low-rank representation of
multiple instances data matrix.

To address the problem, here we propose a classification
method that leverages the benefits of the two approaches:
orthogonality and non-ambiguity with respect to the structure.
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The method operates on low-rank representations obtained
from individual applications of data reduction on each sub
matrix and creates an orthogonal basis. Effectively, the method
exclusively associates each neuron with one of the stimuli and
assigns a weight for the association, and thereby called exclusive
threshold reduction (ETR). We show that such an approach
can successfully separate response trajectories to the various
stimuli. In addition, we formulate an optimization routine, called
optimal exclusive threshold reduction (OETR), which allows us
to achieve maximal separation of fixed points. For evaluation
and demonstration of our methodology we have obtained a
benchmark database of multi-unit time series recordings from
the antennal lobe projection neurons in theManduca sextamoth.
Neural activity was recorded as a response to stimulation with
constituents of the Datura flower scent (single molecules and
mixtures), a major food resource for the moth. The data-set
is divided into a training set for construction of classification
space, and a test set to evaluate our methodology and compare
with other approaches. Standard and challenging tests were
designed to quantify discrimination between distinct stimuli,
and capturing similarity of various mixtures. For example, the
methods were tested on the accuracy of classification of responses
into “behavioral” or “non-behavioral” ones. Notably, since the
recordings incorporate large O(1) variability in time and space
of the input, both standard and challenging tests are significantly
more difficult than in noiseless scenarios. We show that the
OETRmethod performs most accurately and robustly on various
number of dimensions of classification space and mixture inputs,
out of the many methods that we have tested.

2. RESULTS

2.1. Classification from Multiple Node
Collection
For supervised classification, we consider a set of input nodes
{I} which receive a set of stimuli {S}. To monitor network
response, we consider a set of output nodes denoted as {F}.
In the training stage, m independent stimuli {Si}i=1,...,m are
applied to the network, and timeseries of output nodes—that
producing dynamic trajectories to the stable fixed points—are
being recorded. Per each stimulus, Si, the recorded timeseries of
output nodes correspond to a matrix [FSi ] of dimensions N × T
with rows being the nodes and columns being the recording time
stamps. Therefore, the training data for supervised training is
the collection C = {[FS1 ], . . ., [FSi ], . . ., [FSm ]}, which includes
multi-node times-series of network responses (see Figure 1

for an example). The goal of the classification is to find an
optimal representation such that the responses to distinct stimuli
are separable. Effectively, the problem is related to finding a
separating hyperplane between each fixed point and its associated
trajectories that approach/leave it and all other fixed points and
their associated trajectories.

To quantify the success of various classification methods
we established a benchmark data-set for classification and
recognition. The benchmark consists of a collection of neural
responses of a neurobiological network that exhibits fixed

point dynamics. Specifically, to create the benchmark, we have
obtained electrophysiological multi-neuron recordings from
projection (output) neurons within the antennal lobe neuronal
network, the primary olfactory processing unit in insects. It has
been shown that the response of the network to odor stimuli is
expressed in terms of fixed point dynamics of projection neurons
(Mazor and Laurent, 2005). To obtain the benchmark, spiking
activity of multiple projection neurons (N = 106) was recorded
from the antennal lobe of M. sexta moth subject to distinct
odor molecules (odorants) and their mixtures extracted from
the Datura wrightii flower, a major food resource for the moth.
Since realistic response times are of the order of few hundreds of
milliseconds (200–400 ms), each response was recorded for 1 s.
The recordings were repeated over 5 trials with 2-min intervals
in between the trials. The benchmark includes responses to 8
distinct odor molecules [labeled as Bea (S1), Bol (S2), Lin (S3),
Car (S4), Ner (S5), Far (S6), Myr (S7), Ger (S8)], 1 control
odor (labeled as Ctr), and 8 mixture odors (labeled as B1, B2,
B3, E1, E2, E3, E4, E5, E6), see table in Figure 2. Mixtures are
labeled as “behavioral”—to denote that the behavioral response
to these stimuli is similar to the response to Datura floral scent,
or “non-behavioral”—to denote themixtures and odorants which
do not elicit a significant behavioral response. To work with
continuous time series, neural spiking activity was transformed to
nonnegative activity representing peri-stimulus time histograms
(instantaneous firing rates).

With the established benchmark we first demonstrate that
finding hyperplanes separating the data points is not obvious,
due to the high-dimensionality and variability of the data (noise).
To test several standard methods with the benchmark, we first
used the Support Vector Machine (SVM) classifier (Bishop, 2007;
Murphy, 2012) with a binary classification scheme for which
the data was separated into two classes: responses triggered by
stimuli of interest and responses triggered by other stimuli. SVM
is supposed to classify the responses by finding the optimal
hyperplane separating all data points into one of the two classes
(see further details on the method in section 4). For this binary
classification problem we found the performance to be low,
with an average classification accuracy of approximately 50%
for various binary classes, as we show in Figure 3. We find
that both precision (percentage of true positives out of instances
classified as positive) and recall (percentage of true positives out
of instances expected to be positive) errors are ≈60% and ≈50%
respectively, indicating poor performance in the usefulness of
the classification (precision) and completeness of classification
(recall), comparable to a random guessing strategy for the binary
test sets that we have created.

A possible explanation for the failure of SVM on the
benchmark is that the points are linearly inseparable. We,
therefore, tested nonlinear versions of the classifier, e.g., by using
a Gaussian kernel, however, they produced similar classification
errors. Another hypothesis for the low performance of SVM
could stem from response dynamics that reside in a lower
dimension than both the nodal dimension and the number of
data points upon which the separating hyperplane is computed.
This creates a situation where the data is being overfitted.
Another obstacle could be in the form of the classes being
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FIGURE 2 | Benchmark data set of supervised recordings and superpositions of stimuli from the olfactory network. Recordings of extracellular neural responses of

106 neurons for 8 mono-molecular stimuli (odorants) that constitute the Datura scent, labeled as S1,…,S8. In addition, responses to mixed stimuli labeled as

behavioral B1,…,B3, non-behavioral E1,…,E5 and control stimulus E6 were recorded. Responses were recorded over 5 distinct trials for each stimulus.

imbalanced, i.e., when SVM classifiers are trained on an
imbalanced data-set, they can produce biases toward the majority
class and misrepresent the minority class. We, therefore, tested
other techniques designed to deal with class imbalances, such
as SMOTING and RUSBoost (Seiffert et al., 2010) with the
benchmark. However, we did not obtain significant improvement
with these methods compared to SVM (Figure 3). In conclusion,
we observe that direct classification from the complete data-set
is difficult, and methods that incorporate pre-processing of the
data are necessary. In particular, we identify that determining
an appropriate low dimensional state space, where distinct fixed
points and their associated dynamics are easily separable, could
significantly simplify classification.

2.2. Classification Using Matrix
Decomposition Applied to Timeseries
Collection
Since classification methods applied to the high-dimensional
collection C are unable to provide robust representation, an
alternative approach is to represent the data in low-dimensional

space. The structure of the collection C as a set of matrices
suggests that matrix decomposition could be a useful tool
for finding such low-dimensional basis. There are several
possibilities to create a matrix to be used for decomposition from
the collection C. The first possibility is to format the collection
into a concatenated matrix consisting of sub-matrices FSi

C = {[FS1 ], [FS2 ], [FS3 ], . . .} → F = [FS1 , FS2 , FS3 , . . .]. (1)

Data reduction methods can be then applied to the matrix F

to decompose it into vectors Eak(ti) (time-dependent coefficients)
and Egk(j) (spatial patterns/neural codes):

F(ti, j) =

n
∑

k=1

Eak(ti)Egk(j). (2)

where ti denotes the times at which responses where recorded
and j denotes indices of the nodes from which responses where
recorded.

Our goal is to find the most informative decomposition
where the number of patterns is equal to the number of
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FIGURE 3 | Possible methods for classification from multiple node timeseries collection. Top row: Application of SVM and RUSBoosting classifiers to perform binary

classification directly on the collection C in the benchmark set. Precision and recall percentages are computed and shown in the right graph. Middle row: SVDCon

method—Treatment of the collection as a concatenated matrix, Equation (1). Projection of the responses onto low-dimensional space spanned by PC1−PC3

obtained from SVD on concatenated matrix shown on the right. Bottom row: SVDSep method—Treatment of the collection as a set of individual matrices, Equation (3)

and projection onto the first PC vector of each matrix SVD, shown as trajectories in Cartesian space spanned by unit vectors (i,j,k) on the right.

distinct inputs, and these patterns span a low-rank space of
projections where the dynamics, i.e., time-dependent coefficients
Eak(ti), and their superpositions can be examined. For example,
for a matrix which constitutes responses to three inputs,
we expect to get three pattern vectors, each representing
a single stimulus. Classical multivariate decomposition
of the matrix F , e.g., Singular Value Decomposition
(SVD)/Principal Component Analysis (PCA) that decompose
the matrix F into U6VT , or sparse representations computed
by L1 minimization, can identify dominant orthogonal
patterns (Golub and Van Loan, 2012; Shlizerman et al.,
2012).

When computing the SVD for the matrix F , the procedure
we call SVDCon, the column vectors of orthonormal matrix
VT correspond to pattern vectors. The k-th column vector
of VT , the vector Egk(j) (or denoted as PCk in Figure 3), is
the k-th pattern. Each pattern has associated time-dependent
coefficients vector Eak(ti) = σkEαk(ti), where Eαk(ti) is the k-th
row vector of the orthonormal matrix U and σk is the k-
th singular value, the k-th element of the diagonal matrix
6. Singular values indicate the weight of each pattern vector,
since they are non-negative elements ordered as σ1 ≥ σ2 ≥
· · · ≥ 0 and since both Eαk(ti) and Egk(j) are normal vectors.
To determine the relative weights of these pattern vectors it
is possible to define the relative energy Hk of each pattern,
such that Hk = σ 2

k
/
∑n

i=1 σ 2
k

which yields that the total
energy is normalized

∑n
k=iHi = 1, and each Hk indicates

the relative “percentage” of the energy in the pattern PCk.
The distribution of Hk values provides an estimate of the

effectiveness of the decomposition to find a low dimensional
representation. When several first Hk values stand out, it
identifies the patterns corresponding to these singular values
are more dominant than others and the truncation of the
remainder modes would maintain a reasonable approximation of
the original matrix.

We apply SVDCon onto a concatenated matrix F generated
from three response matrices, F = [FS1 , FS2 , FS3 ] to three
distinct odorant stimuli from the benchmark set. We observe
that the distribution of Hk values is such that only the first
singular value stands out (H1 = 0.5) and all others are
significantly smaller. Such a distribution typically indicates that
SVD is unable to capture the variability in the data. Furthermore,
examination of time dependent coefficients associated with
the first three patterns show that they are overlapping and
indistinguishable (Figure 3 middle row). Effectively, these
results indicate that there is a discrepancy between the
expected three-dimensional state-space and the outcome of
SVDCon.

Another way to format the collection is to consider each
response matrix FSi separately, i.e.,

C = {[FS1 ], [FS2 ], [FS3 ], . . .} → [FS1 ], [FS2 ], [FS3 ], . . . (3)

Using this form, SVD can be applied to each matrix; a procedure
we call SVDSep. In this procedure, m sets of decompositions are
obtained, where m is the number of distinct stimuli. In Figure 3,
we apply SVDSep onto three stimuli collection, as for SVDCon,
however, here it is formatted into three separate response
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matrices [FS1 ], [FS2 ], [FS3 ], and obtain three decompositions. We
observe that each decomposition is dominated by 1 pattern
(H1 > 0.5 for each of the three matrices).

Therefore, collecting dominant pattern vectors from all
decompositions into a common set could represent a projection
space for the distinct responses. More generally, a procedure
following SVDSep would take the first pattern vector PC1

Si
(i.e.,

most dominant mode) from each decomposition of [FSi ] and
store them as column vectors in a library matrix L, which has the
form:

L =













PC1
S1

PC1
S2

. . .













where there are n rows accounting for every node measured
in the network. Notably, column vectors of L are taken
from separate decompositions and therefore non-orthogonal
to each other and do not share the same Euclidean space.
Therefore, projections onto the column vectors of the library
L, shown in Figure 3 bottom row as points in standard
Eucledian space (spanned by Cartesian unit vectors i,j,k),
are not guaranteed to be non-overlapping. Indeed, we
observe that that projection of the response matrices
onto L for the constructed library L from the benchmark
experiment of three distinct odorants, does not produce

separable fixed points and associated trajectories (see Figure 3

bottom row). The non-orthogonality of the basis warrants
development of an approach to transform the library so that
the projected fixed points and their trajectories are maximally
separable.

2.3. Optimal Exclusive Threshold
Reduction Method
To find the separation between fixed points associated with
distinct stimuli, we propose a simple method that will obtain
an orthogonal set of vectors from the matrix L. The method,
called exclusive threshold reduction (ETR), operates on the
nodes dimension of L (rows): it selects the maximal value in
each row and sets to zero all other elements in that row. The
procedure is performed on each row, and, once completed,
produces a new matrix with N non-zero elements out of N2

elements. Effectively, ETR is associating each node to a stimulus.
For example, if for node ni the element in the third column
is the maximal element, then node ni is associated with S3
and the weight for the association is the value of the element,
see the top row of Figure 4 for graphical illustration of the
method. The ETR method could be summarized as a procedure
which performs clustering of nodes into stimuli clusters. Each
stimulus cluster is an axis in Figure 4. The ETR method
attempts to associate each node with an axis and to assign a
weight for the association. By definition, ETR guarantees an
orthogonal set of vectors, i.e., an orthogonal matrix O of the

FIGURE 4 | Exclusive Threshold Reduction (ETR) and Optimization (OETR). (A) The exclusive threshold reduction (ETR) method applies a maximizing rule (top left) to

each neuron/node in the matrix L and produces the matrix O where LTO defines coordinates of fixed points (bottom left). Projection of distinct stimuli trajectories onto

the matrix O resulting in a phase space where each stimulus trajectory is correlated with its associated axis (top right; compare with C). (B) Optimal exclusive

threshold reduction (OETR) re-weights the nodes by solving a convex optimization problem, where Dw is optimized to find the optimal weighting of LTDwO = I (top

left). The coordinates of fixed points are then defined as LTDwO (bottom left). This further separates the transient trajectories and associated fixed points (top right).

(C) Projection onto basis obtained by ICA method.
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form

O =

PC1
S1

PC1
S2

. . .

n1

n2

...























...

...

...

...
. . . . . . . . . . . . . . .























=

=

{

nij, if abs(nij) = max(abs(ni)) ≥ τ ,

0, otherwise,

where τ is the threshold value. If τ = 0, as in many
applications, the generated matrix O is a basis for the nodes
space and a projection space for trajectories associated with
stimuli. The matrix defines a mapping from the high- to low-
dimensional system. Such a mapping was used to recover
network connectivity in conjunction with the Proper Orthogonal
Decomposition of population model equations for the antennal
lobe neuronal network (Shlizerman et al., 2014). The mapping
is supposed to group node responses and capture the exclusive
features associated with each stimulus. When we test the
projection of three odorant benchmark matrices onto the matrix
O, producing time-dependent trajectories in stimulus space, we
observe that the trajectories are separate from each other. We
also locate the fixed points, which coordinates are defined as
the outcome of the product LTO. We find their location to be
close to the stimulus axis of each trajectory (Figure 4A). These
experiments indicate that the ETRmethod is effective inmapping
distinct trajectories to their own axes, and can facilitate a distinct
classification space.

To test the scalability of the approach we apply ETR on various
subsets of responses to odorants in the benchmark set. We start
with two odorants and increment by one the number of included
matrices to eight odorants. Application of ETR on the latter
produces 8-dimensional space (eight column matrix O). In these
experiments, we further confirm the scalable performance of the
approach and its ability to produce separate fixed points and
trajectories (as shown in Figure 4A).

While ETR turns out to be valuable in separating trajectories,
it does not ensure that the fixed points are optimally separated,
especially when the number of matrices in the collection grows.
To optimally separate the fixed points, we consider additional
weights contained in the diagonal matrix D

Dw =











w1,1 0 . . . 0
0 w2,2 . . . 0
...

...
. . .

...
0 0 . . . wn,n











. (4)

The formulation assigns weights that scale the weight of each
individual node obtained by ETR to ensure that the fixed points
are orthonormal (Figure 4B) and thus satisfies the assumption
of distinct stimuli used in supervised classification. With such

scaling, the coordinates of the fixed points are computed as
LTDwO and in order for them to be orthonormal are expected to
be exclusive in the associated axis of each stimulus. We therefore
require that the coordinates of the fixed points are represented
by the identity matrix, i.e., LTDwO = I. To solve for Dw, we
formulate the following convex optimization problem

min
Dw

‖LTDwO− I‖Fr . (5)

We denote the generalized approach of solving the optimization
problem above, in conjunction with the ETRmethod, as Optimal
Exclusive Threshold Reduction (OETR) method. It is expected
to produce optimally separable projected trajectories for multiple
distinct stimuli and hence the vectors of DwO are optimal
axes of the classification state space. To solve the optimization
problem, computational packages for convex optimization can
be used. For example, we use the CVX package implemented in
MATLAB (Grant et al., 2008). Application of OETR to the three
distinct stimuli benchmark set indeed produces more optimally
separable fixed points and their associated trajectories as shown
in Figure 4B.

Next, we compare OETR with other approaches, such as
the Independent Component Analysis (ICA), to exclude that
the benchmark set is too easily separated. The ICA method
that we apply is an information-based algorithm (Infomax)
particularly designed to obtain separable signals from a collection
of inseparable signals, such as the library L, see section 4 for more
details on our ICA implementation and Refs (Hyvärinen, 1999;
Hyvärinen and Oja, 2000; Langlois et al., 2010). Our results show
that projections on the ICA vectors remain overlapping and do
not produce efficient classification (Figure 4C).

2.4. Recognition Metrics and Classifiers
Based on the Classification State Space
With the classification space constructed using ETR and OETR,
we consider its utilization for recognition and classification of
novel stimuli. These stimuli include mixtures of odorants, and
mono-molecular odorants, upon which the axes of the space were
constructed. Notably, the responses to all stimuli are examined on
a trial by trial basis. Thereby, in the case of responses to mono-
molecular odorants, each trial is a novel stochastic realization of
the trajectory relative to the one used for space construction.

Since the fixed points and their associated trajectories are
expected to be well separated in the classification space, we
propose the convex hull metric, defined by the fixed point and its
associated trajectory, as a classifier. A simplification of the convex
hull (andmore robust) is anm-dimensional hyperellipse centered
at the fixed point

q = (
x1 − c1

r1
)2 + (

x2 − c2

r2
)2 + ...+ (

xm − cm

rm
)2 − 1,

st =

{

1 for q ≤ 0
0 for q > 0

}

, (6)

where m is the dimension of the classification state space. The
metric st is a pointwise metric, which provides for each point of
the tested projected trajectory x1(t), . . ., xm(t), sampled at time t,
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whether it lies inside the hyperellipse (q ≤ 0 : s = 1) or outside
(q > 0 : s = 0). Integration of the pointwise metric over the
time of the response [for the benchmark here it is the time of
the stimulus being ON (500 ms)] provides a total score S of the
trajectory being located within the hyperellipse

Rec =
S

T
, S =

T
∑

t=t0

st .

The score S indicates the similarity of the tested trajectory
with the stimulus trajectory. Normalization of S over the total
number points provides a recognition ratio score Rec. Such a
metric is simple to implement and is designed to harness the
optimal separation of fixed points in the classification space.
Computation of Rec is expected to provide consistent scores
for testing similarity between trajectories in the classification
space. Particularly, it is expected to be robust to different
stochastic realizations of the trajectories (due to noise and other
perturbation effects). Other metrics, measuring the time scales of
convergence to the fixed point or focusing on specific properties
of the trajectories are not expected to be robust for low signal-
to-noise ratio (SNR) dynamics (see Figure 5). Such properties of
the dynamics are typical to multi-unit recordings from neuronal
networks. For example, in the benchmark set SNR is <3 and
stimuli trajectories exhibit short timescales and do not necessarily
converge to the fixed points. Rather, they only approach their
vicinity.

To investigate the performance of recognition and
classification using the hyperellipse metric we computed
the similarity of various stimuli (17 stimuli from the benchmark
set) with B1 mixture consisting of mono-molecular odorants:
Benzaldehyde (S1); Benzyl Alcohol (S2); and Linalool (S3).

This mixture was shown to include the dominant constituents
of the Datura scent—an important flower nectar source of
the moths—and moths stimulated with it elicit a “behavioral”
response similar to stimulation by the full Datura scent. Similarly
to B1, mixtures B2 and B3 elicit a behavioral response, while
other 14 stimuli are not eliciting such a response and thereby
marked “non-behavioral” (Riffell et al., 2013). The goal of
the classification is to examine trajectories associated with
all mixtures and determine which are similar to B1. Strong
similarity indicates that the mixture is classified as “behavioral”
as well. The goal of recognition is to decide instantaneously
given a single trial whether the stimulus is B1. Notably,
behavioral experiments show that similarity in responses to
these different mixtures was not solely due to the concentration
of the constituents making up the mixture, and therefore
classification methods from neural dynamics are in need. For
example, experiments show that when Linalool (component
with the least concentration) is missing in B1 mixture, the new
mixture becomes non-behavioral. Furthermore, adding other
constituents from the Datura scent to replace Linalool in B1
mixture does not restore the ability of the mixture to elicit
behavior.

To compare between different approaches we constructed
classification spaces using four methods: SVDSep, ICA, ETR,
and OETR for the odorants S1–S8 (see table in Figure 2). We
also varied the dimension m of the classification space from
m = 1(S1) incrementally to m = 8(S1, . . ., S8). For each method
and dimension of the classification space, we computed the score
Rec for each trajectory (5 trials of 17 stimuli = 85 trajectories)
with respect to B1 stimulus hyperellipse, which was chosen as a
sphere with a fixed radius. We show our results in Figures 5, 6.
To perform classification, Rec scores were computed for each
dimension of the classification space with all stimuli and trials.

FIGURE 5 | Classification and recognition employing the classification space. (A) ETR projection of response that corresponds to B1 (blue) and its associated 3D

hyperellipse (black sphere) that is used for recognition of B1. All points that fall inside the hyperellipse are marked as “recognition evidence” (st = 1). For reference, we

also show the projections of responses to B1 constituents, S1, S2, S3, in gray. (B1) Classification accuracy into behavioral/non-behavioral classes for OETR (red),

ETR (yellow), ICA (light blue), SVDSep (navy) for increasing dimension of the Classification Space. (B2) Breakdown of normalized 〈Rec〉 scores per per stimulus (for 17

stimuli) for each method and m = 7. The horizontal blue line indicates the threshold line d for identification whether the response is similar to B1/behavioral. The bars

within the dashed lines correspond to behavioral stimuli (B1–B3). Other bars correspond to non-behavioral. The color of the bars symbolize correctness of

classification: correctly classified stimuli are marked by green, and incorrectly classified stimuli are marked by red. (C) Precision of each method when the radius of the

classifying hyperellipse (sphere) is varied. (D) Recognition precision using B1 sphere to recognize B1 responses (right) and when false positives from behavioral (B)

class are allowed (left).
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The average 〈Rec〉 score was then computed over the trials of
each stimulus. The distribution of average scores {〈Rec〉} for 17
stimuli is then normalized by the maximal max{〈Rec〉} value. A
decision line for binary classification of “behavioral” (B class) or
“non-behavioral” (S or E classes) is set as the midpoint between
the mean of the distribution andmaximal value: d = (〈{〈Rec〉}〉+
1)/2 (depicted as blue line in the inset showing distributions for
m = 7 in Figure 5). Values above d are classified as behavioral
while values below d are classified as non-behavioral. In Figure 5

the bars that correspond to erroneous classification are marked
with red color and correctly classified bars are marked with
green color. We show the total accuracies of the four methods
(precision× recall) for each dimension as a bar plot in themiddle
plot of Figure 5 and also show the distributions for m = 7
below it.

Classification results demonstrate that ETR and OETR are
a significant improvement over other dimension reduction
techniques, which in turn are a significant improvement over
methods not employing dimension reduction. All methods
perform poorly when the classification space is of m = 1
or m = 2 dimensions. Indeed, since B1 consists of three
independent mono-molecular odorants, the results indicate that
there is not enough data for discrimination based on fewer
dimensions than the constituents of the tested stimulus. As
the dimension increases, OETR achieves perfect accuracies for
m ≥ 3. ETR achieves 100% accuracy for m = 3 and then
stabilizes on the lower value of ≈70% with high precision but
lower recall rates. ICA achieves 100% accuracy for m = 4 but
when the dimension increases both precision and recall rates
drop to values as for m = 1 and m = 2 dimensions. SVDSep
produces constantly low accuracies for all dimensions. From
the distributions, as shown for m = 7, we get insights on the
differences in the performance of the methods. In particular,
two stimuli are used for validation: B1, which is expected to
produce a high Rec score, and E6 (control), which is expected
to produce a low Rec score. We observe that the scores for B1
are high across methods, however in SVDSep B1 does not cross
the threshold d line. For E6, only ETR and OETR successfully
assign a significantly lower score to E6. As expected, individual
odorants S1,. . . ,S8 and non-behavioral mixtures E1,. . . E6 are far
from threshold in OETR method and mostly far from threshold
in ETR. The form of the distributions transforms from nearly
uniform (for SVDSep) to spiked distribution with high values
for B stimuli and low for other (for OETR). The latter form
allows for the line d to easily separate the B class from other
classes. Indeed we observe that while ETR is able to perform
with high precision, it is unable to recall one of the behavioral
stimuli (B2). Next, we proceed and test whether the methods
are sensitive to the choice of the hyperellipse. In particular, we
vary the radius of the B1 sphere in the range of 0.5–0.85 for
dimension m = 8 and compute classification accuracies. We
observe a clear separation between SVDSep/ICA and ETR/OETR
groups of methods. We find that recall rates are stable across
methods, however, precision rates are sensitive. Precision rates
of SVDSep and ICA are less than 50% overall and indicate that
these methods are not robust. By contrast, ETR and OETR are
more robust. ETR achieves 100% precision for a range of 0.19

radii and OETR achieves 100% precision in a much wider range
of 0.32.

To further quantify classification performance of different
methods, we compute Rec score confidence intervals (99%)
for binary classification of trajectories into behavioral or non-
behavioral classes. We show representative results in Figure 6 for
dimensions D = 3 and D = 7. Our results indicate that only
the intervals that belong to the OETR method are consistently
separable for all dimensions and thereby expected to support
successful recognition. For other methods, the intervals appear
to significantly overlap (SVDSep, ICA) or their boundaries are
adjacent to each other (ETR).

For the recognition task, we compute the Rec score form = 8
classification space for each trial (85 trials). If the score crosses a
threshold of 70% of the Rec score of a target averaged trajectory
(i.e., for more than 400 ms the trajectories are in the same
hyperellipse) the tested trajectory is recognized as associated with
the target stimulus. Using this method, we tested the recognition
of the B1 hyperellipse (sphere of radius 0.65 in our case). As in
classification, our results show that OETR is more accurate than
other methods. Recall and precision rates of OETR and ETR are
higher than the rates of SVDSep and ICA. Interestingly, when we
test for the recognition of the B1 stimulus only (i.e., we expect
to recognize only 5 noisy trajectories of B1 stimulus as positive)
precision rates do not reach 100% in any of themethods; there are

FIGURE 6 | Rec score confidence intervals. Comparison of Rec confidence

intervals (P = 0.01) for each of the methods for behavioral and non-behavioral

classes. Two representative dimensions are shown: D = 3 (top) and D = 7

(bottom). For D = 3 the intervals belonging to ETR and OETR methods are

separable. For D = 7 only the intervals belonging to the OETR method are

separable. For other dimensions, the intervals exhibit similar separability

features.
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other trajectories marked positively as B1 although not B1. These
trajectories turn out to be mainly from B class. We show that
this is indeed the case by expanding the class of recognition and
allowing for any stimulus in B class to be marked as B1. In such a
case, we obtain 100% precision for OETR and ETR. These results
demonstrate that noisy B trajectories appear extremely similar to
each other in our recognition scheme. OETR is hence consistent
with experimental observations and metrics which indicate that
B class stimuli are behaviorally indistinguishable.

3. CONCLUSION

Classification of fixed point networks responses from sampled
activity is a challenging fundamental problem, especially when
the inputs into a network are highly variable and noisy. We
have addressed this problem by proposing novel supervised
classification methods, ETR and OETR, which identify a low-
dimensional representation of a collection of matrices of multiple
node time-series data from the network. Essentially, the ETR
method combines dimension reduction and clustering of nodes
to obtain a meaningful projection space for network responses.
As a first step, themethod employs dimension reduction based on
matrix factorization to obtain response vectors for each stimulus.
Next, it associates nodes to stimuli classes (clustering) and assigns
a weight to each node within a class using its maximal response
across stimuli. As a result, ETR orthogonalizes the response
vectors, makes them more sparse, and provides a basis for the
projection space. The OETR method is performed in addition to
ETR to optimize the weights of each node in a cluster.

To test our methods we have established a benchmark
database of multi channel time-series recordings from a real
neural fixed point network: the antennal lobe in the M. sexta
moth. We have shown that the OETR method allowed us to
create a classification space that separates fixed points and their
transient trajectories with high accuracy. Furthermore, it allowed
us to represent and classify noisy mixtures of stimuli. In contrast,
we have shown that traditional methods such as SVM and
Boosting, that do not rely on dimension reduction, and classical
matrix decomposition and reduction methods such as SVD and
ICA, are not as successful as OETR at the classification of fixed
point networks dynamics.

Recordings from the olfactory network are a valuable
benchmark for testing classification. The network is known
for its robustness in discrimination of scents composed of
numerous distinct molecules in a highly dynamic environment.
It has been established that the network employs fixed points
for odor representation that are being read and processed by
higher layer olfactory processing units (mushroom body in
insects). In this respect, the ETR and OETR methods that
we have proposed are simple to implement since they rely
on a dominant mean pattern (first SVD mode) associated
with each distinct odorant, maximum rule, and linear weights.
Such components are natural to neural networks. Thereby
application of proposedmethods could help in understanding the
processes that higher layer units employ to instantaneously read
information from fixed point networks. While there has not been
any explicit demonstration of selective ETR/OETR like coding
in the M. sexta antennal lobe or downstream networks, such as

the mushroom bodies, studies demonstrated that downstream
neurons specifically respond to mixtures at the behaviorally
effective ratios. The ratios of the constituent odorants were
found critical for moth behavior and representation in the
antennal lobe network (by altering the balance of excitation
and inhibition; Kanzaki et al., 1991; Lei et al., 2013). In other
words, downstream neurons only responded to the behaviorally
effective mixture and at the proper ratio. This is the functionality
that our classification and recognition methods are able to
mimic.

Here we focused on fixed point networks. These networks
are the most fundamental and simplest attractor networks.
It is thereby plausible that our methodology will lay the
foundations for future work to extend the methodology to
other more complex attractor networks such as limit cycle
networks, lines of fixed points networks, and ring attractor
networks, which are ubiquitous networks in neural systems as
well.

4. METHODS AND PROCEDURES

The benchmark data-set and code that implements the various
methods are available online on GitHub: https://github.com/
shlizee/fpnets-classification.

Below we include further information on the algorithms that
we applied and compared with ETR and OETR methods.

4.1. SVM Binary Classification from Raw
Data
In our application of SVM approach, a hyperplane H is created
to divide the classes into their proper labels (−1 or 1). The
hyperplane is designed to give the largest margin between these
classes. It is constructed as wTxi + b = 0, where w is the
vector of weights for the features in x, and 1

‖w‖ is the distance

to H+ and H−. In order to obtain the optimal hyperplane, 1
‖w‖

must be maximized, or ‖w‖ minimized. Thus the Maximum
Likelihood Estimator (MLE) for SVMs is found by minimizing
1
N

∑N
i=1max{0, 1 − yiw

Txi} + λ‖w‖2, where y is the class label,
and λ is the penalty on the weights w.

4.2. Class Imbalances
When the error or misclassification percentage is the only metric
taken into account during training, learning algorithms of SVM
type appear to work well. However, during testing, these methods
could produce inaccurate results. The reason for the discrepancy
stems from the imbalanced representation of classes in the data.
For example, in the case of two classes, there is a possibility that
the first class would not be classified at all, while the second class
would be perfectly classified since there are significantly more
data points in the second class. Therefore, different approaches
for working with imbalanced data are required. One approach
is to change the performance metric. Typically, two informative
measures are precision (P) and recall (R), defined as P =
tp

tp+fp
, R =

tp
tp+fn

, where tp is the number of true positives,

fp is the number of false positives, and fn is the number of
false negatives. While using these metrics did not improve the
performance of SVM on our benchmark, we do employ the
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P and R metrics to quantify and compare the performance of
ETR and OETR with other methods. An alternate approach is
to resample the data-set. This includes over-sampling classes
with fewer instances or under-sampling the larger classes to
achieve equal balance. In practice, however, these strategies often
cause biases such as overfitting (in the case of over-sampling)
or loss of information (in the case of under-sampling). Another
technique to improve imbalanced classification is boosting.
Boosting can improve the performance of weak classifiers, such
as decision trees, by resampling the training data using assigned
weights. Boosting techniques constantly change weak learning
directions until they converge toward a strong learner (see the
following subsection for an example of boosting technique that
we applied).

4.3. RUSBoost Algorithm
Here we applied the RUSBoost algorithm to demonstrate
that treatment of class imbalances is insufficient for fixed
point responses in the benchmark that we have collected.
RUSBoost is a hybrid method for random under-sampling and
boosting designed to improve performance of imbalanced data
classification. The algorithm randomly removes instances of
majority classes to try to equalize them with minority classes.
RUSBoost has been shown to work well, as well as SMOTEBoost,
and perform simply and speedily (Seiffert et al., 2010). RUSBoost
algorithm works as follows: Given a training set S of examples
(x1, y1). . .(xn, yn) with a minority class yτ ∈ Y , |Y| = 2, a new
set D′ is generated using random under-sampling, and a weak
learner (i.e., a decision tree) is called to create a hypothesis ht .
The pseudo loss, for S and Dt , is then calculated using ǫt =
∑

(i,y):yi 6=y Dt(i)(1 − ht(xi, yi) + ht(xi, yi)). The weight update

parameter is then derived with: αt =
ǫt

1−ǫt
. Normalization yields

the final hypothesis H(x) = argmaxy∈Y
∑T

t=1 ht(x, y)log
1
αt
.

4.4. ICA
We are comparing ourmethods with the Infomax ICA algorithm,
which for given observed components (in our case the matrix
LT) finds a linear transformation A from LT to S, i.e., S = ALT .
The matrix S is decomposed into independent components that
minimize mutual information. The assumption of the ICAmodel
is that the components in L are statistically independent. We
are using the implementation of the Infomax ICA based on
Bell and Sejnowski (1995), in which the maximum likelihood
estimation is found by using the log-likelihood in the form of

LH =
∑T

t=1

∑n
i=1 logfi(w

T
i S(t)) + Tlog|det(A)| where fi is the

density functions of the columns of LT . This is equivalent to the
Infomax Principle,M2 = H(φ1(w

T
1 x), . . .,φn(w

T
n x)) where φi are

non-linear scalar functions. We used Python software package
that implements the Infomax algorithm (Higuera et al., 2016).
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