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Binarized Neural Network with 
Silicon Nanosheet Synaptic 
Transistors for Supervised Pattern 
Classification
Sungho Kim1, Bongsik Choi2, Jinsu Yoon2, Yongwoo Lee2, Hee-Dong Kim1, Min-Ho Kang3 & 
Sung-Jin Choi   2

In the biological neural network, the learning process is achieved through massively parallel synaptic 
connections between neurons that can be adjusted in an analog manner. Recent developments in 
emerging synaptic devices and their networks can emulate the functionality of a biological neural 
network, which will be the fundamental building block for a neuromorphic computing architecture. 
However, on-chip implementation of a large-scale artificial neural network is still very challenging due 
to unreliable analog weight modulation in current synaptic device technology. Here, we demonstrate 
a binarized neural network (BNN) based on a gate-all-around silicon nanosheet synaptic transistor, 
where reliable digital-type weight modulation can contribute to improve the sustainability of the 
entire network. BNN is applied to three proof-of-concept examples: (1) handwritten digit classification 
(MNIST dataset), (2) face image classification (Yale dataset), and (3) experimental 3 × 3 binary pattern 
classifications using an integrated synaptic transistor network (total 9 × 9 × 2   162 cells) through 
a supervised online training procedure. The results consolidate the feasibility of binarized neural 
networks and pave the way toward building a reliable and large-scale artificial neural network by using 
more advanced conventional digital device technologies.

Although relatively little is known about the principle of information processing in the brain, it is certain that the 
information flows from neuron to neuron through synapses which have adjustable connection strengths (i.e., 
synaptic weights). The learning process in the brain is consequently the reconfiguration of the synaptic weights in 
the neural network, where the weights are updated in an analog manner. Based on this fact, several learning rules 
regulating the evolution of the synaptic weights have been proposed (such as spike-timing-dependent plasticity1), 
and recently, intensive efforts have been made to implement an electronic synaptic device that can emulate the 
functionality of synapses. The final goal of this research, which has been named neuromorphic engineering, is the 
realization of innovative computing architecture (neuromorphic system) based on an artificial neural network to 
overcome the energy inefficiency of conventional von Neumann architecture, by mimicking both the functional 
and structural characteristics of the biological systems2,3.

To date, the most promising candidates for a synaptic device are two-terminal resistive switching devices, i.e., 
memristors4. With memristors, analog conductance states can be modulated by using only a minuscule amount 
of energy consumption and can be maintained over the long term, which indicates the promising feasibility of 
emulating biological synapses5–9. Furthermore, by applying such memristors, primitive levels of artificial neural 
networks (i.e., synaptic device arrays) have been demonstrated experimentally for the application of pattern clas-
sification8, analog-to-digital conversion10, principal component analysis11, sparse coding calculations12, reservoir 
computing13, K-means data clustering14, and differential equation solver15. However, the on-chip implementation 
of neuromorphic systems with emerging synaptic devices is still very challenging due to the instability of analog 
weight modulation in a synaptic device, which has been identified in recent simulation studies16,17: although the 
neuromorphic systems are capable of tolerating the device-to-device variation or noise to a certain degree18–20, 
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intrinsic nonlinearity and uncontrollability of analog conductance switching behavior critically degrades the per-
formance of the system16,17,20,21. Unfortunately, this issue is common to almost all memristors and could not be 
solved by further optimizing the fabrication process or materials because the physical mechanism of the analog 
conductance modulation is typically an atomic-level random process based on electro/thermodynamics22–24. 
Although several methods for precise adjustment of the analog weight have been proposed25–27, these methods 
require a specially designed pulse waveform and impractical complex peripheral circuitry. In addition, recent 
memristors exhibit improved reliability28–30, but the fabrication process of the device is complex or the materials 
used are incompatible with conventional silicon processes, is a critical obstacle to the design of peripheral circuits.

Alternatively, the sustainability and reliability of digitally switching devices have been guaranteed over the 
past 20 years31. For example, in the case of the present NAND flash technology, stable multiple memory states 
with 3-dimensional stackability have already been applied to a product. Particularly, the density of the NAND 
flash already exceeds 2 × 109 bits/mm2 32, close to the density of synapses in the human frontal cortex (1.1 × 109 
synapses/mm3)33. Therefore, if the well-qualified conventional digital devices can contribute to a synaptic device, 
the goal of achieving on-chip implementation of a neuromorphic system can be realized sooner. Here, we demon-
strate a binarized neural network (BNN) where the synaptic device is a more advanced digital-type switchable 
device, that is, a gate-all-around (GAA) silicon nanosheet transistor. A developed training/recognition algorithm 
of BNN enables the task of pattern classification with a supervised online training scheme. In this study, BNN is 
applied to three proof-of-concept examples: (1) handwritten digit classification (MNIST dataset34) verified by the 
simulation, (2) face image classification (Yale dataset35) verified by the simulation, and (3) 3 × 3 binary pattern 
classifications by using an integrated two 9 × 9 synaptic transistor arrays. The simulation and experimental results 
consolidate the feasibility of BNN and pave the way toward building a reliable, large-scale, and practical neuro-
morphic system from advanced conventional digital device technologies.

Results and Discussion
Figure 1a depicts the architecture of BNN36 with M inputs and N outputs. Synaptic weights in the network G1(i, j) 
are given within one binary value: G1(i, j)  l{Ghigh or Glow}; Ghigh and Glow represent the high- and low-conductance 
states of the synaptic device, respectively (subscripted numbers indicate the order of each network when multiple 
networks are involved). The input pattern information is delivered into the network by two types of vectors: u1(i) 
and w1(i) denote the probability- and write-vector, respectively. When an input pattern needs to be distinguished 
from previously trained patterns (i.e., recognizing phase), u1(i) is applied to the network. u1(i) corresponds 
directly to each pixel of information of the input pattern such as the intensity, which is rescaled to 0 ≤ u1(i) ≤ 1. 
When an input pattern needs to be trained by updating the synaptic weight (i.e., training phase), w1(i) instead of 
u1(i) is applied to the network, where w1(i)  w{0 or 1} is stochastically determined by learning probability 

Figure 1.  (a) The architecture of the binary neural network with M inputs and N outputs. The input pattern 
information corresponds to the u1(i) and w1(i), the s1(i) enables supervised training by selecting a specific row, 
and the z1(i) is the output of the network. (b) The schematic of synaptic transistor array, where s1(i) involves VG, 
and either u1(i) or w1(i) involves VD. Integrated IS in a row direction corresponds to z1(i). (c) The photo of the 
test board with an integrated synaptic transistor array. (d) The optical and transmission electron microscope 
images of the synaptic transistor. The SiN charge trap layer embedded in the gate dielectric enables the digital-
type channel conductance switching with high reliability.

https://doi.org/10.1038/s41598-019-48048-w


3Scientific Reports |         (2019) 9:11705  | https://doi.org/10.1038/s41598-019-48048-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

p leγ∙u1(i) (where γ is the learning rate, and u1(i) is used as a probability value to decide w1(i)). Here, the weight 
updating of BNN is conducted in a supervised manner. To this end, select-vector s1(i) le{1 or −1 or 0} directs the 
training of the input pattern according to its label, where s1(i) he1, −1, and 0 represent ‘potentiation’, ‘depression’, 
‘no update’ of the synaptic weight, respectively. Finally, the resultant outcome of the network is the summation 
vector z1(i) given as ∑ = G i j u i j( , ) ( , )j

M
1 1 1 , which is the sum of the products of G1(i, j) and u1(i) in a row direction. 

The subsequent u2(i) and w2(i) of the next network are determined by passing z1(i) through the designed neuron 
function (the detail of the neuron is discussed later).

For the physical implementation of BNN, the GAA silicon nanosheet transistor contributes to a synaptic 
device, where the embedded charge trap layer (silicon nitride) in the gate dielectric enables adjustable digital-type 
channel conductance (i.e., synaptic weight modulation). The fabrication process, the device variability, and the 
digital-type switching performance are discussed in Supplementary Information Note 1. In the configuration of 
the synaptic transistor array (Fig. 1b), s1(i) corresponds to the gate voltage (VG) of the synaptic transistors in a 
particular row, and either u1(i) or w1(i) corresponds to the drain voltage (VD). The source current of each synaptic 
transistor (IS) is determined by the channel conductance (Ghigh or Glow) and VD, and consequently, the integrated 
IS of each row (∑ = ∑ ⋅I G VS D) represents z1(i). Figure 1c shows the implemented test board with an integrated 
synaptic transistor array, and Fig. 1d shows the microscope images of the synaptic transistors (the array measure-
ment setup using a test board is presented in Supplementary Information Note 2).

BNN has two different modes of operation, i.e., training and recognizing phases. The training phase of BNN to 
update the synaptic weight (Fig. 2a) is conducted through the cooperation of w1(i) and s1(i), which leads to three 
different consequences: G1(i, j) is updated to Ghigh when w1(i)∙s1(i) wh1 (i.e., w1(i)  e1 and s1(i)  a1), updated to Glow 
when w1(i)∙s1(i) wh-1 (i.e., w1(i)  e1 and s1(i)  a-1), and maintains its state when w1(i)∙s1(i) ws0 (i.e., w1(i) .e0 or s1(i)  
o0); these are referred to as ‘potentiation’, ‘depression’, and ‘no update,’ respectively. Because the higher learning 
probability p ( (cγ∙u1(i)) leads to w1(i) becoming 1 more often, the larger u1(i) results the potentiation/depression 
of synaptic weight more frequently. In terms of synaptic transistor operation, s1(i) n {1, −1, 0} corresponds to 
VG   −18 V, 15 V, and 3 V, respectively. Similarly, w1(i)  S{0, 1} corresponds to VD 0,floating and 1 V, respectively. 
Consequently, w1(i)∙s1(i) o {1, −1, 0} leads to ‘increase’, ‘decrease’ and ‘maintain’ the channel conductance of the 
synaptic transistor, respectively, according to the configuration of VG and VD.

Next, the recognizing phase is conducted by applying u1(i) to the network instead of w1(i), as shown in Fig. 2b 
(since the weight update is not required during the recognizing phase, all s1(i) are set to 0). The purpose of the rec-
ognizing phase is twofold: (1) classification of the input pattern by matching with previously trained patterns, and 
(2) generation of u2(i) for transferring the input pattern information to the next network. As mentioned above, 
u1(i) involves each pixel of information of the input pattern, and the resultant z1(i) is the sum of G1(i, j)∙u1(i) in 
a row direction. If z1(i) is the output of the last network, z1(i) is used to classify the input pattern. The maximum 
z1(i) indicates the estimated label for a given input pattern (the detail classification process will be discussed in 
later). However, when multiple networks are involved in the system, u2(i) of the next network is generated by 
exploiting z1(i). In detail, u2(i) is determined by passing z1(i) through the designed neuron function: u2(i) is zero 
when z1(i)  iz1(c), and u2(i) is increased linearly to 1 when z1(i) ≥ z1(c). A critical point, z1(c), is given according 
to the total number of labels (l) (e.g., l  g10 in MNIST dataset, and c ndN/l). Because of the discontinuity of the 
neuron function, a relatively small value of z1(i) cannot be delivered to the next network. In other words, only 
meaningful information (features) of the input pattern can be transferred to the next network, which increases 

Figure 2.  (a) The training phase of BNN: G1(i, j) is updated to Ghigh when w1(i)∙s1(i) wh1, updated to Glow when 
w1(i)∙s1(i) wh-1, and maintained its state when w1(i) · s1(i) wi0. Each element of s1(i) and w1(i) corresponds to 
VG and VD, respectively. (b) The recognition phase of BNN: u1(i) represents VD, and z1(i) is utilized for either 
classifying the input pattern or determining u2(i).
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the classification accuracy by introducing multiple (deeper) networks. In terms of synaptic transistor operation, 
u1(i) corresponds directly to VD ranged from 0 to 1 V. Then, integrated IS row by row represents z1(i).

In the following, the pattern classification ability of BNN is verified by three proof-of-concept examples: the 
first example is handwritten digit classification (MNIST dataset) verified by the simulation. Figure 3a shows the 
schematic of BNN including two networks (G1 and G2): note that the first network G1 is divided into two subnet-
works, one of which represents a positive weight value (G1-1) and the other that represents a negative weight value 
(G1-2). Again, G1-1 and G1-2 are partitioned into buckets (depicted as P0 ~ P9, the size of each bucket is B1). Each 
bucket is assigned to train only a specific input pattern according to the label (e.g., digit ‘0’ pattern is only trained 
at the bucket P0). Because the total labels (l) of the MNIST dataset are 10, G1 is accordingly partitioned into 20 
buckets and N arl∙B1. Under this configuration, each pixel intensity value of the MNIST dataset (28 × 28 pixels) is 
rescaled to the range between 0 and 1, which becomes u1(i) as it is (i (a1 to M, M  t784). Then, w1(i) is given by 
u1(i) according to the learning probability p. Next, to generate s1-1(i) and s1-2(i) for adjusting the weights properly, 
the following steps are conducted sequentially (Fig. 3a). Step 1: in G1-1, one row (r1

th row) is randomly selected 
from the bucket belonging to the label of the input pattern, and s1-1(r1) is set to 1. Step 2: in G1-1, another row (r2

th 
row) is randomly selected from the buckets that do not belong to the label of the input pattern, and s1-1(r2) is set 
to −1. Step 3: all s1-1(i) except i  er1 and r2 are set to 0. Step 4: s1-2(i) of G1-2 is given as −s1-1(i). Following these 
sequences, a chosen input pattern is trained only in the r1

th row of G1-1 during Step 1. However, since the weight 
of r1

th row is only potentiated due to s1-1(r1) = −1, most of the weight will be potentiated if the training phase is 
repeated continuously. Therefore, during Step 2, the weight of r2

th row of G1-1 should be depressed according to the 
input pattern. Interestingly, because s1-2(i) = −s1-1(i), the bucket of G1-2 is trained oppositely to the bucket of G1-1 
during Step 3 and Step 4. For example, digit ‘0’ pattern is trained at the bucket P0 in G1-1. In contrast, symmetrical 
P0 in G1-2 is trained to the features of other digits (e.g., ‘1’ to ‘9’). Consequently, the resultant z1(i), defined as 

G i j u i j G i j u i j( , ) ( , ) ( , ) ( , )j
M

1 1 1 1 1 2 1∑ −= − − , contains the feature information of the input pattern corresponding to 
the label excluding the features other than itself.

The training phase of the second network G2 is the same as the training phase of G1. The only difference is, if 
G2 is the last network, z2(i) results in the final output O(i) are given by the sum of the neuronal output over the 

Figure 3.  (a) Schematic of the network architecture for handwritten digit classification with two networks (G1 
and G2). Each network is divided into two subnetworks (e.g., G1-1 and G1-2) to represent positive and negative 
synaptic weights, respectively. This subnetwork is partitioned again to the buckets (P0 ~ P9), where each bucket 
is trained on the input patterns according to the label. (b) One example of synaptic weights after 60000 times 
of the training epoch: one row at the bucket P0 is selected from G1-1 and G1-2, and the resultant G1-1–G1-2 are 
plotted, respectively. (c) The evolution of classification accuracy as a function of the training epoch, which is 
also affected by the network configuration (i.e., number of networks, bucket size, learning rate). The learning 
rate γ of all results is 0.2.
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rows from the bucket of each label. The maximum O(i) designates the estimated label for a given input pattern. 
Accordingly, the classification accuracy is evaluated regarding agreement between the desired and estimated 
labels. Figure 3b shows one example of synaptic weights after the training of the MNIST dataset is finished, i.e., 
one arbitrarily selected row at the bucket P0 in G1-1 and G1-2. The synaptic weights of G1-1 contain the feature of 
digit ‘0’ pattern. In contrast, the synaptic weights of G1-2 contain the features of other digits except ‘0’. The net syn-
aptic weight (G1-1–G1-2) has both positive and negative values, which helps to improve the classification accuracy 
by emphasizing a distinctive feature of the digit ‘0’ pattern (the impact of negative synaptic weight G1-2 on the 
classification accuracy is discussed in Supplementary Information Note 3). Finally, the classification accuracy of 
the MNIST dataset is shown in Fig. 3c as a function of the training epoch, where the number of networks alters 
the accuracy. With a single network, the accuracy merely reaches approximately 70% with B1 it 100, while deploy-
ing one more network improves the accuracy up to approximately 80% with B1 it 100, B2  050. Improvement in 
the accuracy continues onwards with more networks (e.g., three networks; blue curve in Fig. 3c), although the 
effect decreases. Additional accuracy tests depending on different parameters (e.g., learning rate or bucket size) 
are presented in Supplementary Information Note 4.

The second example is the face image (Yale dataset) classification. Because the classification procedure is 
exactly equal to that of the MNIST dataset discussed above, the results will be discussed in Supplementary 
Information Note 5. The last example is the experimental demonstration of BNN, where 3 different 3 × 3 binary 
patterns (denoted as the letters ‘z’, ‘v’, ‘n’)8 are classified. As shown in Fig. 4a, bucket size B1 is set to 3 (due to the 
limit of the fabricated array size), and thus M1 rr 3 × 3, N1 , 3 · B1, the total number of used synaptic transistors 
is 9 × 9 × 2 + 162 cells. By applying the supervised online training scheme discussed above, Fig. 4b shows the 
evolution of the weights as a function of training epoch. When the patterns in the training set, i.e., the patterns ‘z’, 
‘n’, and ‘v’, are consecutively applied to the network during the training phase, each pattern is trained at the corre-
sponding bucket of the network, which is defined as one training epoch. Then, to evaluate the pattern classifica-
tion accuracy, the test set patterns (with one flipped pixel from the training set, the total number of patterns in the 
test set is 27) are applied to the network. Figure 4c shows resultant z(i) in a different training epoch (the data show 
only when the test pattern ‘z’ is applied to the network. The data for the test patterns ‘v’ and ‘n’ are presented in 
Supplementary Information Note 6). Note that the z(i) values obtained from each bucket are almost similar when 
the training epoch is only 9, which means that the test pattern ‘z’ cannot be classified properly. In contrast, after 
the training epoch is 32, z(i) obtained from bucket ‘z’ is much larger than the others, which indicates that the test 
pattern ‘z’ can be classified. When the training and recognizing phases are repeated, The classification accuracy 
is finally reached 100% after 24 times of the application of the training epoch (see Supplementary Information 
Note 6).

Figure 4.  (a) Schematic of the network architecture for 3 × 3 binary pattern classification (the letters ‘z’, ‘v’, and 
‘n’) with integrated 162 (9 × 9 × 2) synaptic transistors. The training set used in the training phase consisted of 3 
correct patterns. The test set used in the recognizing phase (to evaluate the classification accuracy) consisted of 
27 patterns with one flipped pixel from the training set. (b) The evolution of net synaptic weights (G1-1–G1-2) is 
a function of the training epoch. (c) Measured results of obtained z(i) (i.e., integrated IS in row direction) when 
the training epoch is 9 and 32. When the test pattern ‘z’ is applied to the network during the recognition phase, 
the resultant z(i) is different from that of each bucket; the z(i) obtained from bucket ‘z’ is obviously larger than 
the others.
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To classify the 3 different 3 × 3 binary patterns mentioned above, the number of synaptic transistors required 
in BNN (162 cells) is greater than the number of synaptic devices used in the previous memristor array8 (60 
memristors). However, BNN is believed to be more appropriate for large-scale on-chip implementation due to the 
high controllability and sustainability of the digital-type conductance switching property, which has already been 
confirmed by the advanced conventional digital devices. In addition, because the synaptic transistor itself acts as a 
selector, the chronic problems in memristor crossbar arrays, such as a sneaky current path, can be solved without 
any further efforts. Moreover, a peripheral driving circuitry, as well as synaptic devices, can also be implemented 
using the equivalent device technology, which enables a considerably easier full-system integration.

In summary, the binarized neural network is implemented using a gate-all-around silicon nanosheet transis-
tor that exhibits highly reliable and accurately controllable channel conductance modulation in a digital man-
ner. With a supervised online training scheme, pattern classification tasks are experimentally demonstrated. 
Due to the use of advanced digital device technology, further monolithic integration with neuronal circuits and 
final brain-like cognitive computing system from an artificial neural network could be realized on a small chip. 
Considering only a single synaptic device, the demonstrated synaptic transistor in this study may require more 
energy consumption compared to existing memristors. However, considering the large-scale array of synaptic 
devices, the energy consumption from the sneaky-current flow will be more critical37. However, the existing 
memristors cannot prevent this problem completely without introducing an additional selector device. In con-
trast, transistor-based synaptic device arrays can avoid this issue without any further effort, which will certainly 
be beneficial in terms of system-level energy consumption. Therefore, the binarized neural network can provide 
the breakthrough for the device-level of the present neuromorphic system research based on analog-manner 
synaptic devices and enable us to provide a novel direction and inspiration for neuromorphic engineering in the 
future.
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