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The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound
transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described
and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the
mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atohl, calcium
channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular
interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis
and possible therapeutic interventions for the treatment of hearing loss.

1. Introduction

Globally, hearing loss is the most common sensory disorder,
and its severity ranges from mild hearing impairment to total
deafness. More than 500 million people are affected by this
health problem, and 1 in every 500 newborns worldwide is
deaf [1]. Hearing dysfunction may lead to speech retardation,
as well as poor social integration and quality of life. Thus far,
various causes of hearing loss have been identified and stud-
ied, such as aging, ototoxic drugs, genetic mutations of deaf-
ness genes, ear or brain tumors, and exposure to loud noises
(even for short time) [2, 3]. These causes determine the spe-
cific type of hearing loss and the treatment orientation. Hear-
ing loss can be divided into three types according to the
location of the lesion: conductive hearing loss (CHL), senso-
rineural hearing loss (SNHL), and mixed hearing loss. Etio-
logically, hearing loss can be roughly classified into two
categories, including hereditary and nonhereditary [4].
SNHL is an etiologically heterogeneous disorder resulting

from numerous genetic and environmental factors [5] and
is caused by damage to the body’s sound transmission func-
tion. Considering that the cochlea is an important sound
receiver, analysis of the structure and sound transmission
processes of the cochlea form the basis of treatment.

Hair cells (HCs) and spiral ganglion neurons (SGNs)
are the main structures of sound transmission in the
cochlea [6-11]. The auditory sensory HCs are located in
the organ of Corti and include a row of inner hair cells
(IHC:s), three rows of outer hair cells (OHCs), and support-
ing cells. Vibrations caused by sound are amplified by the
three rows of OHCs and subsequently reach the cochlea.
This is turn causes the deflection of stereocilia on the top
surface of IHCs, which opens mechanoelectrical transduc-
tion channels located at the tip of the stereocilia, and simul-
taneously leads to excitation of the SGNs [12]. The inner
ear and the brain then collaborate to make us feel sound
[13]. Hearing loss is caused by the irreversible loss of sensory
HCs and degeneration of SGNs [14-19]. Middle ear lesions,


https://orcid.org/0000-0002-5212-6559
https://orcid.org/0000-0002-0217-3074
https://orcid.org/0000-0002-0439-4057
https://orcid.org/0000-0003-0986-4756
https://orcid.org/0000-0001-5753-7843
https://orcid.org/0000-0002-0322-7329
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5522717

Neural Plasticity

Stimulus MAPKKK

MAPK signaling pathways

MAPKK

MAPK
N

Effects

-~

~

ERK1/2 activation

JNK1/2/3 activation

p38 activation

Oxidative stress,
UV, cytokines

Oxidative stress,
UV, cytokines

)
—

PKC, Ras, Raf

c-fos, c-jun

13

ERK1/2

TNF «, FasL,

Bak, Bim, Bax

=

FasL, FasR
Bim,
Y

Proliferation

[ Apoptosis ]

Apoptosis

'R
—

FiGURE 1: MAPK signaling pathways. There are three tiers of protein kinases that compose each family of MAPKs: MAPKKK, MAPKK, and
MAPK. The three main classes of MAPK include ERK1/2, J]NK1/2/3, and p38. Stimuli can trigger Ca®", PKC, Ras, Raf, MEK, and ERK1/2 to
maintain proliferation and differentiation. Oxidative stress, UV irradiation, and cytokines can trigger JNK and p38 to activate the downstream

molecules that promote apoptosis.

noise, trauma, and genetic mutations can cause damage to
HCs, which ultimately lead to hearing loss [20-24].

Several signaling cascades are activated following injury
to the cochlea. These pathways can be proinflammatory, pro-
death, and even prosurvival. The signaling cascades that
occur at the cellular and molecular levels are highly complex
and intertwined [25]. However, there is relatively little infor-
mation about the cellular processes that mediate HC damage.
As research and treatment in this area are critical, research
regarding the cellular molecular pathway mechanisms has
attracted considerable attention.

At present, there are an increasing number of studies that
have focused on cellular molecular pathways that could rep-
resent potential checkpoints in the mechanism of hearing
loss and HC damage. As research into the necrobiology of
the inner ear progresses, the pathways specific to auditory
HC death will become better defined. Among the identified
pathways, mitogen-activated protein kinase (MAPK),
phosphoinositide-3 kinase/protein kinase B (PI3K/Akt),
Notch/Wnt/Atohl, calcium channel, and oxidative stress/-
reactive oxygen species (ROS) signaling pathways are the
most relevant [26-29]. Importantly, drug interventions in
the majority of these processes can achieve benefit.

To summarize the research regarding hearing loss based
on cellular molecular pathways in recent years and to guide
hearing recovery and the prevention of hearing loss, this
paper reviews the current research on the biology of HC
damage. The various cellular molecular pathways are dis-
cussed systematically. The potential of damage and survival
mechanisms as targets for pharmacological intervention to

prevent or ameliorate hearing loss is reviewed, and conclu-
sions are drawn in the last section.

2. MAPK Signaling

Metabolomic and bioinformatic analyses have indicated that
MAPK signaling is the major pathway in various types of
hearing loss [30, 31]. In the process of evolution, the MAPK
cascade reaction has been conserved and consists of three
tiers of protein kinases, namely, MAPKKK, MAPKK, and
MAPK. This cascade regulates various cellular effects. There
are several distinct groups of MAPKs; however, the most
extensively studied is extracellular signal regulated kinases
(ERK) 1 and 2 (ERK1/2), c-Jun N-terminal kinases (JNK 1,
2, and 3), and p38 kinases [32]. They are activated by various
factors; for example, ERK1/2 can be activated by growth fac-
tors, and JNK and p38 signaling can be activated by oxidative
stress, UV irradiation, hypoxia, and various inflammatory
factors (Figure 1).

The MAPK/ERK pathway is reportedly associated with
cell proliferation, differentiation, migration, senescence, and
apoptosis. It consists of a series of proteins including Ras,
Raf, MEK, and ERK. In many cases, ERK1/2 activation is
thought to promote cell proliferation and survival [33]. Stud-
ies have shown that inhibiting the activation of ERK1/2 in
cochlear leads to the loss of OHCs, and gentamicin-induced
toxicity is also enhanced [34]. Furthermore, an increasing
number of studies have found that ERK1/2 plays an impor-
tant role in the transformation of supporting cells into HCs.
For example, within minutes of a mechanical injury to the
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cochlear, ERK1/2 signaling is transiently activated in Deiters’
and phalangeal cells (supporting cells) but not in HCs [35].
In addition, insulin-like growth factor 1 (IGF-1) was found
to activate the MEK/ERK pathway and induce cell cycle pro-
motion of Hensen’s and Claudius’ cells, both of which are
auditory supporting cells that are located lateral to the OHCs
of the cochlea. The promotion of this cell cycle in the sup-
porting cells results in the maintenance of the OHC numbers
[36]. Another study also showed that forskolin- (FSK-)
treated cochlear explants increase the level of cyclic adeno-
sine monophosphate (cAMP) in the auditory supporting
cells, thus identifying the MAPK/Raf/ERK pathway as an
important downstream signaling pathway in FSK-induced
supporting cell proliferation [37]. Therefore, there is substan-
tial evidence indicating that the activation of ERK1/2 in sup-
porting cells can maintain the survival of OHCs.

JNKs, also known as stress-activated protein kinases,
phosphorylate the transcription factor, c-Jun. JNK has three
isoforms: JNKI1, JNK2, and JNK3. The MAPK/JNK signal
transduction pathway is activated in response to the exposure
of cells to environmental stress and contributes to an apopto-
tic response by stressed cells that have been damaged by ROS
[38]. Studies have shown that aminoglycosides can activate
the JNK pathway via ROS, which is an enzyme of the MAPK
family signaling pathway, and has been shown to contribute
to the apoptosis of damaged cells [38]. In addition, ROS
can activate apoptosis signal-regulating kinase-1 (ASK-1),
which can phosphorylate and activate mediators of the JNK
and p38 pathways of extrinsic programmed cell death [39].
It is well known that both c-fos and c-jun belong to a group
of transcription factors called immediate early genes, which
can promote apoptosis in response to cellular stress [40].
MAPK/JNK signaling is able to affect both c-fos and c-jun
transcription factors, thereby promoting the expression of
proapoptotic genes (such as TNFa, FasL, Bak, Bim, and
Bax) and blocking transcription of antiapoptotic genes (such
as Bcl-2) [41-47]. Taken together, the MAPK/JNK signaling
pathway is activated by oxidative stress-mediated ROS, and
the JNK pathway promotes HC apoptosis by acting on down-
stream transcription factors.

P38 is another downstream protein of the MAPK pathway
and is involved in many cellular processes, including inflam-
mation, cell cycle regulation, and apoptosis [48]. It can be acti-
vated by a variety of environmental factors and endogenous
stimuli [49]. After p38 activation by stress stimuli, prodeath
factors such as Bim, FasL, and FasR are also positively regu-
lated [50-52]. Numerous studies have confirmed that inhibit-
ing the activation of p38 has been associated with protection
against aminoglycoside, noise, cisplatin, radiation, and tumor
necrosis factor alpha- (TNFa-) induced ototoxicity [53-59].

In conclusion, different MAPK kinases have different
effects on HCs. In the future, treatments and drugs based on
the MAPK pathway may play a significant role in HC regener-
ation and protection from ototoxic drug-induced hearing loss.

3. PI3K/Akt Signaling

The gradual loss of HCs leads to hearing loss, and thus iden-
tifying specific signaling pathways that promote HC survival

is an effective therapy. Among the identified signaling path-
ways, PI3K is a powerful candidate for improving the survival
of HCs. In recent decades, intensive investigations have been
carried out towards PI3K pathway activation for the treat-
ment of aminoglycoside-induced [60-62], sudden sensory
neural [63, 64], noise-induced [65, 66], and autosomal-
dominant hereditary [67] hearing loss. PI3K plays a key role
in various cellular processes, including cell survival, growth,
and proliferation. PI3K family members are divided into
three classes (class I, I1, and IIT) based on their primary struc-
ture and regulatory function. Akt is a major downstream tar-
get of PI3K and PTEN and acts as a phosphatase to regulate
phosphodiol inositol levels on cell membranes and regulate
the PI3K signaling pathway [68]. Akt has serine 473 (p-Akt
$473) and threonine 308 (p-Akt T308) phosphorylation sites
and serves as a common hub in many antiapoptotic path-
ways. PI3K/Akt signaling is considered to play an important
role in the development of HCs and is involved in the prolif-
eration of auricular precursor cells [69].

Ototoxic drugs are the main environmental factors of
hearing loss [70-73]. However, cisplatin and aminoglyco-
side antibiotics such as kanamycin, gentamicin, or tobra-
mycin are used worldwide, which may lead to the death
of sensory HCs in the inner ear via downregulated expres-
sion of the PI3K/Akt pathway. Therefore, treatments tar-
geting PI3K/Akt have become an area of intense research
interest. Jadali et al. demonstrated that increased PI3K signal-
ing activates Akt, which could directly phosphorylate CHK1
or indirectly increase expression level of pCHKI levels
through DNA damage response proteins, such as ATR. Acti-
vation of CHK1 allows supporting cells to repair cisplatin-
induced DNA damage [74]. It has also been reported that
the PI3K signaling pathway may actively maintain the viability
of HCs. Activation of PI3K may be useful in promoting the
survival of HCs after aminoglycoside-induced toxicity, and
the lack of PI3K signaling could be a cause for congenital hear-
ing loss [60]. To protect auditory HCs from gentamicin-
induced apoptotic cell death, pasireotide acts as a novel oto-
protective peptide via the PI3K/Akt pathway and activates sur-
vival genes, reduces caspase signaling, and increases HC
survival [61]. Haake et al. reported that dexamethasone treat-
ment could protect HCs against TNFa-induced apoptosis
in vitro by activation of PI3K/Akt and NF-«B signaling [65].
Zhang et al. showed that epigallocatechin-3-gallate acts via
PI3K/AKkt signaling in the cochlea to promote cell growth
and neuron differentiation [75].

Sudden sensorineural hearing loss (SSNHL) is a rapid
and unexplained SNHL that occurs within 72 hours, with
hearingloss >20dB in at least 2 adjacent frequencies [76,
77]. By identifying the different expressions of miRNAs in
SSNHL patients, it was found that most of the significantly
altered miRNAs were abundant in the nervous system, which
indicated that putative targeted miRNAs are enriched in the
PI3K/Akt, Ras, and MAPK signaling pathways to affect the
survival of cochlea HCs [63]. In terms of exhibiting a protec-
tive effect on cochlear cells, macrophage migration inhibitory
factor (MIF), as a proinflammatory cytokine, can protect
cochlear cells from oxygen-glucose deprivation- (OGD-)
induced injury by activating the Akt-Nrf2-HO-1 pathway



[64]. It is known that insulin-like growth factor 1 (IGF1)
plays an important role in the treatment of SNHL [78-80].
IGF1 protects HCs from aminoglycosides by activating the
IGF1 receptor and its two main downstream pathways,
PI3K/Akt and MEK/ERK, thus leading to the upregulation
of the Netrinl-encoding gene (NTN1) expression [81].

Increased PI3K/Akt signaling has a protective effect on
hearing loss induced by ototoxicity or adverse environmental
factors. Understanding the mechanisms of PI3K/Akt signal-
ing may provide therapeutic ideas for combating hearing loss
and identifying new disease strategies.

4. Notch/Wnt/Atoh1 Signaling

The human cochlea has about 16,000 sensory HCs, which are
necessary for normal hearing [82]. In contrast to nonmam-
malian vertebrates, most mammalian HCs cannot regener-
ate, resulting in permanent deafness [83-87]. Cross-species
microarrays have identified seven different known signaling
pathways: TGFS, PAX, Notch, Wnt, NF«B, insulin/IGF1,
and AP-1 [88]. Among them, Notch and Wnt signaling
pathways are highly complex and conserved that control
a variety of cellular events necessary for sensory HCs for-
mation, including cell proliferation and cell fate during
cochlear development [89-94]. Simultaneously, Notch
and Wnt usually interact to regulate upstream and down-
stream targets, and Atohl is discussed as an important
target preferentially [95-100].

Atohl is one of the most important transcription factors
involved in the development of the inner ear [101]. Previous
studies have shown that Atohl is both necessary and sufficient
for the differentiation, survival, maturation, establishment of
auditory function, and long-term survival of HCs [102]. Stud-
ies have also shown that Atohl is capable of converting the
phenotype of mature supporting cells into replacement HCs.
Within the critical time window for HC survival, the loss of
Atohl results in a severe loss of supporting cells and defects
in the innervation of the cochlea, causing disruption of the
entire auditory sensory epithelium [103]. Another study
observed upregulated Atohl in supporting cells prior to the
significant increase in vivo in the number of HCs without cell
division. However, the identification of upstream and down-
stream targets of Atohl may better explain the role of Atohl
in HC development at the molecular level. For example, the
coexpression of EYAI, SIX1, and SOX2 as upstream regulators
can effectively activate the HC development program [104].
The downstream target genes POU4F3, BARHLI, and GFI1
can promote Atohl to drive HC differentiation [105].

Notch signaling plays a key role in Atohl regulation and
inner ear development. Atohl-dependent cell development
support and sensory patch patterning are currently believed
to be dependent on Notch signaling-mediated lateral inhibi-
tion [102]. Cheng et al. demonstrated that HC determination
or cell fate support is influenced by Notch signaling [106].
Lee et al. demonstrated that Notch signaling causes inhibi-
tion of bHLH proteins (HES1 and HES5) to block the action
of Atohl, which leads to inhibition of HC fate [107]. There-
fore, inhibiting the Notch signaling pathway to promote the
differentiation of supporting cells into HCs may be a strategy
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for HC regeneration [97]. The production of new HCs from
supporting cells could be increased via inhibition of Notch
signaling in the damaged cochlea.

During the development of the cochlea, the Notch signal-
ing pathway interacts with the FGF signaling pathway to con-
trol the expression of Atohl [107]. Doetzlhofer et al
demonstrated that FGF receptor blockage allows supporting
cells to be more responsive to Notch inhibition [108]. Another
study demonstrated that FGF and Notch signaling inhibit the
proliferation of supporting cells in parallel by inhibiting Wnt
signaling [109]. Although FGF signaling inhibits proliferation
during regeneration, blocking FGF signaling alone is not
enough to enhance proliferation [99, 110].

Wnt/f-catenin signaling has been confirmed to be
upstream of both Atohl and SOX2 during the development
of cochlear HCs and retina cells [111, 112]. Wnt/B-catenin
signaling can promote HC regeneration by increasing cell
proliferation and Atohl expression. The Wnt pathway also
interacts with the Notch pathway. Studies have demonstrated
that Wnt activation followed by Notch inhibition significantly
promotes the transformation of supporting cells into HCs. Lin-
eage tracing has shown that new HCs, predominantly OHCs,
arise from inner pillar and third-row Deiter’s cells [113, 114].
In the developing cochlea, Wnt acts on the upstream of Atohl
to regulate the formation of HCs, while Notch-mediated lateral
inhibition prevents supporting cells from adopting the HCs fate
by inhibiting the Atoh1 expression [91]. Thus, Wnt may actasa
bridge between Notch and Atohl.

Based on the importance of the Notch/Wnt/Atohl path-
way, the researchers provide novel therapeutic strategies. Pan
et al. reported that genetically engineered Atohl knockout
mice provide a novel model for establishing critical condi-
tions needed to regenerate viable and functional hair cells
with Atohl therapy [115]. Mizutari et al. showed that the
y-secretase inhibitor LY411575 on the Notch signaling path-
way results in the formation of new hair cells in the outer hair
cell region and a mild reduction in noise-induced auditory
brainstem response (ABR) threshold shifts; although, the
mice were still functionally deaf [116]. In addition, the
in vitro hair cell that yields from Lgr5-positive cells isolated
from neonatal mice and grown as organoids can be further
improved by treatment with the Wnt activator CHIR99021
(CHIR) and the histone deacetylase (HDAC) inhibitor val-
proic acid [117, 118].

In summary, Notch interacts with the FGF to inhibit the
expression of Wnt and further suppress the downstream
molecule Atohl, thereby preventing the differentiation of
supporting cells into HCs (Figure 2) [97, 115, 119]. When
targeting individual Notch or Wnt signaling in the cochlea,
only a modest HC regenerative response (or no response)
can be observed [116, 120]. Considering the synergistic role
of these signaling pathways in regulating cochlear develop-
ment, targeting multiple pathways may be a more promising
HC regeneration strategy.

5. Calcium Channel

Acquired hearing loss, including noise-induced hearing loss,
age-related deafness, and ototoxicity-induced hearing loss,
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FIGURE 2: Notch/Wnt/Atohl signaling pathways. The FGF signaling pathway interacts with the Notch signaling pathway to inhibit the
activation of Wnt. Wnt acts on the upstream of Atohl to regulate supporting cells to transdifferentiate into hair cells.

has complex mechanisms for each disease. Despite the com-
plexity of these mechanisms, numerous studies have shown
that apoptosis of inner ear structures is a common theme
among many types of acquired hearing loss [121-123]. Cal-
cium is one of the important cofactors involved in the degra-
dation enzyme of apoptosis, and the interaction between
calcium and apoptosis is becoming increasingly obvious
[124]. Homeostatic control of calcium ions (Ca**) is critical
for cell survival. On this basis, transport channels, ligand-
gated channels, and voltage-gated calcium channels
(VGCCs) are located on the plasma membrane of HCs and
facilitate Ca2™ entry into HCs [125]. Also, within the inner
ear, L- and T-type calcium channels of VGCCs are believed
to contribute to calcium availability during apoptosis.
Among them, the family of T-type calcium channels have
three members (Cav3.1, Cav3.2, and Cav3.3), based on their
respective main pore-forming alpha subunits: alG, «al1H,
and «ll [126]. In the T-type calcium channels, Cav3.2 is
the most significantly expressed T-type channel entity in
the cochlea and auditory brainstem. The results have shown
that Cav3.2 VGCCs are of great functional importance for
spatiotemporal auditory processing in different regions of
the auditory system [127].

Therapeutic agents aimed at preventing apoptosis are a
concept central to many therapies that target acquired hear-
ing loss. Research is currently underway to evaluate potential
therapeutic targets within the peripheral auditory system and
apoptotic pathways. Numerous studies have shown that cal-
cium channel blockers (CCBs) can effectively prevent dam-
age to cochlear cells. More recent in vivo research has
provided evidence to suggest that systemic and intratympa-
nic (direct) application of CCBs can prevent hearing loss in
cisplatin- and noise-induced ototoxic models [128]. For
example, the T-type calcium channel blocker flunarizine
can significantly inhibit cisplatin-induced apoptosis; how-

ever, this is not mediated by the modulation of intracellular
calcium levels. It can inhibit lipid peroxidation and mito-
chondrial permeability transition in cisplatin-treated cells
[129]. Additionally, trimethadione and ethosuximide are
two T-type calcium blockers which are antiepileptics
approved by the Food and Drug Administration [126, 130].
Both of these drugs can significantly slow age-related audi-
tory brainstem response (ABR) threshold shifts in mice and
reduce noise-induced hearing loss when applied prior to
noise exposure, most likely through effects on the a1H T-
type calcium channel subunit comprising one or more Cav3
calcium channel types in the cochlea [130]. In addition, ami-
noglycosides such as gentamicin could trigger a Ca** influx
that activates proapoptotic signaling cascades in HCs. There
is evidence that the Ca**-sensitive neuropeptide, somato-
statin (SST), can antagonize aminoglycoside-induced cell
death. SST analogs have the same effect [131].

In view of the apoptotic effect of calcium channels in
cochlea HCs, these channels may become a potential phar-
macological target for clinical interventions in the future.
Pharmacological inhibition of CCBs may represent a promis-
ing approach to the treatment of auditory impairment of var-
ious etiologies.

6. Oxidative Stress and ROS Signaling

ROS-induced oxidative stress has been reported to play a key
role in several systems and in cochlear damage [132-136].
Numerous studies have demonstrated that the accumulation
of ROS and subsequent apoptosis induction promote several
major types of SNHL, including noise-induced hearing loss,
drug-induced hearing loss, and age-related hearing loss
[137-142]. ROS are considered to be toxic products of cell
metabolism and are signaling molecules that regulate a vari-
ety of physiological processes. ROS, including superoxide
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anions, hydroxyl radicals, hydrogen peroxide (H,0,), and
singlet oxygen, are mainly generated by the mitochondria
in most mammalian cells [143, 144]. In both physiological
and pathological conditions, ROS-induced oxidative stress
can induce apoptosis via both the extrinsic cell death receptor
pathway and the intrinsic mitochondrial cell death pathway.
Following a stimulus, mitochondrial aerobic respiration
increases, and a large amount of ROS cannot be effectively
neutralized. ROS-induced superoxide and lipid peroxida-
tion production can lead to apoptosis, and vasoactive lipid
peroxidation products reduce cochlear blood flow and fur-
ther enhance the production of ROS. Furthermore, the
production of ROS in the cochlea will promote the pro-
duction of proinflammatory cytokines, which will cause
further damage [145]. This eventually leads to the death
of OHCs (predominantly) and IHCs through either apo-
ptosis or necrosis [146, 147].

Many drugs, including cisplatin, gentamicin, and neomy-
cin, are ototoxic and may cause irreversible apoptosis of
cochlear HCs. These can increase the levels of ROS, which
ultimately leads to cell injury and mitochondrial dysfunction.
As for the important role of ROS in cell apoptosis, consider-
able research has been focused on inhibiting ROS produc-
tion. For example, Guo et al. reported that FSK significantly
reduced cisplatin-induced ototoxicity in both HEI-OC1 cells
and cochlear explant cultures by inhibiting the mitochon-

drial apoptotic pathway and ROS production [107]. Shin
et al. also demonstrated that KR-22332 exhibits similar
mechanisms to prevent cisplatin-induced ototoxicity [148].
Quan et al. demonstrated that adjudin can regulate ROS pro-
duction in cochlear cells and inhibit gentamicin-induced
production of ROS and apoptotic cells [149].

Increased oxidative stress and ROS play an important
role in the initiation and progression of hearing loss induced
by diverse ototoxic agents or adverse health conditions.
Understanding the mechanisms of oxidative stress and ROS
signaling may provide therapeutic options for combating
hearing loss and identifying new treatment strategies.

7. Conclusion

Numerous types of inner ear damage can cause harm to audi-
tory HCs and ultimately result in hearing loss. Multiple sig-
naling pathways are involved in ototoxicity, noise, aging,
and traumatic stress events. The most well studied molecular
mechanisms behind cell death in auditory HCs are the
MAPK, PI3K/Akt, Notch/Wnt/Atohl, calcium channel, and
oxidative stress/ROS signaling pathways. In this review, we
provide a schematic showing how the listed pathways inter-
act within the hair cells [71, 150-152] (Figure 3). Although
their effects on cochlear HC proliferation and survival have
been studied extensively, there are likely many levels of
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crosscommunication between signaling cascades that are still
undiscovered. Research in this field is becoming increasingly
prevalent, as is research into the mechanisms of regulated
development and survival of auditory HCs. A number of oto-
protective drug therapies target different levels along these
signaling pathways to promote auditory HC viability and
hearing protection.
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