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Genome sequencing analysis of blood cells
identifies germline haplotypes strongly
associated with drug resistance in
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Abstract

Background: Osteosarcoma is the most common malignant bone tumor in children. Survival remains poor among
histologically poor responders, and there is a need to identify them at diagnosis to avoid delivering ineffective
therapy. Genetic variation contributes to a wide range of response and toxicity related to chemotherapy. The aim
of this study is to use sequencing of blood cells to identify germline haplotypes strongly associated with drug
resistance in osteosarcoma patients.

Methods: We used sequencing data from two patient datasets, from Inova Hospital and the NCI TARGET. We explored
the effect of mutation hotspots, in the form of haplotypes, associated with relapse outcome. We then mapped the
single nucleotide polymorphisms (SNPs) in these haplotypes to genes and pathways. We also performed a targeted
analysis of mutations in Drug Metabolizing Enzymes and Transporter (DMET) genes associated with tumor necrosis and
survival.

Results: We found intronic and intergenic hotspot regions from 26 genes common to both the TARGET and INOVA
datasets significantly associated with relapse outcome. Among significant results were mutations in genes belonging
to AKR enzyme family, cell-cell adhesion biological process and the PI3K pathways; as well as variants in SLC22 family
associated with both tumor necrosis and overall survival. The SNPs from our results were confirmed using Sanger
sequencing. Our results included known as well as novel SNPs and haplotypes in genes associated with drug
resistance.

Conclusion: We show that combining next generation sequencing data from multiple datasets and defined clinical
data can better identify relevant pathway associations and clinically actionable variants, as well as provide insights into
drug response mechanisms.

Keywords: Whole genome sequencing, Childhood cancers, Drug resistance, Osteosarcoma, Pharmacogenomics,
Genetics
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Background
Osteosarcoma (OS) is the commonest malignant bone
tumor in children. It accounts for about 2% of childhood
cancers in the US. Approximately 800 new cases are
diagnosed in the US every year, about 400 of which are
in children and teens [1]. OS occurs mostly between the
ages of 10 and 30. Approximately 60% of all malignant
bone tumors diagnosed in the first two decades of life
are osteosarcomas.
The role of adjuvant chemotherapy is well established in

the treatment of osteosarcoma [2, 3]. Prior to use of sys-
temic chemotherapy, two-year survival was less than 20%
even in patients with clinically localized disease. Most
recent studies report a 3-year survival of 60–70%
among patients with non-metastatic disease treated
with combination chemotherapy. Standard treatment for
non-metastatic osteosarcoma includes neo-adjuvant
chemotherapy followed by surgical resection and
post-operative chemotherapy. The extent of necrosis of
the primary tumor at time of definitive surgical resection
is the only significant prognostic factor in patients with
non-metastatic osteosarcoma. Patients with less than 10%
viable tumor at time of definitive surgery have significantly
lower risk of relapse as compared to those with more than
10% viable tumor [4]. Five-year survival is 75–80% among
patients with good histological response and only 45–55%
among poor responders even after complete surgical
resection [5, 6].
The most active chemotherapeutic agents against

osteosarcoma include cisplatin, doxorubicin and high
dose methotrexate. The Children’s Oncology Group
(COG) considers combination cisplatin, doxorubicin and
high dose methotrexate (MAP) as standard therapy for
osteosarcoma [7]. Postoperative therapy is often modi-
fied in poor responders to improve outcome, such as the
use of ifosfamide and etoposide [8–10]. However, no
such attempts have been successful to date. It is likely
that the initial 8–12 weeks of ineffective therapy select
for resistant clones and allow the cancer cells to
metastasize. Changing therapy at a later time point fails
to change the outcome. There is a need to identify the
poor responders at time of initial diagnosis to avoid
delivering ineffective pre-operative therapy. Alternative
chemotherapeutic agents at initial diagnosis could
potentially alter outcomes in patients expected to have
poor response to standard cisplatin based chemotherapy.
Thus, the key challenge is to determine the basis for
response and non-response in patients at the outset and
identify patients who are eligible for intensified or alter-
native therapy given their personal profile.
The completion of the HapMap project is a historic

achievement [11]. The project identified over one
million single nucleotide polymorphisms (SNPs) across
the human genome, which may be at the root of the

great variation seen in human health and disease. Germ-
line genetic variation between individuals may lie at the
heart of two critical questions: who is at risk to develop
cancer, and how best to treat individuals once they are
diagnosed. This genetic variation may account for the
wide variation seen in the response and toxicity related
to chemotherapeutic agents.
The pharmacogenetic differences between patients are

multi-factorial [12]. One factor is polymorphism in drug
targets, including cell surface receptors and target proteins.
Another is polymorphism in cellular recovery mechanisms
that repair cytotoxic agent-induced damage. Finally, there
are polymorphisms in genes encoding proteins involved in
drug pharmacokinetics, including proteins that impact drug
absorption, metabolism, distribution, and elimination
(ADME). Germline pharmacogenetic biomarkers have been
found for a number of anticancer agents, including irinote-
can, mercaptopurine, 5-flurouracil, and tamoxifen [13–16].
These studies often used a candidate gene approach, and
attempted to explain a drug’s efficacy or toxicity by identify-
ing one gene and even one variant within that gene [17].
While candidate gene/single variant analysis provides

important insights, there are several limitations in most
published studies. The implicated alleles were often low
frequency and the absolute numbers of patients with
these alleles were low. Only one or few single nucleotide
polymorphisms (SNPs) were examined for each gene
of interest and potentially significant polymorphisms
could have been missed. In this study, we applied
both single SNP and multiple SNP analysis to get an
enhanced understanding of genetic polymorphism in
the disease.
A genome-wide approach enables examination of poly-

morphisms of a large number of implicated genes in
multiple pathways that may impact on response to
chemotherapy. With advance in technology and reduction
in costs, whole-genome sequencing is now feasible with
next-generation sequencing. Complete sequences of impli-
cated genes can be analyzed to identify polymorphisms in
the context of pathway datasets, rather than as individual
data points. An integrative approach combining whole
genome sequencing (WGS) with multiple datasets and
defined clinical data can 1) better capture pathway associ-
ations, and 2) provide the opportunity for discovery of
clinically actionable variants [18, 19].
We have previously used this integrative approach to

define the pharmacogenetic profile of gemcitabine, and
defined a ‘sensitive’ and ‘resistant’ genotype using the
combination of pre-clinical data from the NCI60 cell
lines and a genome wide association studies (GWAS)
clinical dataset from a large clinical trial [20]. We now
wish to expand this approach to pediatric osteosarcoma
patients treated with multi-agent chemotherapy, includ-
ing cisplatin, doxorubicin, and methotrexate.
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The aim of this study is to identify, test, and validate a
genotype resistant to cisplatin, doxorubicin, and methotrex-
ate, in children with osteosarcoma, using two datasets
derived from clinical samples. The genetic signature that is
strongly associated with drug response could be translated
into clinical oncology [21] and used in the future to
personalize therapy.

Methods
Whole genome sequencing data was obtained from a co-
hort of 15 osteosarcoma patients from the Inova Fairfax
Hospital for Children. Additional sequencing data and
clinical outcomes of 85 patients with osteosarcoma were
obtained from the NCI TARGET dataset. The following
sections describe the datasets, sample collection proce-
dures and data analyses.

Datasets

� Inova Pediatric Group Osteosarcoma Patients
(labeled ‘INOVA’): Whole genome sequencing
(WGS) was performed for 15 children, who are up
to 21 years of age with osteosarcoma, including
newly diagnosed and off therapy. Patients were
recruited over a 2 year period from 2014 to 2016.
Demographic, clinical outcome, chemotherapeutic
exposure and pathological response data were
collected for all subjects. The study was IRB
approved; informed consent and assent were
obtained from each child and parent as appropriate.
DNA was extracted from whole blood samples, and
whole genomic DNA was sequenced on an Illumina
HiSeq 2500 whole genome sequencer at 30-50X
coverage. Raw sequencing data were obtained in
the form of Fastq [22] files.

� TARGET Osteosarcoma Dataset (labeled
‘TARGET’): This is a cohort of 85 fully characterized
patient cases from NCI’s TARGET database for
osteosarcoma (released in Feb 2015) [23, 24]. The
majority of these patients were teenagers. The
samples were collected at the time of diagnostic
surgery. Aligned genomic data from whole blood
samples were downloaded from NCI’s dbGAP
database [25]. Out of this 85-patient cohort, whole
exome sequencing (WXS) data were available on 52
patients and WGS data were available on 33 pa-
tients. For each patient, aligned genomic data in the
form of ‘BAM files’ short for Binary Alignment Map
[26] were downloaded, decrypted and processed.

All patients were treated with standard MAP therapy.
The standard MAP neo-adjuvant chemotherapy regimen
is as follows: Doxorubicin (Adriamycin) 37.5 mg/m2/day
and Cisplatin (Platinum) 60 mg/m2/day on days 1,2 of

week 1; Methotrexate 12 g/m2 on day 1 of week 4, week
5. This entire cycle is repeated week 6–10. Surgical re-
section with tumor necrosis data on week 12.

Processing of genomic data
We used open source well-known best practices tools in
the processing of sequencing data. The tools included
Sickle [27], Bowtie2 [28], Samtools [29], Picard [30], and
GATK’s [31] HaplotypeCaller. After quality control, the
raw sequencing data in the form of FASTQ files were
aligned to the human reference genome (version hg19).
Post alignment processing was done on the aligned
reads, so that it will be in the right format for the subse-
quent step. A variant calling algorithm was applied,
which mathematically checked the patient genome
against the reference genome to identify variants in the
form of single nucleotide polymorphisms (SNPs) or
indels. The variants identified from each patient were
merged into one file. Only those variants that passed
quality check were chosen for further analysis.
Additional file 1 shows the steps, file formats and tools
in this genomic data processing, which was performed
on an Amazon cloud r3.4xlarge instance.
The TARGET variants were a combination of whole-ex-

ome and whole-genome data. We applied a filtering criter-
ion on the variants such that if all patients, or if 84 of the
85 patients had the reference allele, then the variant was
rejected. The same processing steps were applied to both
datasets in an effort to reduce batch effects. At the end of
this filtering, the TARGET dataset had about 900,000 SNPs
and the INOVA dataset had about 8 million SNPs.

Outcomes of interest
The outcomes of interest chosen were: (1) Relapse (2)
Percent tumor necrosis and (3) overall survival.
Tumor necrosis following preoperative chemotherapy

is the strongest prognostic factor for osteosarcoma [32].
Tumor necrosis as an outcome provides a window into
the early part of drug response, while ‘relapse’ as out-
come provides an extended view of drug response.
Relapse information was available for all the 15

INOVA patients and 85 TARGET patients. These pa-
tients also had overall survival information (Table 1).
Tumor necrosis data were available for the 15 patients

from the INOVA cohort, but only for 44 out of 85 pa-
tients from the TARGET cohort. Patients with tumor ne-
crosis greater than 90% at the time of resection were

Table 1 Summary of patients showing the number of patients
who relapsed and were relapse-free

Dataset # Relapse # Relapse-free Total # of patients

TARGET 39 46 85

INOVA 3 12 15
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‘Good responders’; patients with tumor necrosis <= 90%
were ‘Poor responders’ (Table 2).

Methods for SNP analysis
Two analyses were performed, shown in Fig. 1.

Analysis 1: hotspots associated with relapse
We analyzed the INOVA and TARGET datasets separ-
ately to look for hotspots associated with relapse out-
come. Hotspots are regions in the genome that have
multiple co-occurring mutations in the same or close-by
regions [33]. In our analysis, we looked for hotspots, in
terms of haplotypes, which are groups of markers (SNPs)
that are inherited together [34] . Once the significant
haplotypes associated with outcome were identified, we
then looked for haplotypes overlapping between the two
datasets.
There are several advantages to grouping SNPs: it re-

duces the number of tests, making it easier to reject the
null hypothesis, offering more power to the analysis;
SNPs in a haplotype block (haploblock) are inherited to-
gether; the markers (SNPs) are often closely located and
will be in linkage disequilibrium (LD); increased robust-
ness in statistical testing; groups of SNPs affecting out-
come are more biologically relevant than a single SNP
affecting outcome [35].
For this study, we performed haplotype based associ-

ation test analysis using the PLINK tool [36, 37]. For
each dataset, the tool identified haplotypes significantly
associated with relapse outcome (p value <= 0.05). Using
chromosome location as criteria, we looked for overlap-
ping haplotypes between the two datasets. We looked
for partial or complete overlap in the chromosome loca-
tion; hence the SNPs in these common haplotypes may
or may not be the same. Looking for overlap in two in-
dependent datasets reduces the chances of randomly oc-
curring haplotypes and helps eliminate false positives.
The SNPs in these common haplotypes were then

mapped to genes and pathways to enable downstream
system biology analysis to give insights into drug re-
sponse mechanisms.

Analysis 2: targeted analysis of variants in DMET genes
associated with tumor necrosis and survival
We performed a targeted analysis of mutations in the
genes involved in drug absorption, metabolism,

distribution, and elimination (ADME), also known as
Drug Metabolizing Enzymes and Transporters (DMET).
The words DMET and ADME are used interchangeably
in this manuscript. We explored their association with
tumor necrosis using machine learning methods.
Among the 85 TARGET patients, only 44 had clinical

data available on tumor necrosis (Table 1). All the 15
INOVA patients had data available on tumor necrosis.
Since the sample size would be small and there would
not be enough power to obtain statistically significant
results, we merged the two datasets to get a total of 59
patients (referred to as the ‘TARGET+INOVA’ cohort).
Before starting the analysis, we tested the data for

batch effects. We performed a principal component ana-
lysis (PCA) on variants in DMET genes (Additional file 2)
using the R statistical platform (https://cran.r-project.
org/). We found a clear batch effect due to the merging
of the two datasets. We have accounted for this batch ef-
fect in our analysis.
From the TARGET + INOVA cohort, we extracted

36,504 variants in DMET genes. We binned the data into
0 (indicating no mutation) and 1 (indicating presence of
mutation). 85% of these data were randomly set as train-
ing set and the rest 15% were set as an independent
validation set using the caret package [38] (seed of 7) in
R. Several filters were applied on the training set so that
only SNPs with the most variability were chosen for the
analysis. At the end of all the filtering, we were left with
4543 SNPs for analysis.
For each of the 4543 variants, we created two general-

ized linear models (GLMs) with tumor necrosis as out-
come variable: one with the variant and adjusting for the
dataset to control for batch effect; and second one speci-
fied without the variant. This allowed us to perform lo-
gistic regression analysis to find those variants most
associated with tumor necrosis outcome. We then used
analysis of variance (ANOVA) to compare the two
models to obtain a p-value based on chi-square distribu-
tion (described in Additional file 2). The p-values from
this test were adjusted for multiple testing using the
Benjamini Hochberg approach to control the false
discovery rate (FDR) [39]. The significant variants (p
value < 0.05) from this analysis were annotated using
SnpEff [40] variant annotation tool. The annotations
were used to sub-divide these SNPs based on their im-
pact into high, moderate, low impact, and modifiers
(non-coding regions).
We built a Random Forest predictive model with these

significant variants with 20 fold cross validation (seed
260), and performed a prediction on the independent
validation set (block diagram shown in Additional file 2).
We also performed survival analysis on the significant

variants to assess their impact on overall survival. The
association with survival was tested using the log rank

Table 2 Summary of patients with Tumor necrosis information.
Good Responders: > 90% tumor necrosis; Poor Responders: ≤
90% tumor necrosis

Dataset # Poor Responders # Good Responders Total # of patients

TARGET 26 18 44

INOVA 9 6 15
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test statistic [41]. The analysis was performed in the R
programming language. Kaplan Meier survival curves
[42] were generated. Results were compared to pub-
lished literature.

Validation of SNPs detected using sanger sequencing
The significant SNPs and indels obtained from our ana-
lysis of WGS data were confirmed in the lab using
Sanger Sequencing technique. DNA extracted from the
INOVA cohort was used for PCR amplification. Using
Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/), primers
were designed to cover and validate the subset of vari-
ants identified by WGS. The PCR was performed using
AmpliTaq Gold 360 master mix (Applied Biosystems).
After Exo/SAP purification (ThermoFisher Scientific),
the amplicons were sequenced by using the BigDye V.3.1
Terminator chemistry (Applied Biosystems) and sepa-
rated on an ABI 3730xl genetic analyzer (Applied Bio-
systems). Data were evaluated using Sequencher V.5.0
software (Gene Codes).
This validation was performed on three of our ana-

lysis results: (a) variants belonging to the most fre-
quent haplotypes in the INOVA dataset (b) variants
in the form of dbSNP ids amongst the overlapping
haplotypes associated with relapse and common to
the two datasets (c) variants among the DMET genes

significantly associated with tumor necrosis and over-
all survival.

Results
Mutation hotspots associated with relapse
We found a total of 2178 haplotypes significantly associ-
ated (p value < 0.05) with relapse outcome in the TAR-
GET dataset and 110,000 significant haplotypes in the
INOVA dataset (more haplotypes identified in INOVA
data because it was WGS data). Using chromosome lo-
cation as the criteria for finding overlapping haplotypes
between the two datasets, we found a total of 231 over-
lapping haplotypes (Additional file 3). We mapped the
SNPs in these haplotypes to genes, and found 26 genes
common to the TARGET and INOVA datasets associ-
ated with relapse, including AKR1D1, SLC13A2, MKI67
and PIK3R1 and others (Table 3).
We also performed enrichment analysis using Reac-

tome database (https://reactome.org/) [43] to map these
26 genes to pathways (Table 4).

Most frequent haplotypes amongst the overlapping
hotspots
Among the 231 overlapping haplotypes between the
INOVA and TARGET datasets, we looked in detail at

Fig. 1 Schematic of analysis methodology
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those haplotypes that have the highest sample frequency
in each dataset (Table 5).

Common SNPs amongst the overlapping hotspots
Using dbSNP ids as criteria, we looked for common SNPs
amongst the 231 overlapping hotspots (haplotypes) be-
tween TARGET and INOVA datasets. We found 10
dbSNP ids common to the two datasets. These include
four SNPs in MKI67 (rs7071768, rs11016073, rs61738284,
rs11591817), one SNP in CACNA2D4 (rs10735005), three
SNPs in SLC13A2 (rs3217046, rs11568466, rs9890678),
and two SNPs in PPP1R12C (rs10573756, rs34521018).
These variants are important because they are part of hot-
spots that are significantly associated with relapse out-
come. The fact that these same SNPs were found as part
of hotspots in two independent datasets, and validated in

the lab, indicates their potential as biomarkers for diag-
nostics and drug discovery.

Targeted analysis of variants in DMET genes associated
with tumor necrosis and survival
We explored the association of variants in DMET genes
(referred to as ‘DMET variants’) with tumor necrosis as
outcome, and obtained a total of 281 variants with p
value < 0.05 that can separate good responders and poor
responders (Additional file 4). We built a predictive
model using these variants. This model gave us a predic-
tion accuracy of 87.5% when applied to the independent
validation set. The confusion matrix and the summary of
the model are shown in Additional file 5. We annotated
these variants with SnpEff variant annotation tool [40]
and grouped them into high impact, moderate impact,
and modifier (non-coding regions).
A “high impact” variant is one that is predicted to have

a disruptive impact in the protein, such as protein trun-
cation, loss of function or triggering nonsense mediated
decay. A “moderate impact” variant is a non-disruptive
variant that might change protein effectiveness. A “low
impact” variant is assumed to be harmless or unlikely to
change protein behavior. “Modifier variants” are
non-coding variants or variants affecting non-coding
genes [40].
Out of the 281 variants significantly associated with

tumor necrosis, there was one high impact variant,
rs17143187, which is a splice donor variant in the
ABCB5 gene. This variant is located on the boundary of
exon and intron and could cause aberrant splicing that
would result in a disrupted protein [44]. Sixteen moder-
ate impact variants, 15 low impact variants, and 249
modifier variants were identified. 210 out of the 281 of
these variants were located in intronic regions.
We performed survival analysis on these 281 variants,

and obtained five variants as significant results (p value
< 0.05). Thus, these 5 variants are significantly associated
with both tumor necrosis and overall survival (Table 6).
The Kaplan Meier survival curves for these five variants
are shown in Fig. 2.

Validation of SNPs detected using sanger sequencing
The lab validation experiment was performed on three
groups of analysis results: (a) 20 variants belonging to the
most frequent haplotypes in the INOVA dataset (labeled
as ‘Group A’) (b) 10 variants in the form of dbSNP ids
common to the two datasets amongst the overlapping
haplotypes significantly associated with relapse (labeled as
‘Group B’) and (c) 5 variants among the DMET genes sig-
nificantly associated with tumor necrosis and overall sur-
vival (labeled as ‘Group C’).
Among the variants in Group A, at-least one SNP in each

haplotype was successfully validated (Additional file 6).

Table 3 List of 26 common genes obtained from haplotypes
overlapping between INOVA and TARGET and associated with
relapse outcome

List of 26 common genes

7SK

AKR1D1

C10orf112 (also known as MALDR1) *

CACNA2D4

CDH13$

CDH9$

CDRT15

CSMD1

DGCR6*

DQ576041

DQ600701 (also known as PIR61811) *

DQ786190

GABRG3$

HBE1$

LOC643401

MKI67

OCA2

OR51B5

PCGF2

PDZD4*

PIK3R1*$

PKHD1

PPP1R12C*

SLC13A2*$

ZNF321P

ZNF816

Genes marked with * indicate the most frequent haplotypes associated
with relapse
Genes marked with $ were significantly enriched in the pathway enrichment
analysis (details in Table 4)
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Validation of seven variants (located in intronic regions of
two genes and one intergenic region) was not confirmed.
Several of those that were not confirmed were located in in-
sertion/deletion regions. All the variants in Groups B and C
were successfully validated (Additional file 6).

Discussion
Summary of results
The main results are summarized in Table 7, showing
(a) the 26 genes from common haplotypes, found in
both the TARGET and INOVA datasets, that are associ-
ated with relapse; and (b) The 10 dbSNP ids among the
overlapping hotspot regions common to the two datasets
and (c) the genes from targeted DMET analysis associ-
ated with both tumor necrosis and overall survival. We
explored these genes to see which of them are known in
relation to drug response from published literature.

Hotspots associated with relapse
We performed haplotype based association analysis in
the TARGET and INOVA datasets to find haplotypes as-
sociated with relapse outcome, and then looked for over-
lap. We found 231 haplotypes overlapping (based on
chromosome location) amongst the TARGET and
INOVA datasets. The SNPs in these haplotypes were
mapped to genes, and 26 genes were found common be-
tween the two datasets. These 26 common genes were
explored for known relationships with drug response.
Among them is AKR1D1, which has SNPs rs1872929

and rs1872930 among the hotspots in the TARGET
dataset, and are in the three prime untranslated region
(3′ UTR) of AKR1D1. SNPs rs1872929 and rs1872930

were found as part of a haplotype and in LD with in-
tronic SNP rs2306847 (found among the hotpots in
INOVA dataset) as part of a haplotype [45]. These SNPs
have been significantly associated with higher AKR1D1
mRNA expression [45]. AKR1D1 is a key genetic regula-
tor of the P450 network, which affects drug metabolism,
efficacy and adverse events in patients [45].
Genes CDH13, and CDH9 are part of the cadherin family

of genes, and along with PKHD1, are part of the cell-cell
adhesion biological process. This biological process is asso-
ciated with a multidrug resistant phenotype, “cell
adhesion-mediated drug resistance,” or CAM-DR [46]. Os-
teoblasts express multiple cadherins [47], and cadherin me-
diated cell-to-cell adhesion is critical for normal human
osteoblast differentiation [47]. The cadherin family of genes
is associated with CCN3, which has been found to have
prognostic value in Osteosarcoma [48]. CDH13 and CHD9
are also part of the adherens junction biological process;
and adherens-dependent PI3K/AKT activation is known to
induce resistance to genotoxin-induced cell death in intes-
tinal epithelial cells [49].
Variants in gene ZNF321P (among the TARGET

haplotypes) and in gene PCGF2 (among the INOVA
haplotypes) are intronic and also located in active
promoter regions. Similarly, intronic variants in gene
PPP1R12C (among the INOVA haplotypes) are located
in strong enhancer regions containing transcription
factor binding sites. Mutations in such gene regulatory
regions could inhibit transcription factor binding, lead-
ing to aberrant cell proliferation or drug response [50].
We hence see that some of the genes identified from

our analysis are linked with drug resistance or drug

Table 4 Pathways enriched from the 26 genes common to TARGET and INOVA haplotypes

Pathway name #Entities
found

#Entities
total

Entities P
value

Entities
FDR

Submitted entities
found

Adherens junctions interactions 2 35 0.003 0.228 CDH13; CDH9

Cell-Cell communication 3 133 0.003 0.228 CDH13; PIK3R1; CDH9

Factors involved in megakaryocyte development and platelet
production

3 179 0.007 0.228 HBE1

Cell-cell junction organization 2 67 0.009 0.228 CDH13; CDH9

Cell junction organization 2 94 0.017 0.228 CDH13; CDH9

Sodium-coupled sulphate, di- and tri-carboxylate transporters 1 9 0.019 0.228 SLC13A2

MET activates PI3K/AKT signaling 1 10 0.021 0.228 PIK3R1

GP1b-IX-V activation signaling 1 12 0.025 0.228 PIK3R1

PI3K events in ERBB4 signaling 1 15 0.032 0.228 PIK3R1

GABA A receptor activation 1 15 0.032 0.228 GABRG3

Signaling by FGFR3 fusions in cancer 1 16 0.034 0.228 PIK3R1

Erythrocytes take up oxygen and release carbon dioxide 1 16 0.034 0.228 HBE1

Signaling by FGFR4 in disease 1 18 0.038 0.228 PIK3R1

PI3K events in ERBB2 signaling 1 22 0.046 0.228 PIK3R1

Tie2 Signaling 1 22 0.046 0.228 PIK3R1
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ponse; others have not been previously linked with drug
response. In the genes previously linked with drug resist-
ance or response (AKR1D1, CDH13, and CDH9), the
SNPs and haplotypes found from our analyses are novel.

Most frequent haplotypes
Among the 231 common haplotypes between the
INOVA and TARGET datasets, we examined the haplo-
types that have the highest sample frequency (Table 5).
The most frequent haplotype in the TARGET dataset
span intronic and intergenic regions in or near the fol-
lowing genes: IDH3G, PDZD4, DQ786190, DGCR6, and
SLC13A2. The most frequent haplotypes in the INOVA
dataset span the region in or near the following genes:
PPP1R12C, PIK3R1, DQ600701 and MALRD1.
DQ600701 (also known as PIR61811) is a Piwi-interact-

ing RNA (piRNA), a small non-coding RNA found in clus-
ters as regulatory elements, and control gene expression in
germ cells [51–53] .Somatic cells express similar small
non-coding RNAs called piRNA-like (piR-Ls or pilRNA)
with similar functions as piRNAs. piRNA/pilRNAs appear
to target the 3′ UTR of mRNAs and potentially regulate

mRNA translation [53–55] and possibly affect drug re-
sponse. For example, pilRNAs were found to play key roles
in chemo resistance to cisplatin-based chemotherapy in
lung squamous cell carcinoma (LSCC) [56].
Another frequent haplotype is located in the intergenic

region between DQ786190 and DGCR6 [57, 58], which is
located in chr 22, q11.21 region. According to Genbank,
the mRNA sequence DQ786190 is involved in
lineage-specific gene duplication and loss in humans [59].
According to ENCODE annotation, this intergenic region
with chromosome position 18,878,593–18,878,632 con-
tains repetitive/copy number mutations. The INOVA
dataset also contains nearby haplotypes (position
18,877,874–18,878,489), which spans the intergenic region
between DQ786190 and DGCR6. This region contains
TATA boxes, therefore haplotypes containing multiple
SNPs in this intergenic region can potentially affect tran-
scription or gene copy number, and possibly drug re-
sponse [60]. miR-145 is predicted to target this DQ786190
mRNA sequence [40]. miR-145 was found to be 5 times
under expressed in the miRNA expression signature asso-
ciated with canine osteosarcoma [61]. Thus, the variant

Fig. 2 Kaplan Meier survival curves for the significant mutations in DMET genes. 0 (red): no mutation, and 1 (blue): presence of mutation
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haplotype could affect drug response through decreased
miRNA binding [62].
SLC13A2 is the only Drug Metabolizing Enzyme and

Transporter (DMET) gene that has significant haplo-
types present in the TARGET and the INOVA dataset.
This gene is known to play an important role in trans-
porter activity [63]. SLC13A2 was down regulated along
with miR-9 overexpression in malignant murine masto-
cytoma cell lines, and in primary canine osteosarcoma
(OSA) tumors and cell lines [64]. Another gene in the
same solute carrier family is SLC19A1, which is a folate
carrier. Reduced folate carrier function has been associ-
ated with impaired methotrexate transport in osteosar-
coma tumors [65, 66]. Polymorphisms in SLC19A1 have
been associated with response to methotrexate treatment
in pediatric osteosarcoma [67, 68]. In recent years, these
SLC transporters have been recognized as having the

potential to transport and deliver anticancer chemother-
apeutic agents, and are being studied as drug targets in
cancer [69, 70].
Another gene in the list is PIK3R1, which encodes

regulatory subunits of PI3-kinase [71]. The PI3K path-
way is frequently activated in cancer due to genetic (e.g.,
amplifications, mutations, deletions) and epigenetic (e.g.,
methylation, regulation by non-coding RNAs) aberra-
tions targeting its key components, and may affect re-
sponse to specific therapeutic agents [72]. Hotspots in
exonic regions of PIK3R1 (residue M582_splice, N564,
G376, R348, K567) have been found in tumor samples of
various cancers (http://cancerhotspots.org/) [73]. In
Zhao et al., the authors found that up-regulation of long
non-coding RNA promoted osteosarcoma proliferation
and migration through the regulation of PIK3IP1, an-
other protein in the PI3K pathway [74].

Table 7 Summary of results obtained at the gene level

(a) List of 26 common genes from
overlapping haplotypes associated with
relapse

(b) List of 10 dbSNP ids common to the two datasets
amongst the overlapping haplotypes associated with
relapse

(c) Genes from targeted DMET analysis
associated with both tumor necrosis and
overall survival

7SK rs7071768 (MKI67) SLC22A8

AKR1D1 rs11016073 (MKI67) SLC22A1

CACNA2D4 rs61738284 (MKI67) UGT2B15

CDH13 rs11591817 (MKI67) CHST12

CDH9 rs10735005 (CACNA2D4)

CDRT15 rs3217046 (SLC13A2)

CSMD1 rs11568466 (SLC13A2)

DGCR6* rs9890678 (SLC13A2)

DQ576041 rs10573756 (PPP1R12C)

DQ600701 (also known as PIR61811) * rs34521018 (PPP1R12C)

DQ786190

GABRG3

HBE1

LOC643401

MALDR1 (also known as C10orf112) *

MKI67

OCA2

OR51B5

PCGF2

PDZD4 *

PIK3R1 *

PKHD1

PPP1R12C*

SLC13A2*

ZNF321P

ZNF816

Genes marked with * indicate the most frequent haplotypes associated with relapse
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Common SNPs amongst the overlapping hotspots
The 4 SNPs in the MKI67 gene rs7071768, rs11016073,
rs61738284 and rs11591817 are present in the hotspots
in the TARGET and INOVA datasets. All these SNPs are
non-synonymous and are expected to affect protein
function. According to ENCODE annotation, these SNPs
are located in regions of transcription elongation, which
can have broad effects on gene expression. Mutations in
these regulatory regions have been linked with disease
mechanisms [75] and possibly modified drug response.
The gene MKI67 is often used as a surrogate biomarker
to score the aggressiveness of the tumor, and expression
of this gene has been used as a predictor of response to
chemotherapy in breast cancer patients [76, 77].

Targeted analysis of variants in DMET genes associated
with tumor necrosis and overall survival
Among the 281 DMET variants that were significantly
associated with tumor necrosis, was gene ABCG2. This
gene is part of the Methotrexate metabolic pathway
(MTX pathway), and mutations in this gene have been
implicated in MTX efficacy and toxicity. This is gene is
also linked with breast cancer treatment resistance [78].
The only high impact variant was rs17143187, which

is a splicing and intron variant in the ABCB5 gene. Al-
ternative splicing and ABCB5 SNPs are known to affect
drug response [79–81]. This mutation is predicted to be
a deleterious mutation based on FATHMM prediction
algorithm [82].
Among the 281 variants that were significantly associ-

ated with tumor necrosis, 5 variants were significantly
associated with overall survival as well. All these 5 vari-
ants have a hazard ratio of 3, meaning that at any par-
ticular time, three times as many patients in the
mutation group are experiencing an event (death) com-
pared to patients in the non-mutation group.
A total of 210 of the 281 significant variants were

located in intronic regions, which is consistent with
known literature. Luizon and Ahituv reviewed all pub-
lished pharmacogenomics genome wide association
studies (GWAS) and found that 96.4% of the SNPs res-
ide in noncoding regions [50]. Intronic regions typically
harbor microRNAs and long non-coding RNA, other
regulatory elements, epigenetic elements and structural
variants [83, 84]. These intronic regions are sites of
intron retention, in which the introns are not spliced
out, but are retained. Recent studies have shown that in-
tron retention affects regulation of gene expression and
RNA translation [85, 86].
Variants in introns can affect drug response by altering

the gene expression [83, 87–91]. In recent years, non-
coding RNA are being researched as potential drug tar-
gets since they affect gene expression and disease
progression [92]. Enhancers have been identified as

potential biomarkers for early cancer detection, and
targets for cancer therapy [93]. Hotspot regions are
being researched for their potential as targets for diagno-
sis and drug development [73, 94].
Hence, some of the significant variants obtained from

our analyses are supported by reports in the literature
and serve as in-silico validation of our results, while
other variants are novel, and offer additional value for
exploration of new and novel drug therapies.

Limitations
Although the major findings were statistically significant
and confirmed by Sanger sequencing, the sample size of
the INOVA cohort was relatively low. The relevance of
these findings with respect to drug response needs to be
validated in a larger independent cohort of patients
before applying in clinics. As next steps, we plan to
explore the application of the significant haplotypes and
single SNPs discovered, in a larger scale study to build a
predictive signature of genomic variants associated with
treatment outcome.
A recent publication on pan-can analyses of pediatric

cancers by the TARGET group [24] published in March
2018, showed that that the mutation rate in osteosar-
comas is much higher in the non-coding regions (0.79
per Mb) than in coding regions (0.53 per Mb). Being a
whole-genome sequencing dataset, the INOVA cohort
lends itself as an independent dataset to be studied
in-depth in future research projects. Hence there is
much promise in the analysis and exploration of the
whole genome for future research work in OS.

Conclusion
Most publications that study drug response in Osteosar-
coma focus on the exonic regions. However, most of the
studies of OS have not been focusing on whole genome
analysis with regard to treatment response. We hypothe-
sized that genetic variation of the host may account for
the wide variation seen in the response and toxicity related
to chemotherapeutic agents. Our analysis approach was
different from other studies that search for individual
SNPs to confer significance. Using groups of SNPs for
analyses has increased power in finding associations as
well as increased robustness in statistical testing.
From our analyses, we found a list of intronic and

intergenic hotspot regions common to both the TAR-
GET and INOVA datasets that are significantly associ-
ated with outcome, providing insights into drug
response mechanisms. Some of the genes with variants
found in this study are linked with drug response at the
pathway level (gene/pathway/biological processes level).
Our results include variants in genes not previously
linked with drug response, as well as novel SNPs and
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haplotypes in genes known to be linked with drug resist-
ance. The targeted single SNP analysis of the DMET
genes found variants significantly associated with both
tumor necrosis outcome and survival.
We were able to validate the majority of the variants

in our results using Sanger sequencing at the individual
patient level. Identification and validation of such gen-
etic markers that predict drug treatment response pro-
vide the basis for prospective evaluation of these
candidate markers, and for future upfront treatment
design based on individual genomic profiles.
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