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Abstract: The work approaches new theoretical and experimental studies in the elastic character-
ization of materials, based on the properties of the intrinsic transfer matrix. The term ‘intrinsic
transfer matrix’ was firstly introduced by us in order to characterize the system in standing wave
case, when the stationary wave is confined inside the sample. An important property of the
intrinsic transfer matrix is that at resonance, and in absence of attenuation, the eigenvalues are
real. This property underlies a numerical method which permits to find the phase velocity for
the longitudinal wave in a sample. This modal approach is a numerical method which takes into
account the eigenvalues, which are analytically estimated for simple elastic systems. Such elastic
systems are characterized by a simple distribution of eigenmodes, which may be easily highlighted
by experiment. The paper generalizes the intrinsic transfer matrix method by including the attenu-
ation and a study of the influence of inhomogeneity. The condition for real eigenvalues in that
case shows that the frequencies of eigenmodes are not affected by attenuation. For the influence of
inhomogeneity, we consider a case when the sound speed is varying along the layer’s length in
the medium of interest, with an accompanying dispersion. The paper also studies the accuracy
of the method in estimating the wave velocity and determines an optimal experimental setup in
order to reduce the influence of frequency errors.

Keywords: intrinsic transfer matrix; eigenvalues and eigenmodes; phase velocity; elastic constants

1. Introduction

A transfer matrix is an important tool in the study of wave and pulse propagation
in finite and infinite homogeneous and inhomogeneous elastic media. The method is
widely used in computer simulation or in elastic characterization of different kinds of
elastic media [1–3].

The main characteristic of matrix methods with respect to other approaches is their
simple and compact analytical form and the ease of application in obtaining theoretical
results [4]. This has further advantages in the development of numerical methods, where a
compact encoding of wave propagation and scattering allows building clear and efficient
simulations, which are also easy to test and modify. Computational requirements are also
relatively low, and the approach is easy to extend. The downside of matrix methods is that,
while they are well adapted to 1D wave propagation, for larger dimensions they require
complicated transfer matrices which are harder to work with and interpret in terms of
involved wave phenomena. Nevertheless, in many applications and experimental setups,
considering a 1D-wave propagation is sufficient, which allows a refined and straightforward
approach by a suitable matrix method in order to simulate, explain and characterize the
considered system [5].

The elements of the transfer matrix are obtained as a consequence of the boundary
conditions and propagation mechanism [6,7]. For the 1D propagation and solid elastic
media, boundary conditions imply continuity of the stress and of the wave function at
the interface [8–10].
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Especially in the study of multilayered media, the transfer matrix method is used in
sound insulation or transmission loss factor in order to evaluate sound attenuation [11–13],
in automotive design of the interior of the car [1,4] or the design of multiple connected muf-
flers [14,15]. A large volume of research refers to sonic crystals’ behavior and optimization
using the transfer matrix method [16–18]. By using the transfer matrix, formalism is possible
to model the behavior of elastic media with inhomogeneities. In that case, the transfer ma-
trix approach combines with the finite element method in order to describe homogeneous
and non-homogeneous acoustic absorbing materials. The characterized acoustic materials
are mainly metamaterials made of multiple layers, where at least one layer consists of
a non-homogeneous material. The equivalent transfer matrix of the non-homogeneous
material is determined and, by using the equivalent transfer matrix of the nonhomogeneous
material coupled analytically in a series with other transfer matrices, complex multilayer
systems can be modeled easily and quickly in configurations wherein the use of finite
element calculation alone will be more expensive and time consuming [19]. Other methods
have been developed to numerically simulate waves in complex materials, some of which
take advantage of matrix formulations [20–23]. Especially in the case of polycrystalline
materials, velocity surfaces [24] or slowness surfaces [25,26] are used to characterize local
anisotropy. To take into account inhomogeneity and anisotropy is important in sound wave
propagation [27,28] as it gives a clearer view on wave propagation and scattering and also
on the emerging sound dispersion in composite or multilayered structures.

Intrinsic transfer matrix represents a special kind of transfer matrix written for am-
plitudes of the Fourier components of the waves confined in an embedded elastic system.
Combining the properties of the intrinsic transfer matrix with a corresponding modal analy-
sis, we can determine some elastic constants of the system. This application of the method is
presented in Section 2. By imposing the condition that the eigenvalues of the intrinsic trans-
fer matrix are real at resonance, we can generate another form of the resonance condition
for the considered elastic system. This extension is presented in Section 3.1. The resonance
condition may be generalized if we consider the attenuation of the amplitudes of the
involved waves. The obtained results in case of attenuation were compared with those
obtained by using a simulation based on the model of the coupled oscillators (this method
of simulation is very often used for the study of multilayered materials). This is presented
in Section 3.2. By using computer simulation, the intrinsic transfer matrix was also applied
to study the behavior of a multilayered medium with inhomogeneities, by considering
the case in which one layer consists of a non-homogeneous material. This is presented
in Section 3.3. One possible effect of inhomogeneity is the appearance of dispersion, i.e.,
frequency-dependent sound velocity. This is applied in the case of multilayered media,
and also for polycrystalline materials composed of anisotropic grains such as metals, or for
metamaterials in a larger sense. The simulations are presented in Section 3.3. In Section 3.4,
we approach an optimization procedure for the design of a multilayer medium, where the
purpose is to place the sample of interest such as to minimize the sound velocity errors due
to frequency determination. The case of a ternary elastic system is being analyzed, but the
study may be generalized to other complex multilayered media.

2. The Idea of an Intrinsic Transfer Matrix

If we consider a single elastic homogeneous layer with width l placed between two
semi-infinite elastic media, the transfer matrix in the Fourier space that describes the
propagation of a progressive and a regressive wave with respective amplitudes A, B is
obtained as:(

Aout(ω, l)
Bout(ω, l)

)
=

1
4

(
1 + Z

Zout
1− Z

Zout

1− Z
Zout

1 + Z
Zout

)(
ei ω

c l 0
0 e−i ω

c l

)(
1 + Zin

Z 1− Zin
Z

1− Zin
Z 1 + Zin

Z

)(
Ain(ω, 0)

Bin(ω, 0)

)
(1)

In Formula (1) Zin and Zout are the elastic impedances of the two semi-infinite media,
Z is the elastic impedance of the medium of interest, ω is the angular frequency and c
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the phase velocity of the wave. The transfer matrix in this simple case is a product of a
propagation matrix P and two discontinuity matrices D, with general expressions:

P(ω, l) =
(

eikl 0
0 e−ikl

)
, D(z) =

1
2

(
1 + z 1− z
1− z 1 + z

)
(2)

with k = ω/c as the wavenumber and z = Z1/Z2 as the relative impedance of media 1
and 2.

In the case of a standing wave, when the wave is confined only within the sample, the
Fourier components of the waves inside the sample are determined only by the propagation
matrix P(ω, l) in (2), which has two eigenvalues given by:

λ1,2 = cos
ωl
c
± i sin

ωl
c

(3)

As it is known, if the standing wave consists of a superposition of its own eigenmodes,
for which we have ωn = nπc

l , n = 1, 2 . . . . . ., it is obvious from (3) that in this special case
the eigenvalues become real. Experiments confirm that we can extend the reasoning to
complex embedded elastic systems and consider that for eigenfrequencies the eigenvalues
become real. This important behavior of the eigenvalues can be used experimentally to find
elastic constants of materials. The implied procedure is, to calculate the intrinsic transfer
matrix and its eigenvalues, to experimentally find the frequencies of eigenmodes and to
evaluate by a numerical analysis for which values of the wave velocity the eigenvalues
are real.

The intrinsic transfer matrix method can become very useful in finding the longi-
tudinal wave velocity in solid elastic media, especially for small samples that are not
suitable to be measured by classical resonance methods. Such a sample is embedded in
an elastic system with free ends containing the sample of interest and gauge materials.
The entire system is excited using an impact hammer that generates an approximate
Gaussian elastic pulse so that a standing wave is generated in the embedded system.
The standing wave in the system is highlighted by a noncontact technique using a
Doppler vibrometer, in our case an Ometron VQ-400A vibrometer. The analog signal
proportional to the vibration velocity of the surface at the end of the sample is acquired
with an acquisition board and spectrally processed using an analysis software, in our
case LabView (or directly using an FFT analyzer). A simple FFT power spectrum allows
for the determination of the frequencies of the system’s eigenmodes. Knowing the
dimensions of the embedded components in the elastic system determined by length
measurements, the mass density determined by weighting, and asserting the condition
that the eigenvalues are real, we can estimate by a numerical analysis the wave velocity
in the sample of interest.

As an example of the application of the intrinsic matrix method, in Figure 1 we
illustrated the Fourier spectrum of the eigenmodes for a system consisting of two aluminum
rods as gauge materials and a sample of interest of wood. The two spectra (red and black)
refer to the same wood species but the two samples were cut differently, one along the fiber
and the other one radially.

In Figure 2, we plotted the theoretical values of eigenfrequencies obtained from the
condition that the eigenvalues are real for the ternary system illustrated in Figure 1, which
consists of two aluminum rods as gauge materials (l1 = 150 mm, l3 = 300 mm) and the
radially cut wood sample (l2 = 40.4 mm).



Materials 2022, 15, 519 4 of 15Materials 2022, 15, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Fourier spectrum and the eigenmodes frequencies. 

In Figure 2, we plotted the theoretical values of eigenfrequencies obtained from the 
condition that the eigenvalues are real for the ternary system illustrated in Figure 1, 
which consists of two aluminum rods as gauge materials (𝑙 = 150𝑚𝑚, 𝑙 = 300𝑚𝑚) 
and the radially cut wood sample (𝑙 = 40.4 𝑚𝑚). 

 
Figure 2. Theoretical eigenfrequencies for an aluminum-wood-aluminum system. 

There is a good concordance between theory and experiment, especially for the first 
eigenmode of the embedded system, and as a result this recommends it in practical ap-
plications for determining the velocity of longitudinal elastic waves in small samples 
unsuitable for classical resonance measurements. For applications, it is important for the 
design of the experimental setup to be correlated to the possibility of the measuring sys-
tem and the desired accuracy. 

3. Practical Consequences of Applying the Intrinsic Transfer Matrix Method 
3.1. A New Form of Resonance Condition 

A multilayer medium with layers 1, 2, ..., n has the intrinsic transfer matrix 𝑇 =𝑃 𝐷 , … 𝑃 𝐷 , 𝑃 . The propagation of a progressive and a regressive wave with am-
plitudes 𝐴 = 𝐴(𝜔), 𝐵 = 𝐵(𝜔) through the medium is generally described by: 𝐴𝐵 = 𝑇 𝐴𝐵 = 𝑎 𝑏∗𝑏 𝑎∗ 𝐴𝐵   (4) 

where 𝑎, 𝑏 are complex-valued coefficients depending on 𝜔 and the layer properties 
and 𝑎∗, 𝑏∗ are their complex conjugates. If the medium has free ends, then at resonance 𝐴 = 𝐵 , 𝐴 = 𝐵  and (4) becomes an eigenvalue equation: 𝑎 𝑏∗𝑏 𝑎∗ 11 = 𝜆 11  (5) 

Figure 1. Fourier spectrum and the eigenmodes frequencies.

Materials 2022, 15, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Fourier spectrum and the eigenmodes frequencies. 

In Figure 2, we plotted the theoretical values of eigenfrequencies obtained from the 
condition that the eigenvalues are real for the ternary system illustrated in Figure 1, 
which consists of two aluminum rods as gauge materials (𝑙 = 150𝑚𝑚, 𝑙 = 300𝑚𝑚) 
and the radially cut wood sample (𝑙 = 40.4 𝑚𝑚). 

 
Figure 2. Theoretical eigenfrequencies for an aluminum-wood-aluminum system. 

There is a good concordance between theory and experiment, especially for the first 
eigenmode of the embedded system, and as a result this recommends it in practical ap-
plications for determining the velocity of longitudinal elastic waves in small samples 
unsuitable for classical resonance measurements. For applications, it is important for the 
design of the experimental setup to be correlated to the possibility of the measuring sys-
tem and the desired accuracy. 

3. Practical Consequences of Applying the Intrinsic Transfer Matrix Method 
3.1. A New Form of Resonance Condition 

A multilayer medium with layers 1, 2, ..., n has the intrinsic transfer matrix 𝑇 =𝑃 𝐷 , … 𝑃 𝐷 , 𝑃 . The propagation of a progressive and a regressive wave with am-
plitudes 𝐴 = 𝐴(𝜔), 𝐵 = 𝐵(𝜔) through the medium is generally described by: 𝐴𝐵 = 𝑇 𝐴𝐵 = 𝑎 𝑏∗𝑏 𝑎∗ 𝐴𝐵   (4) 

where 𝑎, 𝑏 are complex-valued coefficients depending on 𝜔 and the layer properties 
and 𝑎∗, 𝑏∗ are their complex conjugates. If the medium has free ends, then at resonance 𝐴 = 𝐵 , 𝐴 = 𝐵  and (4) becomes an eigenvalue equation: 𝑎 𝑏∗𝑏 𝑎∗ 11 = 𝜆 11  (5) 

Figure 2. Theoretical eigenfrequencies for an aluminum-wood-aluminum system.

There is a good concordance between theory and experiment, especially for the first
eigenmode of the embedded system, and as a result this recommends it in practical applica-
tions for determining the velocity of longitudinal elastic waves in small samples unsuitable
for classical resonance measurements. For applications, it is important for the design of
the experimental setup to be correlated to the possibility of the measuring system and the
desired accuracy.

3. Practical Consequences of Applying the Intrinsic Transfer Matrix Method
3.1. A New Form of Resonance Condition

A multilayer medium with layers 1, 2, . . . , n has the intrinsic transfer matrix
T = PN DN,N−1 . . . P2D1,2P1. The propagation of a progressive and a regressive wave with
amplitudes A = A(ω), B = B(ω) through the medium is generally described by:(

Aout
Bout

)
= T

(
Ain
Bin

)
=

(
a b∗

b a∗

)(
Ain
Bin

)
(4)

where a, b are complex-valued coefficients depending on ω and the layer properties and
a∗, b∗ are their complex conjugates. If the medium has free ends, then at resonance
Ain = Bin, Aout = Bout and (4) becomes an eigenvalue equation:(

a b∗

b a∗

)(
1
1

)
= λ

(
1
1

)
(5)
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Then, at resonance λ is real-valued and from (5) the resonance condition is:

Im(a) = Im(b) (6)

Generally, (6) is a nonlinear equation in ω and it must be solved numerically in order
to obtain resonance frequencies ωres, or the layers’ parameters if ωres is known.

3.2. Intrinsic Transfer Matrix in Case of Attenuation

To study the influence of attenuation it is necessary to introduce attenuation coeffi-
cients of the implied materials. By considering a ternary system, where β1, β2, β3 are the
attenuation coefficients of amplitude and c1, c2, c3 are the corresponding wave velocities,
the intrinsic transfer matrix in the presence of attenuation will be:

TM(ω) = 1
4 ·
(

ei ω
c3

l3−β3 l3 0

0 e−i ω
c3

l3+β3 l3

)
·
(

1 + Z2
Z3

1− Z2
Z3

1− Z2
Z3

1 + Z2
Z3

)
·
(

ei ω
c2

l2−β2 l2 0

0 e−i ω
c2

l2+β2 l2

)
·
(

1 + Z1
Z2

1− Z1
Z2

1− Z1
Z2

1 + Z1
Z2

)

·
(

ei ω
c1

l1−β1 l1 0

0 e−i ω
c1

l1+β1 l1

) (7)

The condition for real eigenvalues shows that the frequencies of eigenmodes are not
affected by attenuation. The equations show that the most probable condition to have real
eigenvalues is:

sin
(

ω

c1
l1 +

ω

c2
l2 +

ω

c1
l3

)
= 0

sin
(

ω

c1
l1 −

ω

c2
l2 +

ω

c1
l3

)
= 0

and consequently:
l1+l3

c1
+ l2

c2
l1+l3

c1
− l2

c2

=
n
m

(8)

where n and m are integers.
A numerical simulation by the coupled oscillators method confirms the independence

of eigenfrequencies of the attenuation coefficients. For this, a ternary brass-aluminum-brass
system with free ends was modeled as an ensemble of 5000 elements with mass connected
by springs and a short impulse was applied to one end. A Fourier transform was applied
to the signal at the ends. Figure 3 shows the eigenfrequencies without and with attenuation
for the ternary system.
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Figure 3. The eigenfrequencies of a brass-aluminum-brass system without (above) and with (below)
attenuation.
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3.3. Influence of the Inhomogeneity Studied by Intrinsic Transfer Matrix

A special application refers to an inhomogeneous medium. Based on the intrinsic
transfer matrix for a ternary system, we considered the sample of interest with a randomly
varying sound speed c2 along the middle layer, which was divided into 100 uniform
slices. We numerically generated profiles for c2 by two methods: as random values with a
Gaussian distribution, or as a random walk along the layer (Figure 4).
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Figure 4. Random sound speeds generated for the medium of interest by two methods.

The first method may model fractures and inclusions into the medium, while the
second method generates continuous profiles and can model the influence of time-varying
manufacturing processes on the material properties. Each generated profile c2(x) was
normalized such that its mean is 〈c2〉 = 5018 m/s. Profiles with different value spreads,
as estimated by the mean square root error MSE(c2) = σ(c2), were obtained and the first
eigenfrequency f1 was computed from the intrinsic transfer matrix condition Im(λ) = 0.
Figure 5 shows the influence of the inhomogeneity on f1 for different MSE(c2).
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Figure 5. The influence of medium inhomogeneity on its first eigenfrequency for c2 with (a) random
values; (b) random walk values.

An exhaustive analysis of data from Figure 5 reveals that:

(a) In the case of random values of c2, taking into account 1877 profiles, we obtained a
fitting function: f1 = 2079.3 + 3.93·10−4·MSE− 4.62·10−6·MSE2;

(b) In the case of random walk values of c2 taking into consideration 646 profiles, the
fitting function is f1 = 2079.3 + 2.66·10−4·MSE− 4.38·10−6·MSE2.

It can be seen that there is a similar variation of the first resonance frequency for the
two methods for MSE(c2) smaller than about 1000 m/s, with f1 decreasing by about 1 Hz
for MSE(c2) = 500 m/s, or about 10% of 〈c2〉. Thus, inhomogeneities in the sound speed
have a small effect on the resonance frequency of the medium.
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One possible effect of inhomogeneity is the appearance of dispersion, i.e., frequency-
dependent sound velocity. This is the case for multilayer media, and also for polycrystalline
materials composed of anisotropic grains, such as metals [29–31], or for metamaterials in a
larger sense. In order to follow such an effect, we completed a series of simulations where
layer 2 of the ternary brass–aluminum–brass medium is composed of such anisotropic
grains and acquires a frequency-dependent sound velocity c2 = c2( f ). Layers 1 and 3
were considered homogeneous and isotropic. To induce graininess, layer 2 was decom-
posed in NF = 100 longitudinal “fibers” (propagation directions along its length), each
being composed of an equal number NG of grains with random lengths lij having an
exponential distribution [31,32]. We considered sound propagation only along the fibers,
independently on each fiber. The anisotropy of grains is determined by a velocity surface
v = v0·Fv(θ, ϕ) giving the sound velocity along direction (θ, ϕ) in spherical coordinates.
Here, v0 = 5018 m/s is the normal sound velocity in layer 2 (when considered homog-
neous) and Fv(θ, ϕ) is a direction function; in the simplest case, this is a Fourier series in
θ, ϕ of the form:

Fv(θ, ϕ) = Cv·
∞

∑
m=0

(
Aθ

m sin(mθ) + Bθ
m cos(mθ)

)
·

∞

∑
n=0

(
Aϕ

n sin(nϕ) + Bϕ
n cos(nϕ)

)
but it can have other expressions too. For example, Cv is a constant determined by the condition:

〈Fv〉 =
1

4π

∫ π

θ=0

∫ 2π

ϕ=0
Fv(θ, ϕ) sin(θ)dθ dϕ = 1

Different other conditions can be imposed to the function Fv(θ, ϕ), e.g., Fv(π − θ, π + ϕ)
= Fv(θ, ϕ), which ensures equal sound velocities in opposite directions. However, for meta-
materials, this condition may not hold. In the simulation, for a given material in layer 2, a
specific expression for Fv(θ, ϕ) was applied to all the grains and fibers; for each grain, the
direction of propagation was chosen at random, as (θ, ϕ) = (acos(1− 2r1), 2πr2), where
r1, r2 are uniformly distributed random numbers between 0 and 1. Four velocity surfaces
were used in (Figure 6), given by:

Fv(θ, ϕ) = 1 + 0.05 cos(2θ) (9a)

Fv(θ, ϕ) = 1 + 0.05 cos(4θ) (9b)

Fv(θ, ϕ) = 1 + (0.05 cos(4θ)− 0.025 cos(8θ))· cos(4ϕ); (9c)

Fv(θ, ϕ) =
(

1− (π− θ)eθ−π
)
·(1 + (0.05 cos(4θ)− 0.025 cos(8θ))· cos(4ϕ)). (9d)

Surface (a) is suitable for modeling metals with cubic crystals [30]. Surface (d) in
particular is highly asymmetric and could be achieved in a metamaterial.

At the input of layer 2 a pair of waves was applied with Ain = 1, Bin = 0 for a range
of frequencies. The outputs for all fibers were averaged. An effective sound velocity for
layer 2 c2e f f was computed from the average output: 〈A2 out〉 = |〈A2 out〉| exp

(
i ω

c2e f f
l2
)

.
Examples of effective velocities for multigrain materials can be seen in Figure 7. Addition-
ally, resonance frequencies for the whole ternary medium were obtained and their variation
with the grain number NG was studied (Figure 8).
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Materials 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 6. The four velocity surfaces 𝐹 (𝜃, 𝜑) in 3D that were used to describe anisotropy in sound 
wave propagation. On the left, the surface colors represent the distance from the center, from small 
(blue) to large (yellow). On the right, the meshes represent the anisotropic (dark red) and isotropic 
(green) surface velocities. (a–d) correspond to Equations (9a)–(9d) respectively. 

At the input of layer 2 a pair of waves was applied with 𝐴 = 1, 𝐵 = 0 for a range 
of frequencies. The outputs for all fibers were averaged. An effective sound velocity for 
layer 2 𝑐 was computed from the average output: 〈𝐴  〉 = |〈𝐴  〉|exp 𝑖 𝑙 . 

Examples of effective velocities for multigrain materials can be seen in Figure 7. Addi-
tionally, resonance frequencies for the whole ternary medium were obtained and their 
variation with the grain number 𝑁  was studied (Figure 8). 

 
Figure 7. Effective sound velocities in layer 2 as the function of frequency obtained with the veloc-
ity surfaces in Figure 6, for different grain number 𝑁  along fibers. The case 𝑁 = 1 is for the 
homogeneous (monocrystalline) layer 2. The legend applies to all graphs. (a–d) correspond to 
Equations (9a)–(9d) respectively. 

Figure 7. Effective sound velocities in layer 2 as the function of frequency obtained with the ve-
locity surfaces in Figure 6, for different grain number NG along fibers. The case NG = 1 is for
the homogeneous (monocrystalline) layer 2. The legend applies to all graphs. (a–d) correspond to
Equations (9a)–(9d) respectively.
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Figure 8. Graphs of relative variations of resonance frequencies for the ternary medium as a function
of NG for the velocity surfaces in Figure 6 and velocity profiles in Figure 7. Here, fi0 and fi are reso-
nance frequencies with homogeneous (NG = 1) and, respectively, grainy layer 2. The first resonance
for NG = 1 is at 2068.36 Hz, while the next resonances are approximate multiples of it. The resonances
No. 1,2,5,10,100 and 1000 were considered. (a–d) correspond to Equations (9a)–(9d) respectively.

Anisotropy induces a frequency-dependent sound velocity (Figure 7), and this effect
is stronger for a small number of grains (large grain size), while for small grains the
effective velocity is almost constant. The average effective velocity is close to that of the
homogeneous layer, except for the velocity surface (d), which induces a strong anisotropy.

The considered dispersion has a minor effect on the resonances of the ternary medium
(Figure 8). This is partly due to the fact that layer 2 is much shorter than layers 1 and
3, but also to the fact that the considered surface velocities are close to the isotropic one.
The relative variation of the resonance frequency is quite small (around 10−4, or 0.2 Hz
for the first resonance), and it is smaller for large resonance frequencies. A relatively
large change in the resonance frequency occurs for the velocity surface (d) (close to 10−3,
or 2 Hz for the first resonance). The case where layers 1 and 3 are also anisotropic was
not considered.

3.4. A Proposed Optimization Alghorithm Based on the Intrinsic Transfer Matrix

An optimization procedure for the design of a multilayer medium is described, where
the purpose is to place the measured sample such as to minimize the sound velocity errors
due to frequency determination. Typically, this is applied to a ternary (or more complex)
multilayer medium consisting of a known material 1 and the sample material 2. The density
is known for both; the sound velocity is known for material 1 only. The first N resonance
frequencies ωi obey a resonance condition (6) of the general form:

C(c2, ωi) = 0, i = 1, 2, . . . , N (10)

For example, for a binary medium with material order 1–2 and a ternary medium
1–2–1, with layer lengths li, ki = ω/ci and z = Z1/Z2, (10) we have the formulas:

C2 : (z + 1) sin(k1l1 + k2l2) + (z− 1) sin(k1l1 − k2l2) = 0 (11)

C3 : (z + 1)2 sin(k1l1 + k2l2 + k1l3)−
(
z2 − 1

)
sin(k1l1 + k2l2 − k1l3)− (z− 1)2 sin(k1l1 − k2l2 + k1l3)

+
(
z2 − 1

)
sin(k1l1 − k2l2 − k1l3) = 0

(12)
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Typically, the experimental resonances ωexp, i = 2π fexp,i, i = 1, . . . , N will have an
error due to the discrete Fourier transform used in their determination. To further estimate
c2, theoretical resonances, ωth, i(c2) are obtained from (10) which then are matched to ωexp, i
by minimizing the convex error:

E(c2) =
N

∑
i=1

(
ωth, i(c2)−ωexp, i

)2 (13)

c2 = argmin
{

E(c2) : C(c2, ωth, i(c2)) = 0
}

(14)

Thus, the estimated c2 will have an error due to resonance frequency errors. The error
of c2 also depends on the position of sample material 2 in the multilayer medium, which
allows one to minimize this error.

For simplicity, let us consider a ternary medium where the sample 2 must be placed at
optimal position l1. Furthermore, we assume ωexp, i are uniformly distributed in intervals
ωexp, i ∈ [ωth, i(c2)− ∆ω; ωth, i(c2) + ∆ω] with a fixed ∆ω. Then, the standard deviation of
ωexp, i is σ

(
ωexp, i

)
= ∆ω/

√
3 and assuming this is small compared to ωexp, i, the standard

deviation of c2 = c2
(
ωexp,1, ωexp,2, . . . , ωexp,N

)
is estimated by error propagation:

σ(c2) =

√√√√ N

∑
i=1

(
∂c2

∂ωi

)2
·σ
(
ωexp, i

)
=

∥∥∥∥ ∂c2

∂ωi

∥∥∥∥·∆ω√
3

(15)

where ‖vi‖ is the Euclidean norm of a vector v. Thus l1 is given by the minimum of (15)
with c2 from (14):

l1 = argmin
{∥∥∥∥ ∂c2

∂ωi

∥∥∥∥ : (14)
}

(16)

Steps (14) and (16) can be repeated to further improve l1; usually one pass and going
through (14) again is enough to minimize (15).

Generally, estimating numerical derivatives and performing, e.g., a least squares
minimization in (14) and (16) may be time and computation intensive. Obtaining an
analytical formula of ∂c2/∂ωi from (10) and (16) speeds up computation. Differentiating
(10) with respect to c2 twice at a fixed i, with ωi = ωi(c2) one obtains:

dωi
dc2

= −
∂C/∂c2

∂C/∂ωi
(17)

d2ωi

dc2
2

= − 1
∂C/∂ωi

[
∂2C
∂ω2

i

(
dωi
dc2

)2
+ 2

∂2C
∂ωi ∂c2

dωi
dc2

+
∂2C
∂c2

2

]
(18)

From (14), after labeling ωi(c2) = ωth, i(c2), it follows:

dE
dc2

= 0⇒
N

∑
i=1

(
ω i(c2)−ωexp, i

)dωi
dc2

= 0 (19)

To determine ∂c2/∂ωi in (15), we apply a small perturbation δωexp, i in ωexp, i with a
corresponding perturbation δc2 of c2. Then (19) becomes:

N

∑
i=1

(
ω i(c2 + δc2)−ωexp, i − δωexp, i

)dωi
dc2

(c2 + δc2) = 0

By retaining terms up to first-order perturbations, we obtain:

N

∑
i=1

[(
ω i(c2)−ωexp, i

)d2ωi(c2)

dc2
2

+

(
dωi(c2)

dc2

)2
]

δc2 =
N

∑
i=1

dωi(c2)

dc2
δωexp, i
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For fixed k, take in the right-hand side δωexp, i = δωexp, k if i = k; else δωexp, i = 0.
Then:

∂c2

∂ωk
=

δc2

δωexp, k
=

dωk(c2)
dc2

∑N
i=1

[(
ω i(c2)−ωexp, i

) d2ωi(c2)

dc2
2

+
(

dωi(c2)
dc2

)2
] (20)

∥∥∥∥ ∂c2

∂ωi

∥∥∥∥ =

√√√√ N

∑
i=1

(
∂c2

∂ωi

)2
=

√
∑N

i=1

(
dωi(c2)

dc2

)2

∣∣∣∣∑N
i=1

[(
ω i(c2)−ωexp, i

) d2ωi(c2)

dc2
2

+
(

dωi(c2)
dc2

)2
] ∣∣∣∣ (21)

where c2 is determined from (14) and ω i = ω th,i(c2) from (10). The derivatives with respect
to c2 are given by (17) and (18). In particular, if one solves (16) with just the theoretical
resonance spectrum, i.e., ωexp, i = ω th,i then:∥∥∥∥ ∂c2

∂ωi

∥∥∥∥ =
1√

∑N
i=1

(
dωi(c2)

dc2

)2
=

1
dωi(c2)

dc2

(22)

A numerical analysis was performed to illustrate the approach. A ternary medium
made of brass (layers 1 and 3) and aluminum (layer 2) was considered, with layer lengths
l1 = 544 mm, l2 = 18.16 mm, l3 = 251.5 mm and densities ρ1 = ρ3 = 8315 kg/m3,
ρ2 = 2713 kg/m3. The sound speed in brass is considered known c1 = c3 = 3373 m/s
while c2 is to be determined from the resonance spectrum; typically, a value c2 = 5018 m/s
was obtained and is used in the analysis below. This medium has the first 4 resonances
at 2104.03 Hz, 4205.93 Hz, 6303.47 Hz and 8394.18 Hz. Next, the frequency error was
considered fixed ∆ f = 10 Hz, and the optimum distance l1 that minimizes (15) was
obtained from (16). When modifying l1 in the analysis below the total length of the medium
was kept constant.

The norm (22) as a function of l1 was of interest (Figure 9). If the sample is placed at
the ends of the medium, c2 has very large errors, while inside it lies close to the measured
value c2 = 5018 m/s. The positions of minimum error for c2 lie at about l1 = 10 cm and
l1 = 70 cm, but also positions at about l1 = 30 cm and l1 = 50 cm trigger similar errors.
The average of c2 obtained for different resonance spectra approximates well the known
value (Figure 10), except at the ends, where σ(c2) is very large.
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Figure 12. The graph of (22) (log scale) for different numbers of resonances 𝑁, with constant 𝑐  
and 𝑙 . 

Figure 10. At different positions l1, 20 sets of resonance spectra were randomly generated with the
same ∆ f and for each set the optimum c2 was obtained from (14) (the average of the 20 values of c2 is
plotted to the left); the standard deviation of c2 (right) was computed numerically (blue dots) and
theoretically from (15) (red curve).

We obtained the dependence of (22) with respect to c2 and l2 (Figure 11), and the
number of resonances N (Figure 12). The norm (22) decreases with decreasing velocities
c2, increasing sample lengths l2, and with increasing N. For a fixed N, the norm has N
local minima, most of which have about the same minimum value. The absolute minimum
is reached at the outermost local minima, and this minimum moves closer to the ends
when N increases, which could make it difficult to place the sample there. On the other
hand, placing the sample at the very end would give the greatest errors for c2. So, a binary
medium is not very appropriate for sound velocity measurements.
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A 5-layer medium was also investigated, with layer ordering 1–2–1–2–1, with
l2 = l4 = 18.16 mm and l1 + l3 + l5 = 795.5 mm fixed. The norm (22) was minimized and
optimal values for l1 and l3 were obtained (Figure 13). Thus, the optimization algorithm
can be applied even for complex experimental multilayer media.
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4. Conclusions

This work presents a method of determining the longitudinal wave velocity at a
normal incidence in a sample which cannot be measured by the classical resonance method.
The method suggests embedding the sample in an elastic system and then determining the
frequencies of the eigenmodes of the elastic system. Taking into account that for a standing
wave in the system, for such a wave, only the intrinsic matrix can be considered in a wave
transfer; for simple systems it can be calculated, and we can find an analytical expression
for it. Generalizing for the elastic systems the behavior of the eigenvalues of the intrinsic
transfer matrix, which for eigenfrequencies become real, we can determine by a numerical
analysis the wave velocity in the sample of interest and then the corresponding elastic
constants. From the experimental point of view, a ternary system is preferred because such
a system preserves much better the longitudinal plan wave, a special case for which the
transfer matrix has a simple analytical form. An example of the application of the method
is illustrated for a ternary aluminum–wood–aluminum system, which shows the sensitivity
of the method.

The paper presents also some experimental and computational studies that refer to
the possibilities and accuracy of the method. The method can be generalized so as to take
into account the attenuation. In that case, the condition for real eigenvalues shows that the
frequencies of eigenmodes are not affected by attenuation.

The case of an inhomogeneous medium is also analyzed by considering two kinds
of inhomogeneities. The first can model fractures and inclusions into the medium, while
the second generates continuous profiles and it can model the influence of time-varying
manufacturing processes on the acoustical properties. Inhomogeneity may also induce
dispersion in the medium, and this was analyzed too; a small influence on resonance
frequencies was detected.

The paper also proposes an optimization procedure based on the properties of the
intrinsic transfer matrix that makes it possible to place the measured sample in a multilayer
medium in such a way as to minimize the errors for the measured sound velocity due to
frequency errors. It is very clear that, from an experimental point of view, good estimations
of the wave velocity can be obtained only by a very precise Fourier analysis; hence, a
good frequency resolution will lead to a good estimation of the phase velocity of the wave.
Nevertheless, precision can be increased by choosing an optimal position of the sample
inside the experimental setup with respect to frequency error propagation to other measures
of interest that are determined.
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