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Abstract: Complexes [(dpp-BIAN)0CoIII2]·MeCN (I) and [(Py)2CoI2] (II) were synthesized
by the reaction between cobalt(II) iodide and 1,2-bis(2,6-diisopropylphenylimino)acenaphthene
(dpp-BIAN) or pyridine (Py), respectively. The molecular structures of the complexes were
determined by X-ray diffraction. The Co(II) ions in both compounds are in a distorted tetrahedral
environment (CoN2I2). The electrochemical behavior of complex I was studied by cyclic voltammetry.
Magnetochemical measurements revealed that when an external magnetic field is applied, both
compounds exhibit the properties of field-induced single ion magnets.

Keywords: cobalt(II) complexes; redox active ligand; cyclic voltammetry; single ion magnet;
dpp-bian; acenaphtenediimine

1. Introduction

The activity in the research of mononuclear cobalt complexes with various types of donor ligands,
which has been observed in the last decade, is explained by the orbital moment of the Co(II) ion as
well as the spin-orbit coupling [1,2]. Both of these factors influence the possibility of splitting the term
of the ground state of the complex in a zero field. Axial splitting in a zero field (D), which characterizes
the magnetic anisotropy of the metal ion in the complex, is a necessary condition for the manifestation
of the properties of a single molecule or single ion magnet (SIM). Creating conditions for a metal
ion to manifest high magnetic anisotropy is a priority in the chemistry of complexes compared to
additive schemes for increasing the total spin of the system. The anisotropy of the Co(II) ion can be
controlled by rational selection of ligands with a set of finely tuned characteristics of the spatial and
electronic structure. The use of spatially branched functional groups capable of defining unusual
types of geometry of the Co(II) atom is effectively used in the design of SIMs. On the other hand,
fine tuning of magnetic anisotropy can be carried out by varying the ligand field strength, which is
usually achieved due to the optimal combination of the number and relative position of substituents of
a different electronic nature. At the same time, the strategy of the controlled ligand field strength, based
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on the use of redox-active molecules capable of reversibly and controllably changing their electronic
characteristics while maintaining a high degree of structural rigidity, has been studied scarcely for
the molecular design of SIM [3–5].

Redox-active ligands can form metal-radical complexes, interest in which is caused when solving
problems of creating materials with tuned properties [6,7]. The generation/degradation of the radical
in the composition of the complex can significantly affect the luminescent and magnetic properties,
conductivity, catalytic activity, etc. [8–12].

As the main object of our research, we selected a complex of cobalt(II) iodide with
1,2-bis(2,6-diisopropylphenylimino)acenaphthene (dpp-BIAN). The ligand dpp-BIAN is widely known
for its unique ability to accept reversibly up to four electrons [13], which allows one to control
the ligand field strength over a wide range. Moreover, the catalytic activity towards a number of
industrially important reactions [14–17], visible light-harvesting behavior for potential photovoltaic
applications [18,19], biological activity [20], as well as ability for small molecule activation [21] shown
by transition metal complexes of neutral, mono-, and dianionic forms of dpp-BIAN could be finely
tuned due to the unique redox features of this ligand [22–28]. On the other hand, the possibility of
reversible generation of radical anions ([(dpp-BIAN)0]�[(dpp-BIAN)·−]) may allow the exchange
interactions of the ferromagnetic nature in the complex molecule to be switched on, which can also have
an effect on the SIM magnetization reversal barrier. Iodide anions were selected as additional ligands
due to data indicating the heavy atoms effect of halogens on the magnetic anisotropy of Co(II)-based
SIMs [29].

As an additional object of research, we studied the complex of cobalt(II) iodide with pyridine.
Despite their chemical simplicity, it is surprising that the coordination compounds of CoI2 with
substituted pyridine ligands have received scarce attention [30–36]. A comparison study of these two
systems allowed us to draw preliminary conclusions about the potential use of redox-active ligands of
the Ar-BIAN class in the Co(II)-SIM-directed design.

2. Results and Discussion

2.1. Synthesis and Characterization of [(dpp-BIAN)0CoIII2]·MeCN (I) and [(Py)2CoI2] (II)

The reaction between 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene and cobalt diiodide
in a solution of acetonitrile (Scheme 1) resulted in complex [(dpp-BIAN)0CoIII2] (I). The reaction
proceeded in an inert atmosphere on heating and was accompanied by a rapid change in the color of
the solution from green to red-brown. The product crystallized at room temperature from the initial
volume of solvent in high yield (95%). Due to the extreme hygroscopicity of cobalt iodide [37], it
was synthesized in situ from crystalline iodine and an excess of metal cobalt. Preliminary data on
the state of the redox-active ligand in I can be obtained from its IR spectrum by the presence of
characteristic bands of stretching vibrations of the double bond C=N (1646–1600 cm−1) of neutral
diimine dpp-BIAN [38,39] and the absence of absorption bands of the three-electron C-N bonds
(1550–1500 cm−1) of the dpp-BIAN anion-radical and the C-N bonds (1310 cm−1) of the dianionic
form of the ligand [40,41]. The synthesis of the cobalt(II) iodide complex with dpp-BIAN was first
reported in an article on the polymerization of α-olefins [39], but its crystal structure was not described
since single crystals were not isolated—the composition of the obtained compound was established by
indirect methods. The synthesis and molecular structure of another congener [(mes-BIAN)0CoIII2]
(mes-BIAN = di-(2,4,6-trimethylphenyl)-bis-acenaphthenequinonediimine) was reported; however,
their magnetic and redox properties were not discussed [42].
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Scheme 1. Synthesis of complexes I and II.

When pyridine was allowed to react with cobalt(II) iodide in a 2:1 molar ratio in toluene (Scheme 1),
complex [(Py)2CoI2] (II) was isolated. Dry CoI2 was used for the synthesis (see the experimental part),
in which a toluene medium reacted heterogeneously with two equivalents of pyridine. Single crystals
suitable for X-ray diffraction were grown by slowly (10 ◦C per hour) cooling the reaction mixture from
130 to 25 ◦C and then keeping it for 2 h. For the first time, the synthesis of the complex of cobalt diiodide
with pyridine was described as early as 1927 [43]; the authors described the color of the compound
(blue) and performed elemental analysis of the iodine content. In 1978, Bill Little et al. [44] described
the synthesis of the compound of the composition [(Py)2CoI2] and characterized it by powder X-ray
diffraction. Thus, single crystal X-ray diffraction studies for compound II were performed here for
the first time. The powder X-ray diffraction pattern of the compound prepared here (Figures S1, S2, see
Supplementary Material) differs from the powder X-ray diffraction pattern reported [44] (Table S1,
see Supplementary Material). No similarity of interplanar distances was observed, which allows us
to conclude that, apparently, in this work, we obtained another compound or another polymorphic
modification of [(Py)2CoI2].

2.2. Molecular Structures

Complexes I and II crystallized in the orthorhombic space groups Pbca and Pbcn, respectively;
the crystal and experiment data are listed in Table 1. The crystal of complex I is solvate with one
molecule of MeCN. Both compounds are mononuclear, in which the cobalt(II) ion coordinates two I−

anions and two N atoms of chelate ligand dpp-BIAN (I, Figure 1a) or two monodentate ligands Py
(II, Figure 1b). In crystal II, the second-order axis C2 passes through the metal atom between pairs of
atoms I and N. For complex I, the N-Co-N angle (81.24(12)◦) is much smaller than the others (N-Co-I
112.49(9)-117.61(9)◦, I-Co-I 109.33(2)◦) due to the chelating nature of the ligand (Co-N 2.073(3), 2.090(3)
Å, Co-I 2.5343(7), 2.5346(6) Å). In II, the I-Co-I angle (115.80(7)◦) is larger, while the N-Co-I (108.0(2)◦,
109.0(2)◦) and N-Co-N (106.7(4)◦) angles are close to the angle for a perfect tetrahedron. The Co-N
bond length (2.041(7) Å) in II decreased by ~0.04 Å as compared to I, while the Co-I bond (2.5643(11) Å)
increased by ~0.03 Å. The observed bond lengths are comparable with the known values for complexes
with a similar coordination environment of CoN2I2 [29,32,35,36,39,45,46]. The deviation of the angular
geometry of the polyhedra from the ideal tetrahedron was estimated by calculating the parameter δ
= 2Td − (α + β), where angles α = N-Co-N, β = I-Co-I, and Td = 109.5◦. Based on the calculations,
the coordination environment of CoN2I2 in I corresponds to a compressed pseudotetrahedron (δ =

28.43), while that in II corresponds to a tetrahedron (δ = −3.5).
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Table 1. Crystallographic data, details of the data collection, and characteristics of the data refinement
for I and II.

Parameter
Value

I II

Molecular formula C38H43CoI2N3 C10H10CoI2N2
Mw 854.48 470.93
T, K 296(2)

Crystal system Orthorhombic
Space group Pbca Pbcn

a, Å 19.5759(4) 13.488(2)
b, Å 19.3545(4) 7.1497(10)
c, Å 19.7703(5) 14.588(2)

V, Å3 7490.6(3) 1406.7(3)
Z 8 4

ρcalcd, g cm−3 1.515 2.224
µ, mm−1 2.135 5.582

θ range, deg 2.06–28.28 2.79–30.59
F(000) 3400 868

Index range
−26 ≤ h ≤ 25;
−25 ≤ k ≤ 25;
−26 ≤ l ≤ 25

−19 ≤ h ≤ 19;
−10 ≤ k ≤ 10;
−20 ≤ l ≤ 20

Number of reflections collected 75256 15566
Number of unique reflections 9291 2160

Rint 0.099 0.162
Number of reflections with I >

2σ(I) 6692 1030

GooF 1.051 1.000
R factor on F2 > 2σ(F2) R1 = 0.062, wR2 = 0.140 R1 = 0.074, wR2 = 0.148

R factor (all data) R1 = 0.091, wR2 = 0.155 R1 = 0.157, wR2 = 0.182
∆ρmax/∆ρmin, e/Å3 −1.113/0.837 −1.135/0.966
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Figure 1. Molecular structure of complexes I (a) and II (b). Hydrogen atoms are omitted. Symmetry
codes used to generate equivalent atoms for II: (A) −x + 1, y, −z + 1/2.

The C−C and C−N bond lengths in the α-diimine fragment of complex I (C(1)−C(2) 1.515(5) Å,
C(1)−N(1) 1.276(5) Å, C(2)−N(2) 1.280(5) Å)) as compared to dpp-BIAN (C−C 1.527 Å, C−N 1.272,
1.272 Å) [47] as well as cobalt(II) [(dpp-BIAN)0CoIICl2] (C−C 1.564 Å, C−N 1.231, 1.286 Å) [39,48],
[(dpp-BIAN)0CoIIBr2] (C−C 1.531 Å, C−N 1.268, 1.286 Å) [49], and iron(II) [(dpp-BIAN)0FeIIBr2]
complexes (C−C 1.508 Å, C−N 1.277, 1.287 Å) [50], [(dpp-BIAN)0FeIICl2] (C−C 1.506 Å, C−N 1.288,
1.271 Å) [51] indicate the neutral form of the ligand.



Molecules 2020, 25, 2054 5 of 16

In I, π–π interactions were observed between the benzene rings of the acenaphthene fragment (the
shortest C...C distance is 3.308(6) Å), the interatomic distance between nearby Co atoms is 9.7904(2)
Å. In the crystal of molecule II, π–π interaction was observed between parallel pyridine ligands of
neighboring complex molecules (the shortest C...C distance is 3.522(14) Å); the minimum interatomic
Co...Co distance is 7.6327(9) Å. An increase in the organic component decreases the calculated crystal
density from 2.224 (II) to 1.515 g/cm3 (I).

2.3. Solid State Magnetic Susceptibilities

The temperature dependences of the magnetic susceptibility of complexes I and II were studied in
the range of 2–300 K in a magnetic field of 5 kOe (Figure 2). The χmT values of both complexes at 300 K
(2.93 and 2.48 cm3 mol−1 K for I and II, respectively) are significantly higher than the pure spin value
(1.88 cm3 mol−1 K) [52], which may indicate a significant orbital contribution to the total magnetic
moment. The χmT dependence remains almost linear to 100 K; with a further decrease in temperature,
the χmT values gradually decrease and reach a minimum at T = 2 K (1.63 and 1.24 cm3 mol−1 K for I
and II, respectively). Such behavior may be due to significant magnetic anisotropy, and/or the Zeeman
effect (saturation effect) when an external magnetic field is applied.
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of approximation of experimental data with Equation (1) (see text).

The χT curves were approximated using spin Hamiltonian (Equation (1)):

Ĥ = D
[
Ŝ2

Z −
1
3

S(S + 1)
]
+ µB

(
BXgXŜX + BYgYŜY + BZgZŜZ

)
(1)

where S = 3/2 is the spin of the high-spin Co(II) ion, D is the axial ZFS parameter, and gα (α = X, Y, Z) are
the principle values of the g-tensor; µB is the Bohr magneton; and gx, gy, and gz are the components of
the g-tensor using the PHI program [53]. An analysis of the approximation results revealed the presence
of an excessive number of parameters in the case of an anisotropic g-tensor; therefore, the case of an
isotropic g-tensor (gx = gy = gz = giso) was used. Our calculations (see Table 2) showed that the curves
can be described by both negative and positive parameters D. Nonzero absolute values of D indicate
the presence of magnetic anisotropy of the cobalt(II) ion. A nonzero negative value of the parameter zJ’
for II indicates the presence of weak intermolecular interactions between metal ions, which correlates
with the X-ray diffraction data.
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Table 2. Scalar D- and g-tensor parameters fitted with Equation (1) and CASSCF/NEVPT2 calculation
for I and II.

Complex/
Parameter

Best-Fit Parameters with Equation (1) CASSCF/NEVPT2 Calculation

D, cm−1 giso zJ, cm−1 D, cm−1 E/D g

[2 ex]

I
−25.7(3) 2.481(1) 0

−22.6 0.294

gx = 2.251
gy = 2.331
gz = 2.515

(giso = 2.366)24.6(3) 2.481(1) 0

[2 ex]

II
−8.2(2) 2.285(1) −0.07(1)

−5.9 0.094
gx = 2.248
gy = 2.272
gz = 2.333

(giso = 2.284)7.6(2) 2.287(1) −0.09(1)

CASSCF/NEVPT2 calculations allowed this ambiguity to be passed by determination of
the zero-filed splitting parameters for cobalt(II) ions in I and II. The calculated principle values
of the D- and g-tensors for I and II are listed in Table 2, where all the calculated D values are negative,
and the D and giso values are all close to the values calculated for the experimental magnetic data.
The negative values of the ZFS parameters suppose easy-axis magnetic anisotropy and the probability of
realizing SIM properties (out-of-phase AC susceptibility signals and slow magnetic relaxation) [29,54].

Table 3 displays the energy levels (cm−1) for I and II calculated from spin Hamiltonian (1) and
CASSCF/NEVPT2 (in zero-filed and applied field). The energy values fitted and calculated form
CASSCF/NEVPT2 are in good agreement.

Table 3. Energy levels (cm−1) for I and II from Hamiltonian (1) approximation of the temperature
dependences and CASSCF/NEVPT2 calculations.

State Ms I (calc) I (HDC = 0
Oe)

I (HDC =
1.5 kOe) II (calc) II (HDC =

0 Oe)
II (HDC =
2.5 kOe)

1 −3/2 0 0 0 0 0 0

2 +3/2 0 0 0.53 0 0 0.92

3 −1/2 50.58 51.4 51.58 11.98 16.40 16.67

4 +1/2 50.58 51.4 51.75 11.98 16.40 16.94

In order to identify SIM behavior, measurements of the AC magnetic susceptibility were performed.
The out-of-phase signal χ” close to zero was observed in the absence of the DC-magnetic field for both
complexes. An external DC-magnetic field Hdc application made it possible to detect distinct maxima
on the χ” values at 2 K in both cases. The optimal values of Hdc (1.5 and 2.5 kOe for I·MeCN and
II, respectively) were obtained by the AC susceptibility measurements at various DC field strengths
(Figures S3 and S4, see Supplementary Material).

The AC susceptibility data in the optimal DC field were fitted by the generalized Debye
model (Figure 3), which allows determination of the relaxation time temperature dependencies
of the magnetization (Figure 4). We tried to fit the τ(1/T) by the different relaxation mechanisms in
order to better understand the relaxation pathways’ nature [55,56]. As we can conclude from this
experiment, the best agreement between the experimental data and theoretical dependences was
achieved using the sum of Raman (τRaman

−1 = CRamanTn_Raman) and direct (τdirect
−1 = AdirectH4T)

relaxation mechanisms for both complexes (Figure 4, and Supplementary Material) with the best-fit
parameters: Adirect = 7.4 and 7.5 · 10−11 K−1Oe−4s−1, CRaman = 0.46, and 12 s−1 K-n_Raman, nRaman = 9.2
and 9.4 for I and II, respectively.
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The fitting of the field dependences of the relaxation time as well as the negligible out-of-phase
susceptibility in a zero field gives clear evidence of some additional temperature-independent
relaxation pathways, presumably, the quantum tunneling, which suppress slow magnetic relaxation
(see Supplementary Material). The data fit with use of the quantum tunneling (τQTM

−1 = B1/(1+B2H2))
as an additional relaxation mechanism leads to overparameterization and mutual dependencies of
the fit parameters.

It should be noted that the amplitude of the signal χ”(ν) for complex II in the optimal field (Figure 3)
increases with the temperature, which may be due to intermolecular or dipole–dipole interactions
present in this compound. A similar behavior was previously observed for cobalt complexes [57], as
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well as for other anisotropic ions, in particular, lanthanide ions [34,58–60]. For complex I, this behavior
was not observed, which may be due to the large distance between metal ions in the crystal lattice.

A comparative analysis of the properties of I and similar complexes with chelate
ligands (2,2’-biquinoline (biq) [34], 4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline (bcp) [35], and
2,9-dimethyl-1,10-phenanthroline (dmphen) [36] showed that the value of the parameter D can be both
positive (10.3 cm−1 for [CoI2(biq)] and 16.6 cm−1 for [CoI2(dmphen)]) and negative (−7.03 cm−1 for
[CoI2(bcp)]).

Complex II can be compared with analog [CoI2(quinoline)2] [29], for which D = 9.2 cm−1 and
there is no slow magnetic relaxation. So, the nature of pyridine ligand changes the electronic structure
of cobalt(II) ions, and this fine chemical tuning results in a switch of the magnetic behavior at
low temperatures.

2.4. Cyclic voltammetry of [(dpp-BIAN)0CoIII2]·MeCN (I)

The electrochemical behavior of complex I was studied in solution; voltammograms were recorded
for 2.1 M solutions of I in a 0.05 M solution of n-Bu4NBF4 in acetonitrile on a platinum disk working
electrode (Figure 5).
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Bu4NI (dashed line).

When dissolved in acetonitrile, both iodine atoms at the cobalt atom are replaced by solvate
acetonitrile molecules. This follows from the analysis of the voltammograms with a potential sweep
into the anode region (Figure 5): The first two anode processes correspond to the oxidation of free
iodide ions (I−/I3

− and I3
−/I2 at potentials Epa = 0.36 V and 0.75 V, respectively). This is followed

by an irreversible redox transition (Epa = 1.39 V at 50 mV/s), which corresponds to the oxidation
of the ligand in the complex. This was concluded based on a comparison with the literature data
for the imine oxidation potentials. The imine oxidation is irreversible and is observed in the range
1.5–1.7 V: For example, for PhCH=NPh, the oxidation potential is 1.59 V (vs SCE, Pt, MeCN [61]); and
for free dpp-BIAN, the oxidation potential is 1.02 V (Pt, THF, vs. Fc+/0 when converted into Ag/AgCl,
KClsat, this is 1.47 V [62]).

In the cathode potential region, a quasi-reversible redox transition I was observed with the structure
of [L0CoI]+ to the electronic structure of the reduced complex (Scheme 2).
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Scheme 2. Cathodic transformations of complex I.

At a potential of −0.68 V, a cathodic peak II was observed accompanied by the destruction
of the complex with the deposition of cobalt on the electrode surface, which can be seen from
the appearance of the oxidation peak of cobalt deposited on the backward curve (Epa = +0.13 V) [63].
This cathodic process proceeds electrochemically slowly, which manifests itself in a very flat peak shape
(Ep − Ep/2 = 93 mV). In addition, analysis of the semi-integrated form of the voltammogram indicates
that approximately half of the total amount of the complex is reduced (Figure 6b). It seems that free
dpp-BIAN released upon cathodic destruction binds [L0CoI]+ to form a new complex [L2

0CoI]+. It
contains a greater number of donor ligands than the original, which complicates its reduction. It
is observed only when potential E1/2 = −1.11 V (peak III), which is substantially more anodic than
the reduction potential of free ligand dpp-BIAN (−1.56 V [64]), which confirms the assignment of
this redox transition. The limiting value of the half-integral function for the first cathode transition is
equal to the sum for the second and third ones, which corresponds to the stoichiometry proposed in
Scheme 2.
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Figure 6. (a) Voltammogram of I (2.1 mM in 0.05 M n-Bu4NBF4 in MeCN, 50 mV/s, Pt); (b) semi-integral
transformation of the cathode part of the voltammogram shown in Figure 6a.

3. Materials and Methods

3.1. General Remarks

Initial cobalt(II) iodide is sensitive to air moisture (it forms crystalline hydrates); therefore, all
synthetic procedures and the isolation of reaction products were performed in an inert atmosphere
using the Schlenk technique. Acetonitrile was dried over phosphorus(V) oxide and stored over
molecular sieves (3 Å), toluene was dried and stored over the sodium complex with benzophenone,
and the solvents were taken using condensation in vacuum immediately before use. Cobalt(II) iodide
was synthesized in situ from metallic cobalt and crystalline iodine (Merck KGaA, Darmstadt, Germany)
in acetonitrile in a glass ampoule with a Teflon valve under heating; dpp-BIAN was synthesized
according to the known procedure [38]; and pyridine (Merck KGaA, Darmstadt, Germany) was dried
over potassium hydroxide, stored over activated molecular sieves (4 Å), and condensed in vacuum
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immediately before the reaction. Product yields were calculated relative to the initial amount of ligands:
dpp-BIAN (0.50 g, 1 mmol) and pyridine (0.158 g, 2 mmol).

IR spectra of the compound were recorded in the range 400–4000 cm−1 on a Perkin Elmer (Waltham,
Massachusetts, USA) Spectrum 65 spectrophotometer equipped with Quest ATR Accessory (Specac
(Orpington, Kent, UK)) using the method of attenuated total reflection (ATR).

Voltammograms of the complexes were recorded on an AutoLab PGSTAT100 N (Metrohm, Zurich,
Switzerland) potentiostat in a 10-mL three-electrode cell with a platinum wire counter electrode and
a silver reference electrode (Ag/AgCl, KClsat). A reference electrode was attached to the electrolyte
solution through a salt bridge containing a 0.05 M solution of n-Bu4NBF4 in acetonitrile. A platinum
disk with an active surface area of 0.045 cm2 was used as a working electrode. The platinum electrode
was polished with a suspension of Al2O3 (SPA 0.3) at a polishing set (Metrohm, Zurich, Switzerland)
and washed with sulfuric acid and water with acetone. All solutions were thoroughly deaerated with
argon. A solution of complex I was prepared in acetonitrile in a Schlenk vessel in an argon atmosphere.

The magnetic behavior of the complexes was studied using the automated Quantum Design
PPMS-9 physical property measuring system with the option of measuring the dynamic (AC) and
static (DC) magnetic susceptibility. This equipment allows research to be carried out in the temperature
range of 2–300 K with magnetic fields from −9 to 9 T. When measuring the AC susceptibility, an
alternating magnetic field was applied with intensity HAC = 1–5 Oe in the frequency range 10–10000 Hz.
The measurements were carried out on polycrystalline samples moistened with mineral oil to prevent
the orientation of the crystals in an external magnetic field. The prepared samples were sealed in
plastic bags. The magnetic susceptibility χ was determined taking into account the diamagnetic
contribution of the substance, using the additive Pascal scheme, the contribution of the bag, and that
of mineral oil. The magnetization relaxation times τ = 1/2πνmax and the α factor that determines
the distribution of relaxation processes were calculated by approximating the dependences χ′(ν) and
χ”(ν) by the generalized Debye model.

Elemental analysis was performed on an automatic EuroEA-3000 C, H, N, S analyzer (EuroVektor,
Pavia, Italy).

X-ray powder diffraction studies were carried out on a Bruker D8 Advance powder X-ray
diffractometer (Bruker AXS, Madison, Wisconsin) equipped with variable slots, an Ni filter, and
a LynxEye position-sensitive detector. The survey was carried out in the X-ray reflection mode
(Bragg-Brentano geometry) with rotation of the sample. The diffraction pattern was described by
the Rietveld method in the TOPAS software package.

X-ray diffraction studies of single crystals of complexes I and II were performed on a Bruker Apex
II diffractometer (Bruker AXS, Madison, Wisconsin) (CCD detector, MoKα, λ = 0.71073 Å, graphite
monochromator) [65]. The structures were solved by direct methods and refined in the full-matrix
anisotropic approximation for all non-hydrogen atoms. Hydrogen atoms at carbon atoms of organic
ligands were generated geometrically and refined in the "riding" model. The calculations were
performed using the SHELX-2014 software package [66]. The main crystallographic parameters
and refinement details of compounds I and II are listed in Table 1. The structure parameters
were deposited with the Cambridge Structural Database (CCDC Nos. 1961151 (I) and 1961152 (II);
deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif).

Quantum chemical calculations of the zero-field splitting (ZFS) parameters for complexes I
and II were performed based on the state-averaged complete active space self-consistent field
calculations (SA-CASSCF) [67–69], followed by the N-electron valence second-order perturbation
theory (NEVPT2) [70,71]. Scalar relativistic effects were taken into account by a standard second-order
Douglas–Kroll–Hess (DKH) procedure [72]. For the calculations, a segmented all-electron relativistically
contracted version [73] of Ahlrichs polarized triple-ζ basis set def2-TZVP [74–76] was used for all
atoms. In order to decrease the calculation time, the resolution of identity (RI) approximation with
corresponding correlation fitting of the basis set [77] was employed. The spin–orbit effects were
included using the quasi-degenerate perturbation theory (QDPT) [78] in which approximations to

http://www.ccdc.cam.ac.uk/data_request/cif
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the Breit–Pauli form of the spin–orbit coupling operator (SOMF approximation) [79] and the effective
Hamiltonian theory [80] were utilized. The CASSCF active space is defined by considering the seven
d-electrons (for CoII) distributed in the five 3d orbitals. All possible multiplet (10 quartet and 40
doublet) states arising from the d7 configuration were included into the wave function expansion. All
quantum chemical calculations were performed by the ORCA program (ver.4.2.0) [81].

3.2. Synthesis of [(dpp-BIAN)0CoIII2]·MeCN (I)

Ligand dpp-BIAN (0.5 g, 1 mmol) was added to cobalt diiodide (1 mmol) prepared in situ in
acetonitrile from iodine (0.254 g, 1 mmol) and an excess of powder metal cobalt. The color of the reaction
mixture instantly changed from green to red-brown. Crystallization from acetonitrile gave red crystals
in the form of parallelepipeds. Yield, 0.813 g (95%). Anal. calcd. for C38H43CoI2N3 (%): C, 53.41; H,
5.07; N, 4.92. Found (%): C, 53.35; H, 4.93; N, 4.87. IR (ATR, ν, cm−1): 3063 w, 2961 s, 2925m, 2865m,
2249w, 1646m, 1620s, 1600m, 1583s, 1489w, 1462s, 1436s, 1420m, 1383m, 1364m, 1323m, 1291s, 1253m,
1222m, 1203w, 1188m, 1128m, 1112w, 1089w, 1052m, 1042m, 953m, 936m, 852w, 833s, 800vs, 779vs,
757vs, 738m, 611w, 587w, 541s, 515w, 468m, 436w.

3.3. Synthesis of [(Py)2CoI2] (II)

Cobalt diiodide (1 mmol) was synthesized in situ from crystalline iodine (0.254 g, 1 mmol) and
an excess of powder metal cobalt in acetonitrile. Acetonitrile was removed from the {CoI2 · xMeCN}
adduct by drying in dynamic vacuum at 120 ◦C for 3 h. Toluene (25 mL) was condensed into a vial with
CoI2; then, pyridine (0.158 g, 2 mmol) was added, and the vial was sealed and heated in an oil bath at
130 ◦C until CoI2 was completely dissolved. The color of the reaction mixture was blue. Slow cooling
(10 ◦C per h) led to the formation of blue needle-shaped single crystals suitable for X-ray diffraction.
Yield, 0.415 g (88%). Anal. calcd. for C10H10CoI2N2 (%): C, 25.50; H, 2.14; N, 5.95. Found (%): C, 25.28;
H, 2.08; N, 5.74. IR (ATR, ν, cm−1): 3058w, 1859w, 1660w, 1604vs, 1482m, 1442vs, 1352w, 1241w, 1208s,
1154w, 1061vs, 1044m, 1014m, 945w, 756vs, 691vs, 642vs, 446w, 426s, 416w.

4. Conclusions

Thus, here we presented the synthesis, characterization, and structures of two molecular complexes
[(dpp-BIAN)0CoIII2]·MeCN (I) and [(Py)2CoI2] (II). The electrochemical studies of I suggest one-electron
reduction of the ligand in the composition of the complex to a radical, which is useful for further study of
its magnetic characteristics. The results of the DC magnetic measurements as well as CASSCF/NEVPT2
calculations showed that the distortion of the coordination CoN2I2 environment results in a negative
axial magnetic anisotropy decrease from II (D = −5.9 cm−1) to I (D = −22.6 cm−1). According to the AC
magnetometry, the complexes studied exhibit superparamagnetism and slow magnetic relaxation in
the applied field HDC, which classifies these compounds as field-induced SIMs. By the precise fit of
the relaxation time dependencies it was shown that the main pathways of relaxation are Raman and
direct, which is in common with other reported tetrahedral Co(II) SIMs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/9/2054/s1,
Figures S1 and S2: Theoretical and experimental X-ray powder diffraction patterns of complexes I and II; Figures S3
and S4: Frequency dependences of the real (χ’) and imaginary (χ") parts of the dynamic magnetic susceptibility at
different applied magnetic fields for complexes I and II; Table S1: Comparison of the position of the peaks in X-ray
powder diffraction patterns with literature data for complex II. The relaxation time temperature dependencies
fitted by using different mechanisms.
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