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Abstract
Background: A defibrillator should be connected to all patients receiving cardiopulmonary resuscitation (CPR) to allow early defibrillation. The

defibrillator will collect signal data such as the electrocardiogram (ECG), thoracic impedance and end-tidal CO2, which allows for research on

how patients demonstrate different responses to CPR. The aim of this review is to give an overview of methodological challenges and opportunities

in using defibrillator data for research.

Methods: The successful collection of defibrillator files has several challenges. There is no scientific standard on how to store such data, which

have resulted in several proprietary industrial solutions. The data needs to be exported to a software environment where signal filtering and clas-

sifications of ECG rhythms can be performed. This may be automated using different algorithms and artificial intelligence (AI). The patient can

be classified being in ventricular fibrillation or -tachycardia, asystole, pulseless electrical activity or having obtained return of spontaneous circulation.

How this dynamic response is time-dependent and related to covariates can be handled in several ways. These include Aalen’s linear model, Weibull

regression and joint models.

Conclusions: The vast amount of signal data from defibrillator represents promising opportunities for the use of AI and statistical analysis to assess

patient response to CPR. This may provide an epidemiologic basis to improve resuscitation guidelines and give more individualized care. We sug-

gest that an international working party is initiated to facilitate a discussion on how open formats for defibrillator data can be accomplished, that obli-

gates industrial partners to further develop their current technological solutions.
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Introduction

For patients in cardiac arrest, early cardiopulmonary resuscitation

(CPR) and application of a defibrillator are both crucial for survival.1

Modern defibrillators collect several types of continuous data from

the patient, such as the electrocardiogram (ECG), thoracic impe-

dance, end-tidal CO2 (EtCO2), blood pressure and pulse oximetry

(SpO2).
2–4 Some defibrillators also collect data from accelerometers

to calculate chest compression depth and rate. These types of data

offer great possibilities for research on how patients demonstrate dif-

ferent responses to resuscitation, including time-dependent effects

of treatments given, such as intravenous drugs.5–7 Any cardiac

arrest situation will induce stress and disorder for the treatment
team, making traditional collection of data challenging, especially in

the early phase of resuscitation. Accurate time stamping of events,

and giving a concise recall of these, may be biased by distorted

memories among members of the treatment team. However, if a

defibrillator is connected to the patient, and the data downloaded

afterwards, a more accurate description of events is possible. For

patients with out-of-hospital cardiac arrest, data recorded by auto-

matic external defibrillators (AED) may give insights into events not

possible to record by other means in this environment.

This type of research requires the systematic collection of data

from defibrillators after each episode of cardiac arrest, and access

to the raw data stored. Eftestøl and co-workers have given a thor-

ough description of challenges caused by industrial proprietary file

formats in defibrillator files, and several challenges in data handling.8
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The vast amount of signal data possible to collect represents promis-

ing opportunities for the use of artificial intelligence (AI) and complex

statistical analysis to assess systematically how patients respond to

CPR.9 This may provide an epidemiologic basis to improve resusci-

tation guidelines and to give more individualized care to patients in

cardiac arrest.

The main aim of this review is to give an overview of current

methodological challenges and opportunities in using defibrillator

data for research purposes. This includes technical and logistic chal-

lenges in collecting defibrillator files, and making these available in

open and uniform formats available for research. We aim to give

an overview of how these data can be visualized and analysed with

different signal processing, machine learning and statistical methods,

and what clinical implications the results may have.

Methodological challenges

Retrospective analysis of episodes of cardiac arrest requires pro-

cessing of large datasets to gather relevant clinical information.

The defibrillator files need to be de-identified and linked to clinical

information, most commonly available from Utstein-style templates

and patient medical records.10 This includes information on the

EMS response, treatment provided in the pre- and in-hospital phase,

and the patient’s clinical response to CPR. Additional and more pre-

cise information, on relevant time intervals and types of events

occurring, may be obtained by obtaining sound recordings during

CPR.11 Video recordings may be more challenging to obtain in this

setting, but is possible by applying body-mounted cameras.12

Another example is Valenzuela and co-workers, who analyzed secu-

rity videos in a study of cardiac arrests occurring in Las Vegas casi-

nos.13 Multicenter studies may have a need to integrate data from

several types of defibrillators, with specific and proprietary hardware

and software characteristics that complicates data handling. A suc-

cessful merging of defibrillator data and clinical data is key to any

type of research on these types of data.8 A typical workflow for col-

lecting, storing, and analyzing data from defibrillators is demon-

strated in Fig. 1.
Fig. 1 – Overview of the workflow for collecting, s
Collection of defibrillator data

Defibrillators will usually store signal data and other types of data in a

local file. Depending on the type of defibrillator, the files may be

exported to a server wirelessly or be downloaded manually. There

is no scientific or industrial standard on how to store or transfer these

types of data, which have resulted in the development of several pro-

prietary industrial file formats. The researcher is also confronted with

several logistical challenges when collecting the files before they are

lost. Some defibrillators generate a new file each time the defibrillator

is turned on, which may make the distinction between files from real

episodes and files with no relevant data difficult. In addition, real epi-

sodes may be overwritten due to limited memory in the defibrillator.

Access to raw data in defibrillator files

The exported files will contain the recorded biomedical signals that in

different ways may reflect the physiological state of the patient.

When information available in the ECG, thoracic impedance, EtCO2,

SpO2 and blood pressure are combined, the severity of patient con-

dition and whether the patient is deteriorating or improving physiolog-

ically may be assessed systematically.5–7,14 The files may also

include signals reflecting delivered therapy, such as acceleration

and force signals from chest compression assist pads. Some defib-

rillators generate log files containing data on events such as power-

on, attachment of pads, shock advisory analysis, defibrillation

attempts, as well as time stamped information by clinicians using

the device (e.g. the provision of intravenous drugs).

After the files have been collected, the data needs to be imported

in a software environment suitable for analysis. Software such as

SciPy, R, MATLAB (The Mathworks Inc., MA, USA) or similar are

suitable for these purposes.15,16 These provide opportunities for cut-

ting edge research, including application of signal processing algo-

rithms, statistical models and machine learning systems. However,

data must be exported from a proprietary data format to file types

that are readable, most commonly comma separated value (CSV)

files. In some cases, data might be encoded in a binary format, which

requires detailed knowledge of the encoding and the use of low-level

functionality for decoding binary encoded information. What types of
toring, and analyzing data from defibrillators.
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signals recorded, as well as how these are available through the dif-

ferent export solutions, will vary between manufacturers. Some man-

ufacturers provide free export of high-quality data in an open format,

whereas others offer expensive licensed solutions that need to be

bought separately.

Visualizing and analysing signal data

The visualisation of various biomedical signals is an important part of

the data exploration phase, where manual interpretations and classi-

fications (“annotations”) can be performed by clinicians. Although

manufacturers of defibrillators provide software to handle and visual-

ize signal data, these are specific for each type of defibrillator. One

software solution that works well is the CODE-STAT for LIFEPAK

defibrillators (Stryker, Kalamazoo, Michigan, United States).17

Although these types of software can be used for research purposes,

there are limited options for signal processing, manual annotations

and integration of clinical information. We believe that overall data

management is easier, and more options for data exploration and

analysis are available, when researchers have access to the raw

data. In our experience, such access is essential to enable the

researcher to construct a complete timeline of the CPR episode.

A key part of the annotation process is to define what types of

ECG rhythms are present at different points in time. As early as

1999, Sunde and co-workers demonstrated how logged event data,

ECG and clinical data could be used to assess the quality of defibril-

lation and advanced life support given.18 In this study, time intervals

were determined automatically from the log files and time stamps of

rhythm transitions and chest compression sequences which were

annotated manually. An example of how defibrillator data can be

visualized and annotated is demonstrated in Fig. 2 (the ‘dataAnnota-

tor’, University of the Basque Country, Bilbao). A 30-seconds window

of the different physiologic signals are shown in the upper three pan-

els. Note the different rhythm intervals annotated along the complete

timeline for the cardiac arrest episode in the bottom panel. Buttons

for annotation and visualization purposes are visible in the left frame.

This graphical user interface (GUI) has been developed with the soft-

ware MATLAB, which provides a wide scope of tools for data analy-

sis. The tools integrated in the ‘dataAnnotator’ need to be adapted to

the specific characteristics of each defibrillator and the types of sig-

nals exported. A common challenge is that biomedical signals fre-

quently are distorted by noise or interference signals, which

negatively affects what type of information can be extracted for clin-

ical interpretation. Pre-processing by filtering is crucial in most cases.

This includes removing high-frequency noise in the ECG, removing

CPR artefacts from the thoracic impedance and ECG, and extracting

the ventilation component of the thoracic impedance.19–25 Time

alignment of the signals and matching with clinical time stamps are

necessary to define the intervals of interest for the analysis. Signal

processing techniques may require the representation of the signal

in different domains, such as time or frequency. As different rhythms

have their characteristic profiles, one might see how different thera-

pies affects the frequency components.26,27 Visualisation of relevant

clinical information, such as when the patient received CPR,

obtained return of spontaneous circulation (ROSC), was intubated

or when any drugs was provided, may be central for the analysis.

In some instances, it is not possible to make any meaningful assess-

ment of ECG rhythm due to signal noise, and the researcher can

either assume the previously annotated rhythm is present or define

this portion of the signal as missing.
In general, the described methodology implies a post-hoc “recon-

struction” of real-life events in a critical situation, based on sensor

data and recorded clinical information of varying quality. Both signal

data and clinical data can be missing or incomplete, and time stamp-

ing of events may be inaccurate due to different clock settings. In

most instances it is unknown what type of ECG rhythm the patient

had before the defibrillator was attached. Signals showing start of

chest compressions will commonly be assessed as the start of the

cardiac arrest episode, although the patient may have been in a state

of severe circulatory shock, or in cardiac arrest, for seconds or min-

utes before CPR is started. The classification of the patient being in

cardiac arrest or not will mainly reflect decisions made by the treat-

ment team to start or to stop CPR. Thus, any analysis on these types

of data should be done with several precautions in mind.

Classification of data from episodes of CPR

Based on the ECG and other information, the patient is commonly

classified being in ventricular fibrillation or -tachycardia (VF/VT),

asystole, pulseless electrical activity (PEA), having obtained return

of spontaneous circulation (ROSC) or having been declared

dead.7,28,29 Thus, a five-state model for mutually exclusive clinical

states can be considered, demonstrated in Fig. 3. The event of death

being declared should be based on clinical data. The decision to

withhold CPR efforts may be based on patient comorbidity and

underlying prognosis and may be independent of any patient

response to CPR. A demonstration of highly different trajectories in

20 patients with cardiac arrest is given in Fig. 4A. A continuous

demonstration of the prevalence of the different states can be given

with ‘prevalence plots’, as demonstrated for the same 20 patients in

Fig. 4B. These types of figures may be generated with the R-

package “TraMineR”.30

Distinguishing between PEA and ROSC may be challenging and

depends on what type of clinical information is available. Time

stamping of ROSC in paper records or in the defibrillator may be

recorded by personnel on scene, but are often absent, inaccurate,

or unreliable. A pause of > 1 minute in chest compressions, the pres-

ence of an organized ECG rhythm and documentation of ROSC in

the paper records, can be used retrospectively to classify that ROSC

was likely present.31 Increasing EtCO2 values may identify ROSC

but requires that the defibrillator has this capability. The “cut-off”

value to define ROSC based on EtCO2 is uncertain and debated.32

Currently, the European Resuscitation Council (ERC) guidelines

state that “an increase in ETCO2 during CPR may indicate that

ROSC has occurred” and that “no specific threshold for the increase

in end-tidal CO2 has been identified for reliable diagnosis of

ROSC”.28

Distinguishing between “fine VF” and asystole may be difficult,

and the classification may be based on discerning signal amplitude

details measured in millivolts. The width and rate of QRS complexes

may also yield information. In PEA, decreasing QRS-width and

increasing heart rate have been shown to be predictive of ROSC

being likely to occur in the following minutes.33,34 The quality of

CPR is commonly assessed by chest compressions and ventilations

given, based on CPR assist pad acceleration signals (compres-

sions), cyclic variations in the thoracic impedance (compressions

and ventilations) and in the capnography (ventilations).35–40 These

can be used to characterize chest compression depth, rate and

duty-cycle, as well as ventilation rate, duration, amplitude of inhala-

tion / exhalation and levels of EtCO2.
24,38 Although resuscitation



Fig. 2 – An example of data analysis with the ‘dataAnnotator’ (University of the Basque Country, Bilbao),

programmed in MATLAB. The upper panel is the ECG, the second panel contains the thoracic impedance signal,

and the third panel contains the end-tidal CO2-signal. A 30-seconds window is shown, where a first interval with

chest compressions is observed followed by a second interval with a pulse generating rhythm (annotated as PR).

The sequence of rhythm changes is plotted as a bar in the bottom panel for the complete episode of one hour, where

color-coded rhythm intervals are visible (yellow: PEA, green: PR). The 30-second window shown in the upper panels

is highlighted as red in the bottom panel.

Fig. 3 – Multistate model in resuscitation research. VF/VT – ventricular fibrillation or -tachycardia. PEA – pulseless

electrical activity. ROSC – return of spontaneous circulation.
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Fig. 4 – Plot of individual sequences of state changes in 20 patients receiving advanced life support can be seen in

panel A. The corresponding state prevalence can be seen in panel B. The figures have been generated with the R-

package “TraMineR”. VF/VT – ventricular fibrillation or -tachycardia. PEA – pulseless electrical activity. ROSC –

return of spontaneous circulation.
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guidelines have specific recommendations on CPR quality, the meth-

ods to compute the metrics have been sparsely described, except by

Kramer-Johansen and co-workers.41

The classification of ECG rhythms and other events may also be

automated by using computer algorithms. Such algorithms have

been developed by industrial corporations and research groups,

although few are openly available. The cardiac arrest rhythms differ

significantly from ECG rhythms observed in hemodynamically stable

patients, making most of the classical algorithms for QRS detection

or ECG segmentation unsuitable. The signals are characterized by

waveform time and frequency characteristics that change rapidly,

influenced by the physiologic state of the patient and treatments

given during CPR. In addition, the classification is usually performed

in short intervals (<5–10 seconds) when chest compressions are

paused. Analysis of the ventricular fibrillation waveform has been

used to predict the outcome of defibrillation.42–47 The probability of

ROSC (pROSC) can be monitored from VF segments throughout

the resuscitation episode.27,43 This has been applied to study how

the VF waveform reduces pROSC during pauses after interruptions

of chest compressions and increases pROSC after longer

sequences of chest compressions.26,48 Other studies have focused

on classifying other cardiac rhythms occurring during resuscita-

tion.49–51 Several techniques permit analysing the ECG even when

distorted by chest compressions. These integrate advanced filtering

techniques (multistage, adaptive etc.) in combination with ad-hoc

post-filtering rhythm classification algorithms, some based on

machine learning.21,25,52,53 Automated algorithms can assist in

defining the time of ROSC using the ECG, thoracic impedance or
capnography.54–56 Even more, recent proposals provide solutions

to accurately annotate regular rhythms, both pulsed and pulseless,

even when signal intervals are short.57,58

Statistical analysis

After the data has been visualized and annotated, a coherent time-

line has been established and statistical modelling can start. The

modelling needs to take the time aspect into account.33 Typical goals

of the analysis are to try to understand and quantify factors of impor-

tance for patient outcomes, or to predict these outcomes. The ulti-

mate outcome is whether the patient survive to hospital discharge.

Thus, the goal is to understand and quantify the processes leading

to this, such that future management can be optimized to improve

patient outcomes. In resuscitation from cardiac arrest, treatment is

intimately related to the condition of the patient. Knowing the order

of interventions and subsequent observations may thus allow for rea-

soning about cause and effect. It is therefore of interest to model the

state of the patient along the timeline, or study sub-parts of the pro-

cess, for instance shock success in VF/VT. However, the data are of

very different nature which require different modelling approaches.

Predictor variable categories

Predictor variables, also called explanatory variables, independent

variables or features, are commonly termed ‘covariates’. These have

characteristics that require different approaches when linking them to

the outcome variables, demonstrated in Table 1. Time fixed predictor

variables have the same value through the entire patient trajectory,

are easy to handle and can be used in any regression model and



Table 1 – Predictor variables relevant for statistical analysis of clinical data and data collected by defibrillators.

Type of predictor

variable

Examples Statistical model Modifiable at any level?

Patient fixed (determined

by the patient)

Age, sex, previous medical history Regression methods,

time-to-event models

No.

Situation fixed

(determined from the

outset depending on the

circumstances)

Location in- or out-of-hospital, likely

diagnosis and immediate cause (e.g.,

drowning), presenting rhythm, bystander

efforts, emergency response time,

availability of biochemical and imaging

results

Regression methods,

time-to-event models

To some degree, at the population or

hospital level (bystander CPR,

emergency team response time,

defibrillator available).

Treatment time varying

(Treatment that is

changed experimentally

and/or in response to

clinical development)

DC shock in VF, CPR quality metrics,

medication, modified CPR methods (e.g.,

active compression- decompression)

Time-to-event models

with time-dependent

predictor variables,

joint models.

Potentially, in the individual patient

(e.g., anti-arrhythmic drug in refractory

VF).

Patient time varying

(Changing over the course

of resuscitation)

Clinical state of the patient (asystole, VF,

PEA, temporary ROSC). ECG

characteristics like QRS rate and width,

and AMSA in VF. Direct or surrogate

measures of coronary perfusion (e.g.,

blood pressure).

Longitudinal regression

models, Multistate

time-to-event, joint

models.

No. These are biomarkers that reflect

the patient’s condition; and may

alternatively be considered

intermediate outcomes.

Patient dynamic

(summarizing the process

until present)

Time spent in the clinical states. Identifies

the personal trait; a “frailty” equivalent.

Additive time-to-event

model

No, past events cannot be altered.

6 R E S U S C I T A T I O N P L U S 1 8 ( 2 0 2 4 ) 1 0 0 6 1 1
most time-to-event models. Time dependent predictor variables

change values over time, and their path may possibly be related to

the process observed. These require more careful handling if they

are of the endogenous (or internal) type, i.e., their path is known to

be related to the process observed. Dynamic predictor variables

are variables containing information about the past of the process,

e.g. elements of the transition history such as the time already spent

in a given state.59,60

Time to event models

It is crucial to incorporate the time aspect of the resuscitation process

in the statistical analyses, and thus using various time-to-event mod-

els are natural approaches. These can range from simple single

event models that study transitions from one clinical state to another,

to complex models aiming to grasp the entire patient trajectory.

A multistate model allows one to model the entire path of the state

of the patient from the start of resuscitation until sustained ROSC

has been obtained or death been declared, as demonstrated in

Figs. 3 and 4.5,7,31,61,62,63 These models take the issue of

“competing risks” into account, as a patient with ROSC can transition

to the states of PEA, asystole and VF/VT. To study the impact of

predictor variables on simple “from-to” transitions, for instance the

impact of initial rhythm on the transition from PEA to ROSC, classical

survival analysis models like the Cox proportional hazards model or

Aalen’s linear model are natural choices.64–66 A benefit of using

Aalen’s linear model, compared to the Cox proportional hazards

model, is the ability to handle dynamic predictors and to study direct

and indirect effects.59,60 A drawback with the non-parametric Aalen

model is that it models the cumulative intensity, which is rather

intricate to interpret. In this respect the semi-parametric Cox model

is better, and completely parametric approaches like Weibull regres-
sion or accelerated failure time models can be easier to under-

stand.67,68 When including important time-dependent predictor

variables in time-to-event models there are several challenges.

These include noise, partly missing data and that these are internal

predictor variables. For proper handling of such issues, joint models

have emerged as a very useful approach.34,69

Discussion

The systematic use of data from defibrillators to assess patient

response to CPR is a promising field of research. However, there

are several challenges in data collection and handling that should

be addressed by the resuscitation community. So far, defibrillator

data have been stored in industrial proprietary formats not primarily

designed for research. Low quality data with limited access will con-

tinue to be a barrier to research. This is a paradox given that emer-

gency medical services (EMS), hospitals, universities and the

patients themselves should have the main ownership to the raw data,

according to principles in the European Union General Data Protec-

tion Regulation (EU GDPR).70 Recital 4 in this regulation also states

that “the processing of personal data should be designed to serve

mankind”. Thus, there is a need for better incentives and organiza-

tional demands on manufacturers of defibrillators to improve their

solutions to make data openly available for research.

The use of data from defibrillators, and other types of electronic

recordings from real life critical events (e.g. voice, video), comes with

some ethical challenges. As the defibrillator will record possible

wrong judgements, such as failure to shock VF, or inappropriate

sequences of actions compared to guideline recommendations, the

data need to be handled in a responsible way. Defibrillator data com-
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bined with voice- or video recordings of emergency personnel and

bystanders, under severe psychological stress, may be used in a

way that are not in their best interest in media coverages and legal

processes.

Clinical trials that include patients with cardiac arrest should con-

sider systematic collection of defibrillator data as part of the study

setup. This will allow for better control of timelines and the events

occurring during CPR. However, this type of data collection and anal-

ysis is very resource demanding, and the costs versus benefits must

be considered. Defibrillator files should also be considered collected

and integrated with cardiac arrest registries, which will allow auto-

matic registration of information that is entered manually today.8,71

The integration of defibrillator files into the resuscitation registries

would also allow the release of the further potential of AI based mod-

els requiring larger data sets. This will allow for analysis and statisti-

cal modelling on much larger data sets and allow for comparison of

results from different EMS systems and hospitals. Increased use of

automatic registrations and annotations will increase both internal

and external validity.

To assess potential relationships between therapies given and

patient response during CPR, studies need to be designed such that

appropriate data from defibrillators are collected and specific events

during resuscitation are meticulously recorded. If causal relation-

ships can be established at different phases of resuscitation, the

covariates can be altered by the CPR team and the clinical course

of the individual patient can be turned in a more beneficial direction.

Such covariates are found among the patient time varying variables,

such as the current clinical state of the patient. If observed reliably,

this may inform and guide on the treatment time varying variables.

A simple example is immediate defibrillation in VF without delay.

However, such a simple approach is less clear for the other clinical

states. If the QRS rate in PEA is slowing down and the QRS complex

is widening, this can be indicative of resuscitation efforts going in the

wrong direction. What the proper response should be is less clear.

The treatment team can administer adrenaline, increase compres-

sion depth, administer intravenous fluids, increase ventilation and

more. The individual effects of these measures on the patient trajec-

tory are mainly unknown, except for adrenaline which increases the

probability of ROSC and the heart rate both in surviving and non-

surviving patients.5,6,72

Given that the individual patient fixed predictor variables are of

major importance, a possible approach to future research would be

to consider systems of mixed effects stochastic differential equa-

tions, which incorporates system dynamics, individual traits, and

stochastic components.73,74 Another future approach could be

exploring and adapting suitable state space models.75 A better

understanding of the individual effects of treatments on patient tra-

jectories may lead to better guidelines for resuscitation, and the

opportunity for more tailored care based on each patient’s clinical

response.

We believe that we have brought forward several sound argu-

ments to develop more uniform and open data formats for defibrilla-

tor data, that make these easily accessible for researchers and

clinicians. There is a need for a broader initiative by the resuscitation

community to accomplish this. We suggest that an International Liai-

son Committee (ILCOR) working party is initiated to facilitate a broad

discussion on how more open and accessible formats for defibrillator

data can be accomplished, in a way that obligates industrial partners

to further develop their current technological solutions.
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