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The type I clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated (Cas) system is one of five adaptive immune systems and exists widely in
bacteria and archaea. In this study, we showed that Xanthomonas oryzae pv. oryzae
(Xoo) possesses a functional CRISPR system by engineering constructs mimicking
its CRISPR cassette. CRISPR array analysis showed that the TTC at the 5′-end of
the target sequence is a functional protospacer-adjacent motif (PAM) of CRISPR.
Guide RNA (gRNA) deletion analysis identified a minimum of 27-bp spacer that was
required to ensure successful self-target killing in PXO99A strain. Mutants with deletion
of individual Cas genes were constructed to analyze the effects of Cas proteins on
mature CRISPR RNA (crRNA), processing intermediates and DNA interference. Results
showed that depleting each of the three genes, cas5d, csd1, and csd2 inactivated the
pre-crRNA processing, whereas inactivation of cas3 impaired in processing pre-crRNA.
Furthermore, the Xoo CRISPR/Cas system was functional in Pseudomonas syringae pv.
tomato. Collectively, our results would contribute to the functional study of CRISPR/Cas
system of Xoo, and also provide a new vision on the use of bacterial endogenous
systems as a convenient tool for gene editing.

Keywords: type I CRISPR-Cas systems, Xanthomonas oryzae pv. oryzae (Xoo), CRISPR array, guide RNA, Cas
protein, genome editing

INTRODUCTION

The CRISPRdb database1 predicts that approximately 87% of archaea and 45% of bacteria
have the CRISPR-Cas system encoded in their genomes (Grissa et al., 2007). Even though the
currently known CRISPR-Cas systems follow the same basic principle, they can be divided into
2 general classes (Class I and Class II), 6 types and 33 subtypes according to their composition

1https://crispr.i2bc.paris-saclay.fr/

Frontiers in Microbiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 686715

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.686715
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.686715
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.686715&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/articles/10.3389/fmicb.2021.686715/full
https://crispr.i2bc.paris-saclay.fr/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-686715 August 7, 2021 Time: 13:16 # 2

Liu et al. Functional Identification of CRISPR-Cas System in Xoo

(Cas gene content, repeat sequence and structure of CRISPR
locus) (Makarova et al., 2020). The most widely used Class II
systems rely on single-effecter proteins (a large protein structure
domain), namely Cas9 (Type II), Cas12 and Cas14 (Type
V) and Cas13 (Type VI). However, Class I systems that use
multiple effector protein complexes to interfere with DNA/RNA
include Cas3 (Type I), Cas10 (Type III), and dinG (Type IV)
(Nethery and Barrangou, 2019).

Because the Class II CRISPR/Cas system only needs an
effective protein that can interferes with DNA, the system has
been widely engineered for gene editing in medicine, agriculture
and biotechnology (Donohoue et al., 2018). However, although
the widely used SpCas9 (derived from Streptococcus pyogenes) is
of bacterial origin and genome editing based on Cas9 has been
successful in several model organisms, its use in prokaryotes
is rather limited (Chen et al., 2018). One of the reasons may
be the cytotoxicity of Cas9 itself. Recently studies show that
when Cas9 is introduced into Corynebacterium glutamate cells,
colonies are not produced even in the absence of a guide RNA
(gRNA) (Jiang and Doudna, 2017); overexpression of catalytically
dead Cas9 in E. coli results in slow growth and abnormal
morphology, suggesting that Cas9 also exhibits cellular toxicity
through transient non-specific DNA binding of the genome (Cho
et al., 2018). Therefore, we hope to explore other types of CRISPR
systems that are different from the heterogenous Cas9 and
implement additional re-editing strategies that have application
potential. More notably, to date, the single effector Class II
CRISPR-Cas system accounts for only 10% of all identified
CRISPR-Cas systems. The remaining 90% belong to the diverse
Class I system. Fifty percent of the identified systems belong to
the type I CRISPR-Cas system of bacteria and archaea (Crawley
et al., 2018). Therefore, we can reuse the endogenous type I
CRISPR-Cas system in bacteria and archaea by synthesizing a
mini CRISPR array. This will allow the endogenous Cascade-
Cas3 complex to be redirected to the genome and reused
for targeted killing, genome editing, or transcriptional control
(Csorgo et al., 2020). In recent years, reusing these extensive
and endogenously encoded CRISPR-Cas systems for “built-in”
genome editing has become a simple, efficient and promising
genetic manipulation strategy in prokaryotes (Cheng et al., 2017;
Zhang et al., 2018).

Xanthomonas oryzae pv. oryzae (Xoo) is the pathogen
responsible for rice bacterial blight, which causes serious loss
of rice yield. Genome sequencing of three Xoo strains (MAFF
311018, KACC10331 and PXO99A) reveals that each strain
contained a CRISPR/Cas system belonging to Class II of the type
I-C clade (Salzberg et al., 2008). Sequence determination and
phage infection assays in two strains (Xo21 and Xo604) suggested
that CRISPR-mediated phage resistance also functions in Xoo.
Bioinformatic analysis identified a conserved TTC sequence
that is present next to the protospacer sequence of the Xoo
bacteriophage but in the opposite orientation to Streptococcus
thermophilus (Semenova et al., 2009). In this study, we confirmed
TTC as the protospacer-adjacent motif (PAM) and determined
the minimum length of the guide RNAs and Cas genes that were
required for CRISPR function. Furthermore, the Xoo CRISPR-
Cas system is functional in Pseudomonas syringae pv. tomato,

indicating the possibility of utilizing the Xoo CRISPR-Cas system
as a tool for gene editing in other organisms.

RESULTS

Functional CRISPR/Cas System in Xoo
The genomic structure of the CRISPR system in the PXO99A

strain has been described (Figure 1A). To further facilitate the
dissection of the CRISPR function, a construct mimicking the
Xoo CRISPR cassette was designed and synthesized by using
pUC57 as the backbone. The mimicking cassette contains an
array of 90-bp TATA boxes, 100-bp leader sequences (LDRs),
three “GTCGCGTCCTCACGGGCGCGTGGATTGAAAC”
direct repeats (DRs) separated with two restriction sites for BtgZI
and BsaI for inserting spacer sequences between DRs, ending
with a 20-bp terminus (referred to herein as mini-CRISPR)
(Figure 1B). We reasoned that the mimicking cassette containing
the spacer sequences matching to the target sites in Xoo could
trigger CRISPR interference in Xoo cells, transformation of
mini-CRISPR construct into Xoo competent cells would result in
the death of the cells. Plasmid pHM1-XocRNA-CSpec1-CSpec2
targeting the spectinomycin resistant gene was transferred into
PXO99A cells and plated on spectinomycin-containing medium.
Only 8 spectinomycin resistant transformants were obtained, but
lots of colonies were observed to form when using the control
vector (Figure 1C). Similarly, when plasmid pHM1-XocRNA-
XopQ1-XopQ2 targeting the type III effector gene (xopQ)
was transferred into Xoo cells, only 4 spectinomycin resistant
transformants were detected, while the control had lots of clones
grown (Figure 1C). Altogether, the findings demonstrate that
Xoo strain PXO99A processes a functional CRISPR-Cas system
and confirm that active CRISPR-Cas loci and their targets cannot
coexist in the same cells.

gRNA Requirements for CRISPR/Cas
System Function
Bioinformatics analysis identified a trinucleotide motif, 5′-TTC-
3′, present upstream of the most protospacers in Xoo phages.
To confirm the prediction experimentally and determine the
minimum length required for the functional gRNA, various
truncated forms of gRNA lacking sequences corresponding to the
native version (cXopQ1, Figure 2A) at their 5′ or 3′ ends were
expressed in Xoo cells and then selected on the spectinomycin
medium plates (Figure 2A). For the control plasmid (pHM1-
XocRNA-DR empty), many colonies were grown, suggesting
competency of bacterial cells and feasibility of transformation.
When the plasmid pHM1-XocRNA-cXopQ1 was transferred into
PXO99A cells and plated on spectinomycin-containing medium,
none of spectinomycin resistant transformants were obtained.
However, deletion of five nucleotides (nt) from the 5′-end of
gRNA, which juxtaposed to TTC (PAM), abolished the CRISPR
function and resulted in the growth of many spectinomycin
resistant colonies (pHM1-XocRNA-CXopQ2, Figure 2B). This
result confirmed that the TTC motif is a genuine PAM
that is essential for CRISPR function in Xoo. Truncation
of the gRNA from the 3′-end showed that cXopQ3, which
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FIGURE 1 | Engineering constructs mimicking X. oryzae pv. oryzae CRISPR cassette. (A) The Xoo CRISPR locus is schematically shown. Cas genes are identified
and indicated by arrows. Repeats are indicated by grey rectangles, spacers by white rhombuses. The leader sequence (LDR) is located between the cas2 gene and
the CRISPR Cassette with the direction of transcription indicated. (B) Schematic diagram of the vector containing the CRISPR cassette mimicking that of Xoo. Sites
of BtgZ I and Bsa I permit the insertion of two spacers for targeting sequences. (C) Plasmids containing spacers targeting spectinomycin resistance gene in the
backbone of pHM1 or type III effector gene xopQ in Xoo were used for transformation assay of PXO99A. Plasmid pHM1-XocRNA DR empty was used as a control.
Transformation efficiency was calculated as colony-forming units (CFU) per microgram of plasmid DNA. Error bars represent 5% SDs.

FIGURE 2 | Detection of CRISPR function using various truncated forms of gRNA spacer sequences. (A) gRNA sequence targeting spectinomycin gene as a native
version (cXopQ1). Various truncated spacer sequences of gRNA missing either their 5′ sequences or their 3′ sequences (cXopQ2, cXopQ3, cXopQ3–1, cXopQ3–2,
cXopQ4, cXopQ5). The trinucleotide motif TTC, which is the conserved protospacer adjacent motif (PAM), is underlined in bold (XopQ). (B) Functional analysis of the
truncated gRNA spacer sequences in PXO99A cells. Transformation efficiency was measured as CFU per microgram of plasmid DNA. Error bars represent 5% SDs.

lacks five nucleotides (nt) from the 3′-end did not abolish
the CRISPR activity. However, cXopQ4 and cXopQ5, which
lack 10 or 15 nucleotides (nt) from the 3′-end, respectively,
abolished the CRISPR activity (Figure 2B). Based on this
finding, we further deleted two nucleotides (cXopQ3-1) and four
nucleotides (cXopQ3-2) at the 3′-end of cXopQ3, respectively
(Figure 2A). The cXopQ3-1 was still active, but the activity of
cXopQ3-2 was lost (Figure 2B). We therefore conclude that a

minimal stretch of 27-bp of the gRNA directly matching the
sequence downstream of the TTC PAM is required for effective
CRISPR function.

Mutagenesis of Cas Genes
To dissect the function of individual Cas genes in the
Xoo CRISPR-Cas system, selection marker-free mutants were
constructed for each of the 7Cas genes. The mutants of individual
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genes were confirmed by comparing the size of the PCR product
from the wild type and mutated alleles containing the deletion
flanking fragments (Figure 3A). The 6 Cas mutants (cas1 and
cas2 were deletion together), as well as the wild-type strain
PXO99A, were transformed with plasmid pHM1-cSpe1-cSpe2
to test CRISPR function in each Cas gene deletion strain. The
results showed that inactivation of four Cas genes, cas3, cas5d,
csd1, and csd2, led to the observation of many spectinomycin
resistant colonies on plates. However, deletion of the other
three Cas genes (cas4, cas1, and cas2) did not increase the
number of spectinomycin resistance transformants compared
to the control stains (Figure 3B). The results showed that
Cas3, Cas5d, Csd1, and Csd2 proteins were essentially required
for the CRISPR function in Xoo, while Cas4, Cas1, and Cas2
proteins might be involved at other stages of the CRISPR-
Cas interference.

Functional complementation tests were performed to confirm
whether the loss of CRISPR function was due to the
loss of the Cas gene in individual mutants. Four DNA
fragments (XoCasA, XoCasB, XoCasC, and XoCasD) expressing
different arrays of Cas genes were introduced into Xoo cells
(Figure 4A). Cell death caused by CRISPR interference was
observed when gRNA cSpe1-cSpe2 was delivered into the
four complementation strains XoCasA, XoCasB, XoCasC, and

XoCasD, suggesting the restoration of CRISPR function in each
of Cas mutants (Figure 4B).

Northern Analysis of Pre-crRNA
Processing in Cas Gene Knockout
Strains
Pre-crRNA processing in each of Cas gene knockout strains
was tested by Northern blot analysis (Figure 5). Since neither
intermediate nor mature crRNA was present in the mutant,
deletion of each of the genes encoding the Cas5d, Csd1, and
Csd2 proteins inactivated pre-crRNA processing. These results
indicate that the Cas5d, Csd1, and Csd2 are essential for mature
crRNA production in Xoo and that they are the three key
enzymes responsible for pre-crRNA processing in this organism.
However, the Northern blot patterns produced by the 1cas4
and 1cas1/2 strains were the same as those produced in the
wild-type strains. The hybridization signal for the processed
intermediates in the 1Cas3 strain was greatly reduced, while the
crRNAs remained at very similar levels compared to the wild-
type strain. These results indicate that Cas3 protein functions in
stabilizing RNA intermediates of pre-crRNA, whereas Cas4 and
Cas1/2 proteins do not appear to have any effect on the processing
and maturation of pre-crRNA.

FIGURE 3 | Mutagenesis of Cas genes in PXO99A strain. (A) PCR verification of Cas gene knockout mutants derived from the PXO99A strain. (B) Functional
analysis of CRISPR in Xoo strains with the specified Cas gene inactivated. The non-targeting plasmid pHM1-XocRNA DR empty was used as a control.
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FIGURE 4 | Restored CRISPR activity in Cas gene complementing strains. (A) Constructs used to transform Cas gene mutant strains. Genes present in each
construction are shaded in grey. (B) CRISPR function was restored in the complementing strains. Competent cells of the Cas gene knockout strain with or without (–)
corresponding complementary construct were used to test CRISPR activity by introducing gRNA targeting the spectinomycin resistance gene in the pHM1 vector.

Xoo CRISPR-Cas in Pseudomonas
syringae pv. Tomato
Since the CRISPR-Cas system has great potential for gene
editing in different organisms, we expect that the Xoo CRISPR-
Cas system also functions in another plant bacterial pathogen.
P. syringae pv. tomato strain DC3000 was used to express the
whole set of Xoo Cas genes (XoCasE) or the four essential Cas
genes required for CRISPR function (XoCasD, without genes
encoding Cas4, Csd1, and Csd2 proteins). gRNA targeting the
kanamycin resistance gene in the pVSP61 vector backbone or
the PCS (pyoverdine chromophore precursor synthetase) gene
from P. syringae was used to examine the CRISPR function.
Almost no colonies survived on the kanamycin medium when
the gRNA was co-expressed with the Xoo Cas gene complex in
DC3000 cells, while many clones grew from the control empty
vector (Figure 6), suggesting that the Xoo CRISPR-Cas system is
also functional in P. syringae pv. tomato and has potential to be
engineered into a genome editing tool in bacteria.

DISCUSSION

Although the Type I-C system is the most common CRISPR-Cas
system (Makarova et al., 2011), the functional characterization
of CRISPR in Xanthomonas bacteria has not been reported in

detail. Research has shown that the endogenous CRISPR-Cas
system of Xoo can encode multiple Cas proteins, forming a
multi-Cas-effectors system, namely CRISPR-related complex for
antiviral defense.

Previous studies have shown that in the I-E CRISPR-Cas
system of E. coli, the Cas1-Cas2 complex has a dual function. The
complex not only needs to acquire the original protospacer DNA
but is also responsible for the recognition of PAM in the process
of protospacer capture (Wang et al., 2015). In this study, we
showed that Cas1 and Cas2 proteins had no detectable effect on
processing and maturation of pre-crRNA instead might involve
in other processes of the CRISPR-Cas interference, suggesting
that they indeed function in spacer acquisition. In addition to
the participation of Cas1 and Cas2, endonucleases of the Cas4
family are one of the other accessory proteins aided in de novo
protospacer acquisition. Cas4 was found to play an important
role in the recognition of PAM and the determination of
prespacer length during the adaptation of some archaeal models
(Shiimori et al., 2018; Zhang et al., 2019). Cas4 overexpression
inhibited the acquisition of protospacer fragments in Sulfolobus
islandicus (Zhang et al., 2019), indicating that Cas4 might be used
by viruses to inhibit CRISPR immunity as an anti-CRISPR factor
(Nunez et al., 2016; Yoganand et al., 2017); Cas4 and Cas1 are
similar to RecB- and AddB-type nucleic acid helicases (Heidrich
and Vogel, 2013). In addition, fusion of Cas1 and Cas4 was found
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FIGURE 5 | Functions of Cas proteins of the Xoo CRISPR system in
pre-crRNA processing and PAM-dependent DNA silencing. Northern blot
analysis of total RNAs from PXO99A and its derived Cas gene knockout
strains for pre-crRNA processing. Total RNA was probed using labeled
oligonucleotides of the repeat sequences. Total RNA was hybridized with the
5S rRNA probe as a loading control.

in Types I and III of several bacteria and archaea, indicating a
correlation between the functions of the two proteins (Kieper
et al., 2018; Rollie et al., 2018); The complex formed by Cas4 and
Cas1 integrase in the endogenous Type I-C system of Bacillus
halogenated efficiently cleaved the 3′ overhang of prespacers in
a PAM-dependent manner, efficiently integrating the functional
spacer moiety into the CRISPR array (Lee et al., 2018). These
observations that depleting Cas4 or Cas1/2 neither blocked the
processing crRNA nor degraded the DNA targets indicated that
XoCas4 might indeed be functionally related to Cas1/Cas2.

Cas3 protein is the characteristic protein of the type I
CRISPR-Cas system (Klompe et al., 2019). It is a multidomain
nuclease-helicase, and it was reported that Cas3 has a dual
role, functioning during CRISPR interference as well as during
protospacer acquisition (Jiang et al., 2013). Depletion of XoCas3
completely block the degradation of the DNA target, but did
not interfere with the processing of crRNA. This result suggests
that XoCas3 indeed plays an important role during CRISPR
interference, and whether it functions in protospacer acquisition
or gene expression remains to be investigated.

The Cas5 protein is one of the most prevalent Cas protein
families in the CRISPR-Cas system. Cas5 widely exists in Type
I-A, Type I-B, and Type I-E systems, but only directly participates
in the pre-RNA maturation process in the Type I-C system
(Makarova et al., 2019). In S. pyogenes, Cas5d (now called Cas5c)
(Reeks et al., 2013) specifically recognizes the hairpin structure in
the pre-crRNA repeat of CRISPR Type I-C but does not recognize
the unstructured pre-crRNA repeat of Type II-A. Previous
studies showed that Cas5d not only had endoribonuclease activity
independent of metal pair pre-crRNA processing, but also had

FIGURE 6 | Detection Xoo CRISPR/Cas system function in Pseudomonas
syringae pv. tomato strain DC3000. Plasmids (pVSP61-cKan1) contain
gRNAs with spacers targeting kanamycin resistance gene or plasmids
(pVSP61-cPCS1-cPCS2) contain the PCS gene in DC3000 in the backbone
of pVSP61 vector were transferred to DC3000 cells containing plasmid
expressing Xoo Cas genes. Plasmids (pVSP61-cXoRNA) contain gRNAs with
spacers targeting Xoo Cas gene in the backbone of pVSP61 vector as a
control. Plasmid pHM1-XoCas-D carries four Cas genes, cas3, cas5d, csd1,
and csd2, which are required for CRISPR function from Xoo, while plasmid
pHM1-XoCas-E contain all seven Cas genes from Xoo.

hybrid DNA enzyme activity in the presence of divalent metal
ions and non-specific double-stranded DNA binding affinity
(Punetha et al., 2014). This indicates that Cas5 protein in the
Type I-C system may play a role at multiple stages in CRISPR
immunity (Koo et al., 2013). Furthermore, Cas5d assembles into
an∼400-kDa Cascade-like complex together with crRNA and the
other two subtype-specific proteins Csd1 and Csd2, suggesting
that Cas5d further participates in the crRNA-mediated DNA
silencing step (van der Oost et al., 2014). These findings provide
explanation for our finding that knockout of the cas5d, csd1, or
csd2 genes, resulted in blockage of CRISPR interference with the
failure of pre-crRNA degradation.

Compared to the complicated gene editing tools in eukaryotic
organisms, CRISPR Type I and Type III seem more manageable
for genome editing in prokaryotes due to the efficient expression
and assembly of Cas protein complexes in these organisms.
Both Type I-A and Type III-B show the potential to be
employed for testing CRISPR-based genome editing in Sulfolobus
islandicus by enabling self-targeting (Selle and Barrangou, 2015).
The endogenous CRISPR system widely present in bacteria
and archaea has the potential to be engineered and used as
a tool for genome editing, targeted killing or transcriptional
control. Such a “built-in” genome editing strategy has been
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successfully developed in several bacterial and archaeal species
(Zhang et al., 2018).

Our results suggest that for the application of the Xoo
CRISPR-Cas system as a gene editing tool in eukaryotes, at least
four Cas proteins, Cas3, Cas5d, Csd1, and Csd2, need to be
heterologously expressed in gene editing organisms. In addition,
a stretch of at least 27-bp of the gRNA directly matching the
downstream protospacer of the TTC PAM is required for efficient
CRISPR function. Transfer of an artificial mini-CRISPR array
to Xoo cells activates self-targeting, highlighting the potential
for genome editing applications using an endogenously active
system. However, there are potential biological hurdles. Genetic
analysis of transformants recovered following self-targeting of the
plasmid–encoded protospacer by the chromosomally encoded
Cas machinery is needed to effectively preclude self-targeting. We
found that Xoo cells survived from self-targeting on the antibiotic
medium still contained the intact target DNA sequences, even
though we combined gRNA and editing DNA template in one
plasmid or increased the concentration of antibiotic for selection.
The inefficiently cleared wild-type colonies from the population
might be partially due to the low capacity of bacterial DNA repair
mechanisms to cope with Cas cleavage or the low efficiency of
gRNA delivery into Xoo cells. Thus, increasing transformation
efficiency for delivery of editing templates and expression vectors
is an experimental requirement for applying the Xoo CRISPR-
Cas system as a gene editing tool in prokaryotic organisms.
However, considering that thousands of colonies that grew on
the selection medium contained empty vector, the explanation
of the low transformation rate does not seem to hold. The
mechanism underlying the high rate of anti-self-targeting needs
to be further studied.

CONCLUSION

Taken together, our study confirmed that Xoo possesses a
functional CRISPR system. Various truncated forms of gRNA
spacer sequences identified a stretch of at least 27-bp matching
directly the downstream sequence of the TTC PAM as
part of gRNA being required for efficient CRISPR function.
Furthermore, depleting each of the three genes, cas5d, csd1, and
csd2 inactivates pre-crRNA processing, whereas inactivating cas3
impairs processing pre-crRNA. The Xoo CRISPR/Cas system is
functional in P. syringae indicating the possibility of utilizing
the Xoo CRISPR/Cas system as a tool for gene editing in
other organisms. Analysis of the Xoo CRISPR/Cas system
provides new insights for the utilization of bacterial endogenous
systems in this study.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, Culture
Conditions
The strains of E. coli, Xoo, and P. st and the plasmids used
in this study are described in Supplementary Table 1. E. coli
was grown on LB medium at 37◦C while Xoo strains were

cultured on tryptone sucrose (TS) medium at 28◦C. Strain
of Pst DC3000 was incubated at 28◦C in King’s B medium.
The media were supplemented with the antibiotics, ampicillin
(100 µg/ml), kanamycin (50 µg/ml), and spectinomycin
(100 µg/ml) depending on the strains used. In vivo CRISPR-Cas
activity was measured by conversion efficiency calculated
as colony forming units (CFU) per µg of DNA after
bacterial transformation.

Constructs Expressing Xoo CRISPR
Cassette
The sequence of the CRISPR Cassette in PXO99A was used
as a template for mimicking. An artificial mini-CRISPR array
was synthesized by GenScript2 (Figure 1 and Supplementary
Table 1). This CRISPR array was cloned into the intermediate
vector pENTR4 at HindIII and EcoRI sites, resulting in empty
pENTR4-DR (Supplementary Table 1). gRNAs were generated
by annealing the corresponding complementary oligonucleotides
(Supplementary Table 1) and sequentially cloning into the
pENTR4-DR empty vector predigested with BtgZI and BsaI.
Finally, the Xoo CRISPR Cassette was inserted into the broad host
range vector pHM1 or pVSP61 at HindIII and EcoRI sites and
subjected to in vivo CRISPR activity assay.

Constructs of Xoo Cas Gene Deletion
Mutations and Their Complementation
Deletion mutations of each Cas gene were constructed in Xoo
strain PXO99A using homologous recombination and the suicide
vector pKMS1. For individual Cas genes, two fragments flanking
the left and right of the gene were PCR-amplified using the
genomic DNA of strain PXO99A as template and the primer pairs
listed in Supplementary Table 1. The PCR fragments were cloned
into pGEM-T (Promega), then subcloned into the vector pKMS1
at the sites of BamHI and HindIII, introduced into PXO99A

by electroporation and screened for deletion mutants essentially
using the method as described previously (Zou et al., 2011).
For the generation of complementary strains for each Cas gene
deletion, PCR fragments covering the Cas genes were produced
and cloned into the pHM1 vector at the restriction sites BamHI
and HindIII.

Northern Blot Analysis
For Northern blot analysis, total small RNAs were prepared
from the PXO99A wild-type strain, its knockouts (1) of
individual Cas genes by a miRNeasy kit (Qiagen, Beijing, China).
Ten micrograms of total RNA extracted from each sample
was separated on 12% PAGE gels and then transferred to
a HybondTM-N+ positively charged nylon membrane (Roche
Diagnostics). The 5S rRNA probe was used as an internal
control with oligoprobes, whereas the Xoo repeats was probed
using a mixture of P32-labeled DNA antisense oligoprobes.
Radiolabeled signals were observed by a Storm 860 Molecular
Imager (Molecular Dynamics, Sunnyvale, CA).

2https://www.genscript.com/
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