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Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image
series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory
of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and
suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the
optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves
the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.

1. Introduction

Dynamic cardiac cine MR imaging aims at simultaneously
providing a series of dynamic magnetic resonance image in
spatial and temporal domains (𝑥-𝑡 space) at a high frame rate.
It usually acquires the 𝑘-space at each time frame and collects
the raw data in the spatial frequency and temporal domain,
the so called 𝑘-𝑡 space.Therefore, it is necessary to reconstruct
each time frame and get a series of dynamic images. However,
the relatively low acquisition speed of the dynamic MRI is
an important factor to limit its application in clinics. How to
accelerate 𝑘-space sampling for each time frame and recon-
struct them without sacrificing spatial resolution is a chal-
lenging problem.

In recent years, many advanced techniques [1–10] were
proposed to effectively address this issue and can be divided
into two categories. One is based on compressed sensing (CS)
theory [11, 12] utilizing the sparsity in dynamic images to be
reconstructed, and the other is based on the partial separable
theory [13] exploiting the low-rank property of images in 𝑥-𝑡
space. The application of CS in dynamic MRI has drawn a lot
of attention, since this theory demonstrates that the signal

can be accurately reconstructed from a small amount of lin-
ear undersampled measurements by exploiting the inherent
sparsity in signal. For example, Jung et al. [7, 9] uncovered an
intriguing link between the compressed sensing and 𝑘-𝑡
BLAST/SENSE and proposed the 𝑘-𝑡 FOCUSS algorithm
to achieve high spatiotemporal resolution in cardiac cine
imaging. Liang et al. [5] developed 𝑘-𝑡 iterative support
detection (𝑘-𝑡 ISD) method to further utilize the detected
partial support information besides the sparsity in cardiac
cine images.

Recently, image restoration with patch-based sparse rep-
resentations has attracted a lot of attention. The similarity of
works in this topic is seeking for a more appropriate way to
sparsify the image patches than conventional fixed transform.
One approach is to provide additional information when
using fixed transform on patches. For example, Qu et al.
[14] presented to provide the sparsest representation for each
image patch by estimating geometric directions. In [15], the
nonlocal patches with intensity similarity, instead of those
fromneighbors, are grouped and then transformed by using a
3DHaarwavelet to produce sparser representation.These two
patch-based methods exhibited consistent improvements in
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reconstruction accuracy over conventional CS-MRI meth-
ods. Another approach is based on the dictionary learning
technique which aims to learn an adaptive basis from image
patches and has shown impressive image restoration results
[16].The essential difference between these two approaches is
that the latter uses adaptive learned dictionary instead of fixed
basis, such as temporal Fourier transform, as the sparsifying
transform. Ravishankar and Bresler [17] have applied the dic-
tionary learning technique to staticMR image reconstruction
and obtained better reconstruction results than the state-of-
the-art methods using fixed sparsifying transform. Liu et al.
[18] presented to train dictionaries from the patches of
the horizontal and vertical gradient images instead of the
pixel domain image. The sparser training samples from
the gradient images that are already sparsified by gradient
operators result in sparser representation. In [19], a two-level
Bregman method with dictionary learning updating is devel-
oped by applying the outer-level and inner-level Bregman
iterative procedures to update the whole image and image
patches, respectively. Experimental results on static MR ima-
ges demonstrate the superiority of the presented algorithm to
the state-of-the-art reconstruction methods.

However, dictionary learning based optimization is a
large-scale and highly nonconvex problem, which requires
high computational complexity. The coherence of the dictio-
nary and the large degree of freedommay become sources of
instability and errors. Structured sparse representationmodel
was proposed to reduce the degree of freedom in the estima-
tions and was thus more stable than conventional sparse rep-
resentation model. The structured learned overcomplete dic-
tionary, composed of a union of bases of principal component
analysis (PCA), was widely used in image restoration [20, 21].
Recently, Dong et al. [22] proposed nonlocally centralized
sparse representation (NCSR) model for single natural image
restoration, specifically, clustering image patches by𝐾-means
algorithm at first and then learning PCA subdictionary of
each cluster to sparsely represent image patches. Finally,
the so-called sparse coding noise (SCN) was minimized to
improve the performance of sparsity-constrained image res-
toration. This model has gotten the satisfactory results on
image deblurring, image denoising, and image super resolu-
tion.

In this work, motivated by the effective representation
ability of NCSR, a novel method based on the NCSR model
is proposed to accelerate dynamic cardiac MRI applications.
The method utilizes structured sparse dictionary learning to
adaptively represent image sequence and reduces the error
between the sparse coding coefficients learned by such dictio-
nary and true sparse coding. Improvement of the proposed
method over the basic CS approach is demonstrated using
retrospectively undersampled in vivo cardiac cine MR data-
sets.

The rest of the paper is organized as follows. In Section 2,
theNCSRmodel is briefly described and a detailed account of
structured sparse representation-based dynamic cardiac MR
imaging method is provided. We present experimental vali-
dation of ourmethod and compare it to previous state-of-the-
art method in Section 3. Conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Nonlocally Centralized Sparse Representation (NCSR).
Image restoration often requires solving an inverse problem.
It amounts to estimate original image vector 𝑥 from a vector
of measurements 𝑦; that is, we have

𝑦 = H𝑥 + V, (1)

which is obtained through the noninvertible linear degrada-
tion operatorH and is contaminated by the additive noise V.

Mathematically, image vector 𝑥 ∈ 𝐶
𝑁 can be represented

as 𝑥 ≈ Φ𝛼 under the sparse representation framework, where
Φ ∈ 𝐶

𝑁×𝑀, 𝑁 < 𝑀 is a dictionary, and 𝛼 ∈ 𝐶
𝑀 represents

the sparse coefficients. The sparse decomposition of 𝑥 can be
obtained by solving a convex 𝑙

1
-minimization problem:

𝛼
𝑥
= arg min

𝛼

{‖𝑥 −Φ𝛼‖
2

2
+ 𝜆‖𝛼‖1

} . (2)

In the scenario of image restoration, to recover 𝑥 from the
degraded image, 𝑦 is first sparsely coded with respect toΦ by
solving the following optimization problem:

𝛼
𝑦
= arg min

𝛼

{




𝑦 − HΦ𝛼



2

2
+ 𝜆‖𝛼‖1

} . (3)

And then 𝑥 is reconstructed by 𝑥 = Φ𝛼
𝑦
. In order to achieve

an effective image restoration,𝛼
𝑦
are expected to be as close as

possible to approach the true sparse codes 𝛼
𝑥
of the original

image 𝑥. Dong et al. defined the sparse coding noise (SCN) as
the difference between 𝛼

𝑦
and 𝛼

𝑥
:

V
𝛼
= 𝛼
𝑦
− 𝛼
𝑥
. (4)

Thus, the quality of image restoration can be improved by
suppressing SCN.However, 𝛼

𝑥
is unknown so SCN cannot be

directly measured. To address this issue, a good estimation
𝛽 of 𝛼

𝑥
is necessary. There are various ways to obtain an

accurate estimate of 𝛼
𝑥
. Dong et al. tried to learn the estimate

𝛽 by computing the weighted average of the sparse codes of
nonlocal similar patches.

The NCSR model was proposed as follows:

𝛼
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= arg min

𝛼
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𝑦 − HΦ𝛼



2
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+ 𝜆∑

𝑖





𝛼
𝑖
− 𝛽
𝑖




1

} , (5)

where dictionary Φ can be designed as a PCA-based struc-
tured sparse dictionary,𝛼

𝑖
denotes the sparse coding vector of

𝑖th image patch on a certain subdictionary, and 𝜆 is the reg-
ularization parameter controlling the tradeoff between data
consistency and sparse coding noise. To solve this problem,
firstly, the training patches extracted from the given image are
clustered into𝐾 clusters, and a PCA subdictionary is learned
for each corresponding cluster. Then one PCA subdictionary
is adaptively selected to code a given patch. Finally, an
iterative shrinkage algorithm [23] can be used to solve the
NCSR objective function in (5).
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(1) Initialization:
Set the initial estimate X̂(1) = Y, X̂(0) = 0 and the regularization parameter 𝜆;

(2) Outer loop (dictionary learning and clustering): iterate on 𝑙 = 1, 2, . . . , 𝐿

(a) Update the dictionaries {Φ
𝑘
} via 𝑘-means and PCA;

(b) Inner loop (clustering): iterate on 𝑗 = 1, 2, . . . , 𝐽

(b.1) 𝑎 (𝑗) = 1 + (𝑗 − 1) / (𝑗 + 2), 𝑏 (𝑗) = − (𝑗 − 1) / (𝑗 + 2)

(b.2) Compute 𝑔
(𝑗)

𝑠
= 𝑎 (𝑗) 𝑥

(𝑗)

𝑠
+ 𝑏 (𝑗) 𝑥

𝑗−1

𝑠
and

𝑔
(𝑗+1/2)

𝑠
= 𝑔
(𝑗)

𝑠
+ 𝜆F𝑇u

𝑠

(𝑦
𝑠
− Fu
𝑠

𝑔
(𝑗)

𝑠
) for 𝑠 = 1, 2, . . . , 𝑆;

(b.3) Compute V(𝑗) = [Φ
𝑇

𝑘
1

x(𝑗+1/2)
1

, . . . ,Φ
𝑇

𝑘
𝑁

x(𝑗+1/2)
𝑁

], whereΦ
𝑘
𝑛

is the dictionary assigned to patch;

(b.4) Compute the 𝛼
(𝑗+1)

𝑖
using the shrinkage operator given in (8);

(b.5) Update the estimate {𝛽
𝑖
};

(b.6) Image matrix estimate update: X(𝑗+1) = Φ𝛼(𝑗+1)
𝑦

.

Algorithm 1: NCSR-based dynamic cardiac cine MR imaging.

(a)

(b)

Figure 1: Experiment results in (a) 𝑅 = 3 and (b) 𝑅 = 4. Reconstructions at the 4th frame using 𝑘-𝑡 FOCUSS (the 1st column) and proposed
method (the 3rd column) and their corresponding difference images (2nd and 4th columns).

2.2. NCSR-Based Dynamic Cardiac MR Imaging. When the
degradation operatorH is the under-sampled Fourier encod-
ing operator and 𝑦 is the acquired 𝑘-space data, we can mod-
ify the above model to MR image reconstruction. Based on
the NCSR model, we propose a new method to reconstruct a
time series of dynamic cardiac cine MR images which have
high correlations in the spatial- and temporal-domain.

We define a matrix of image series X = [𝑥
1
, . . . , 𝑥

𝑆
] ∈

𝐶
𝑁×𝑆, whose columns are the image vectors {𝑥

𝑠
}, 𝑠 = 1, . . . , 𝑆.

𝑆denotes the number of image frames. In order to reconstruct
the image series, we propose the following cardiac cine MRI
reconstruction model:

min
𝛼






Y − Fu

Ω
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2

2
+ 𝜆

𝑁

∑

𝑖=1





𝛼
𝑖
− 𝛽
𝑖




1

, (6)

where X = Φ𝛼 and Y ∈ 𝐶
𝑁×𝑆 is the acquired 𝑘-space data

matrix, whose columns are the vector form of 𝑘-space data of
images {𝑥

𝑠
}. Matrix operator Fu

Ω

performs the undersampled
Fourier encoding, and set Ω = {1, 2, . . . , 𝑆} indicates that the
undersampling masks are different for each frame to enforce
incoherence. For the selection of the dictionary Φ, we adopt
the PCA-based structured sparse dictionary like in NCSR.
However, theway to get the patches from the image series {𝑥

𝑠
}

is different from NCSR. We first transform the image series
{𝑥
𝑠
} to the image matrix X defined above and then regard

the transpose vector of each row x
𝑛
, 𝑛 = 1, . . . , 𝑁, of

X as a patch vector. In other words, we learn the PCA
subdictionaries along the temporal dimension to exploit the
inherent correlation in dynamic image series. After getting
the patches, we use the 𝐾-means algorithm to partition the
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(a)

(b)

(c)

Figure 2: Experiment results of the second dataset in (b) 𝑅 = 3 and (c) 𝑅 = 4. Reconstructions at the 15th frame using 𝑘-𝑡 FOCUSS (the 1st
column) and proposed method (the 3rd column) and their corresponding difference images. (a) is the full FOV and ROI reference.

patch set into 𝐾 clusters {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝐾
} and then compute

the covariance matrix Σ
𝑘
of each cluster 𝐶

𝑘
. An orthogonal

transformationmatrixP
𝑘
can be obtained by applying PCA to

Σ
𝑘
. We set P

𝑘
as the PCA subdictionary which can constitute

the dictionaryΦ.
The iterative shrinkage algorithm is used to solve this

problem and the final image series can be obtained from the
solved sparse coding vector. Specifically, at each iteration, we
use the samemethod as inNCSR to compute𝛽

𝑖
. For each local

patch, the Euclidean distance was used to search for the first
𝑃 (𝑃 = 13 in our experiments) closest patches. We applied
the corresponding subdictionary to these nonlocal similar
patches to obtain their sparse codes.𝛽

𝑖
was estimated by com-

puting the weighted average of these sparse codes. This non-
local method can produce accurate enough estimates of true
sparse codes. Finally, the following minimization problem
can be solved for a given 𝛽

𝑖
:
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𝑦
= arg min

𝛼
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,

(7)

where𝛼
𝑖
(𝑗) and𝛽

𝑖
(𝑗) are the𝑗th elements of𝛼

𝑖
,𝛽
𝑖
.We adopted

the surrogate algorithm in [23] to solve (7). In the (𝑙 + 1)th
iteration, the proposed shrinkage operator for the 𝑗th ele-
ments of 𝛼

𝑖
is

𝛼
(𝑙+1)

𝑖
(𝑗) = 𝑆

𝜏
(V(𝑙)
𝑖,𝑗

− 𝛽
𝑖
(𝑗)) + 𝛽

𝑖
(𝑗) , (8)

where 𝑆
𝜏
(⋅) is the classic soft thresholding operator. V(𝑙) =

K𝐻(Y − K𝛼
(𝑙)
)/𝑐 + 𝛼

(𝑙), where K = Fu
Ω

Φ, 𝜏 = 𝜆/𝑐, and 𝑐

is a parameter guaranteeing the convexity of the surrogate
function (𝑐 = 1 in our experiments).

Since one drawback of this iterative framework is the
slow convergence rate of𝑂(1/𝑛), we introduce an accelerated
method described in [24] to achieve a fast 𝑂(1/𝑛

2
) conver-

gence rate. In this method, two prior iterates are used to
obtain the next updated solution in the soft thresholding
framework. The detailed design is described in Algorithm 1
(b.1) and (b.2).

3. Experimental Results

The feasibility of the proposed method was validated on two
sets of in vivo dynamic cardiac cine data. Informed consent
was obtained from the volunteer in accordance with the
institutional review board policy. The full k-space data with
the size of 256 × 256 × 25 (number of frequency encoding ×

number of phase encoding × number of frames) of the first
dataset was acquired using a steady-state free precession
(SSFP) sequence on a 1.5 T Philips scanner. The flip angle
was 50 degrees and TE/TR = 1.7/3.45msec. The field of view
(FOV) was 345mm × 270mm and the slice thickness was
10mm. Retrospective cardiac gating was used with a heart
rate of 66 bpm. The second dataset was acquired on a 3 T
Siemens Trio scanner (Siemens Medical Solutions, Erlangen,
Germany) with a flip angle of 44 degrees and TE/TR =
42.5/1.22msec. The fully acquired 𝑘-𝑡 measurements were of
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Figure 3: Frame-by-frame plots of NMSE for 𝑘-𝑡 FOCUSS and our method with (a) 𝑅 = 3 and (b) 𝑅 = 4 in the first dataset (the 1st row) and
the second dataset (the 2nd row). The dotted lines are for our method and dashed lines for 𝑘-𝑡 FOCUSS.

size 304×165×26×12. The FOVwas 340mm × 276mm and
the slice thickness was 6mm.

The image series reconstructed from the full 𝑘-𝑡 data was
used as the reference for comparison, while, for the dataset
acquired using multiple coils, the image from each channel
was reconstructed from full samples and combined using
square root of sum-of-squares (SOS) as the reference. To
simulate the undersampled 𝑘-space data, the sampling masks
corresponding to reduction factors, 𝑅 = 3 and 4, were gen-
erated using the function provided in the 𝑘-𝑡 FOCUSS tool-
box, where the central 8 phase encoding lines were fully
sampled. The fully sampled data were then retrospectively
undersampled using the designed sampling masks.

The proposed NCSR-based method and 𝑘-𝑡 FOCUSS
were used to reconstruct the desired image series with the
same sampling patterns for a given undersampled dataset.
All methods were implemented in Matlab and
the code for 𝑘-𝑡 FOCUSS was obtained from
http://bisp.kaist.ac.kr/ktFOCUSS.htm. Simulations run
on a dual core 2.6GHz CPU laptop with 4GB RAM. The
running time of our program is about 30 minutes. This time
is relatively long due to slow speed in dictionary learning
and 𝐾-means clustering and can be reduced by optimizing
the code and utilizing GPU for acceleration.

The reconstructions with reduction factors of 𝑅 = 3 and
4 and the corresponding difference images at the fourth

http://bisp.kaist.ac.kr/ktFOCUSS.htm
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(a) (b)

Figure 4: The temporal profiles in 𝑥-𝑡 plane of different reconstruction methods with (a) 𝑅 = 3 and (b) 𝑅 = 4 in the first experiment. The
results are from reference (left), 𝑘-𝑡 FOCUSS (middle), and our method (right) for each reduction factor.

frame of the first dynamic cardiac dataset are shown in
Figures 1(a) and 1(b), respectively. In Figure 1, the first row
shows the results of 𝑘-𝑡 FOCUSS (the left two) and proposed
method (the right two) in 𝑅 = 3, and the second row is
the results of two methods in 𝑅 = 4. It can be seen from
the reconstructed images that the 𝑘-𝑡 FOCUSS presents more
undersampling artifacts along the phase encoding direction.
Our method greatly suppresses the artifacts and obtains high
quality reconstructions. The superiority of structured sparse
representation based method is also clearly seen in the differ-
ence images as shown by the red arrows. Figures 2(b) and 2(c)
show the region-of-interest (ROI) reconstructions using 𝑘-𝑡
FOCUSS and the proposed method (from left to right) with
𝑅 = 3 and 4 (from top to left) of the second dynamic cardiac
dataset. We can find some artifacts appearing in the 𝑘-𝑡
FOCUSS result especially with a reduction factor of 4.

To quantify the improvement of the proposed method
over 𝑘-𝑡 FOCUSS, the normalized mean-squared error
(NMSE) between the reconstruction and the reference at
𝑅 = 3 and 4 was calculated and plotted as a function of time
frame in Figures 3(a) and 3(b), respectively. The nRMSE was
calculated using the following formula:

nRMSE = √

∑
𝑁

𝑖=1
(xrec (𝑖) − x (𝑖))

2

∑
𝑁

𝑖=1
x(𝑖)2

, (9)

where xrec is the reconstructed images from the undersam-
pled data, x is the reference, and 𝑁 is the image size. The
dotted lines are for our method and dashed lines for 𝑘-𝑡
FOCUSS, respectively. Our method is seen to have a lower
MSE than 𝑘-𝑡 FOCUSS for all frames at specified reduction
factors.

The ability to catch the dynamic motion along temporal
direction is a key factor for comparing different dynamic

reconstructionmethods. To evaluate the temporal fidelity, we
show in Figure 4 the reconstructions in 𝑥-𝑡 plane of the first
dataset with𝑅 = 3 and 4 for a fixed position in the frequency-
encoding direction. It is seen that 𝑘-𝑡 FOCUSS shows
some loss of contrast. In comparison, the proposed method
preserves more temporal variations especially in regions
indicated by red arrows.

In our algorithm, a regularization parameter 𝜆 was intro-
duced. This parameter controls the tradeoff between the data
fidelity and the accuracy of the sparse codes, and it also affects
the thresholds 𝜏 in (8). In this work, 𝜆 was elaborately tuned
in a parameter range. To show the effects of this parameter
on final reconstructions, the curves of NMSE with respect to
parameter 𝜆 for the 10th frame of the first dynamic cardiac
dataset at 𝑅 = 3 and 4 were plotted in Figure 5. We can find
that the reconstructions are relatively robust to this parame-
ter. Results with least NMSE are obtained when 𝜆 = 0.0015

with 𝑅 = 3 and 𝜆 = 0.002 with 𝑅 = 4. In our experiments, we
empirically set 𝜆 = 0.002.

The convergence behavior is an important factor in
evaluating the performance of the proposedmethod.The cor-
respondingNMSE-iteration plots are shown in Figure 6when
𝑅 = 3 and 4 for the first dataset. It can be seen that the NMSE
decreases fast at the first few iterations and then becomes
flatter and reaches the convergence zone after 6 outer iter-
ations.

From the above experimental results, we can find that
ourmethod producesmore accurate reconstruction on image
sequence than 𝑘-𝑡 FOCUSS. It is because we force the sparse
coefficients of dictionary learning to approach the true sparse
coding, which is estimated through the nonlocal similarity
technique. This technique was proved to be an effective
method using image redundancy and therefore the accurate
sparse representation promotes the quality of reconstruction.
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4. Conclusions

In this work, we propose a novel dynamic cardiac MR imag-
ing method based on the NCSRmodel.This method sparsely
codes the image sequence by adaptively learning PCA-based
structured sparse dictionary and recovers the true sparse cod-
ing coefficients with a centralized sparse constraint, which
effectively exploits the image nonlocal redundancy. An accel-
erated iterative shrinkage method was presented for solving
the proposed model. From the experimental results from
in vivo dynamic cardiac cineMR imaging, it is proved that the
proposed method could produce fewer artifacts and preserve
contrast than the state-of-the-art method.
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