
https://doi.org/10.1177/09727531231159959

Annals of Neurosciences
30(4) 224 –229, 2023

© The Author(s) 2023
Article reuse guidelines:

in.sagepub.com/journals-permissions-india
DOI: 10.1177/09727531231159959

journals.sagepub.com/home/aon

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-Commercial use, reproduction and 

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://
us.sagepub.com/en-us/nam/open-access-at-sage). 

Original Article

Reproducibility and Reliability of Computing 
Models in Segmentation and Volumetric 
Measurement of Brain

Mahender Kumar Singh1,2

Abstract

Background: Segmentation and morphometric measurement of brain tissue and regions from non-invasive magnetic 
resonance images have clinical and research applications. Several software tools and models have been developed by different 
research groups which are increasingly used for segmentation and morphometric measurements. Variability in results has 
been observed in the imaging data processed with different neuroimaging pipelines which have increased the focus on 
standardization.
Purpose: The availability of several tools and models for brain morphometry poses challenges as an analysis done on the 
same set of data using different sets of tools and pipelines may result in different results and interpretations and there is a 
need for understanding the reliability and accuracy of such models.
Methods: T1-weighted (T1-w) brain volumes from the publicly available OASIS3 dataset have been analysed using recent 
versions of FreeSurfer, FSL-FAST, CAT12, and ANTs pipelines. grey matter (GM), white matter (WM), and estimated total 
intracranial volume (eTIV) have been extracted and compared for inter-method variability and accuracy.
Results: All four methods are consistent and strongly reproducible in their measurement across subjects however there is 
a significant degree of variability between these methods.
Conclusion: CAT12 and FreeSurfer methods have the highest degree of agreement in tissue class segmentation and are 
most reproducible compared to others.
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Introduction

Advancements in neuro-imaging have greatly increased our 
impetus for the study of brain structure and function.1 
Magnetic Resonance Imaging (MRI) techniques provide 
good contrast between grey matter (GM), white matter (WM), 
and cerebrospinal fluid (CSF) and it is extensively used for 
structural and functional (fMRI) imaging of the brain.2

Segmentation of 3D brain volumes into tissue types and 
between different cortical and subcortical regions has 
applications in a wide range of biomedical research 
problems.3,4 Manual segmentation is considered the “gold 
standard” but suffers from serious drawbacks like being time-
consuming, inter-rater variability and not being suitable for 
large-scale evaluation.5

Automatic, semi-automatic segmentation methods 
including machine learning models have been developed to 
address these shortcomings and are used for tissue-class 

segmentation, cortical and sub-cortical segmentation, and are 
being increasingly used for neuroimaging analysis.6 There are 
several tools in the public domain developed by different 
research groups for neuroimaging analysis6 and each of them 
implements its own approach for bias-field correction, brain 
extraction, segmentation, and so on.

Several past studies have compared some of the 
segmentation methods applied either on the whole brain or to 
specific regions but mostly carried on much smaller datasets 
(n < 100).7−10 The main goal of this study is to compare the 



Singh 225

reliability and reproducibility of automatic brain tissue 
segmentation using FreeSurfer, FSL-FAST, CAT12, and 
ANTs on a large dataset and compare agreement between 
them.

Methods

Dataset

The publicly available OASIS311 dataset (2022 Release) has 
been downloaded from http://central.xnat.org in terms of the 
accepted data use agreement. Briefly, the OASIS3 dataset is a 
retrospective compilation of longitudinal data of 1379 
subjects in the age group of 42−96 years and includes normal 
subjects as well as those at various stages of cognitive decline. 
MR images that have failed during any of the automated 
image processing pipelines have been excluded from the 
study. The demographic profile of the selected subjects is 
detailed in Table 1.

MR Images

T1-weighted (T1-w) MR images in NIFTI format for each of 
the subjects scanned at 3-Tesla scanners at different time 
points have been extracted from the OASIS3 dataset. The 
subjects are scanned on different Siemens 3-Tesla MRI 
Scanners as detailed in Table 2. The OASIS3 imaging 
methods, scanning protocols, and data dictionary are available 
on the OASIS website (https://www.oasis-brains.org/).

Image Processing

Each of the MR volumes has been processed through publicly 
available versions of FreeSurfer, FMRIB Software Library 
(FSL), Advanced Normalization Tools (ANTs), and 

Computational Anatomy Toolbox (CAT12) pipelines. The 
segmentation volumes for GM, WM, and estimated total 
intracranial volume (eTIV) of the brain have been extracted 
from the segmentation output. The brief detail of each of the 
pipelines is detailed as under:

FreeSurfer

FreeSurfer12 (https://surfer.nmr.mgh.harvard.edu/) is a software 
package developed by the Laboratory of Computational 
Neuroimaging at Athinoula A. Martinos Center for Biomedical 
Imaging and is among the most standardized software packages 
for processing and analyzing neuroimaging data. The recon-all 
pipeline from FreeSurfer v7.3 has been used for the automatic 
segmentation of each T1-w image volume. The WM volume 
has been computed by summing “cerebral and cerebellum WM 
volumes,” and the GM and eTIV have been directly computed 
from “Total grey-matter volume” and “Estimated Intracranial 
Volume” variables respectively.

FMRIB Software Library (FSL)

FSL13 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) has been developed 
at Wellcome Centre for Integrative Neuroimaging, Oxford, the 
fsl_anat.sh script of FSL v6.0 has been used for pre-processing 
and segmentation of MR volumes. The GM, WM, and eTIV 
have been extracted and calculated from partial volume maps for 
the 3 tissue classes generated by FSL-FAST.14

Advanced Normalization Tools (ANTs)

ANTs15 (https://stnava.github.io/ANTs/) is a suite of programs 
for biomedical image analysis, the tissue and brain volume 
has been extracted from the antsbrainvols.csv file generated 
by the segmentation pipeline.

Computational Anatomy Toolbox (CAT12)

CAT1216 (https://neuro-jena.github.io/cat/) is a toolbox for 
SPM1217,18 (https://www.fil.ion.ucl.ac.uk/spm/) which runs 
on MATLAB® platform, segment option on the CAT12 is 
used for segmentation followed by extraction of GM, WM, 
and eTIV from the generated XML file. The process has been 
automated using batch scripts. Additionally, the Image 
Quality Rating (IQR) and the visual report generated by 
CAT12 are used for quality assessment.

Table 2. List of Scanner Models Used for 3T MR Acquisition.

Scanner Model No. of MR Sessions (T1-w)

Siemens TrioTim (3T) 1421

Siemens Magnetom_Vida (3T) 328

Siemens Biograph_mMR (3T) 830

Siemens Prisma_fit (3T) 1

Table 1. Demographic Profile of Subjects.

Subjects (MR Sessions) Mean Age in Years  
(standard deviation)Male Female Total

Normal − (Group A) 302 (646) 442 (977) 744 (1623) 68.42 (8.47)

Cognitive decline − (Group B) 299 (487) 287 (470) 586 (957) 75.04 (7.56)

Combined Group (A+B) 601 (1133) 729 (1447) 1330 (2580) 70.88 (8.75)

Note: Subjects appearing in CogNorm-Cognitively_Normal_Cohorts table are included in Group A and the rest in Group B.



226 Annals of Neurosciences 30(4)

Quality Control

MR images that have failed during any of the automated 
image processing pipelines have been excluded, similarly, 
those images for which IQR was estimated to be below 75% 
have been visually inspected before further analysis.

Statistical Analysis

The mean and standard deviation of GM, WM, and eTIV  
(in cm3) from each of the methods across different age bands 
in normal as well as cognitively declining population has been 
measured and compared. The agreement between the methods 
has been analysed with Bland-Altman Plots19 for each pair of 
methods, the X-axis in the plot represents the mean 
measurement of the two methods and the Y-axis denotes the 
difference between the methods. The lower and upper line of 
agreements corresponding to a 95% confidence interval is 
also plotted parallel to the X-axis in the BA plot. Reproducibility 
of measurement has been evaluated in a subset of the dataset 
(n = 56) of the normal population having scan-rescan 
performed within 1 year on the same MRI scanner model.

Results

The mean age of the selected subjects was 70.88 years, the 
normal group (A) was 6.62 years younger than the cognitive 
decline group (B). The e-ICV of group B was higher than 
group A but the GM and WM volumes were consistently 
reported lower by each of the methods in group B (Table 3) 
pointing to age-related brain atrophy20 which may have 
further been accelerated in the cognitive decline group.21

The reproducibility of the four methods tested on a smaller 
test−retest dataset of n = 56 has a variation of less than 1% 
pointing to a high degree of reproducibility for each of the 
four methods. CAT12 with a mean change of 0.07% for both 
GM and WM was most reproducible for tissue class 
segmentation followed by FreeSurfer and ANTs (Table 4).

The Bland-Altman plots (Figure 1) for comparing 
agreement among the methods showed that most of the 
observations were falling within the 95% confidence interval. 
The bias between GM and WM measurement (Table 5) was 
lowest among FreeSurfer and CAT12 methods and the 95% 
confidence interval was also narrowest.

Discussion

Each of the discussed neuroimaging pipelines used for 
segmentation has significant technical differences in their 
implementation and how they define different tissue classes. 
FSL-FAST and CAT12 pipelines perform partial volume 
estimation of tissue classes using Markov random field model 
with expectation-maximization13 and Adaptive Maximum A 
Posterior (AMAP) technique,16 respectively, FreeSurfer uses 
image intensity along with probabilistic atlas12 in its 
segmentation model resulting in fine grain segmentation from 
which the tissue volumes are computed, ANTs relies on 
probabilistic tissue segmentation22 along with machine 
learning models trained on labelled data in its segmentation 
approach. The difference in the various methods was 
observable in GM and WM measurements. The GM and WM 
tissue observations from the CAT12 and FreeSurfer methods 
have a higher degree of agreement whereas FSL-FAST has 

Table 3. Mean and (Standard Deviation) of Volumetric Measurement in cm3 Using Different Methods.

FSL-FAST (a) CAT12 (b) FreeSurfer (c) ANTs (d)

GM (Group A) 539.09 (50.86) 608.92 (58.36) 577.40 (55.36) 454.44 (48.26)

GM (Group B) 526.41 (54.85) 587.33 (60.79) 562.46 (56.82) 443.10 (49.83)

GM (A+B) 534.38 (52.73) 601.06 (60.15) 571.85 (56.37) 450.23 (49.15)

WM (Group A) 503.69 (60.28) 477.79 (62.56) 456.52 (59.26) 409.51 (47.88)

WM (Group B) 499.17 (60.43) 463.96 (61.59) 443.83 (57.81) 417.21 (48.11)

WM (A+B) 502.01 (60.37) 472.66 (62.58) 451.81 (59.04) 412.37 (48.11)

eTIV (Group A) 1344.78 (139.76) 1417.72 (150.31) 1455.58 (148.47) 1375.28 (136.14)

eTIV (Group B) 1374.61 (151.48) 1449.64 (156.96) 1494.19 (170.03) 1387.99 (141.03)

eTIV (A+B) 1355.85 (144.94) 1429.56 (153.58) 1469.90 (157.92) 1379.99 (138.11)

Table 4. Test−Retest Reproducibility for Normal Subjects Re-scanned in Same Scanner Model within 1 Year [n = 56 (26 M, 30 F), Mean 
Gap Between Scans = 0.39 Y, Mean Age at the Time of Rescan 69.36 Y].

FSL-FAST CAT12 FreeSurfer ANTs

GM 545.08 (+0.50%)   621.80 (+0.07%) 585.71 (+0.11%) 463.21 (+0.28%)

WM 501.14 (–0.47%)   475.82 (+0.07%) 456.09 (+0.04%) 410.50 (+0.04%)

eTIV 1348.37 (+0.10%) 1427.83 (+0.19%) 1459.17 (–0.19%) 1391.86 (–0.16%)
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reported lower GM but higher WM as compared to CAT12 
and FreeSurfer. On the other hand, ANTs have consistently 
underreported GM and WM compared to all other methods 
and this may be improved by labelled training data. Despite 
these differences between methods, the observations across 

subjects for each of the methods were consistent and 
reproducible as also evident from test-retest reproducibility 
of less than 1% in the smaller dataset.

However, among the methods CAT12 and FreeSurfer have 
performed better than others, FreeSurfer performs fine grain 

Figure 1. Bland-Altman Plots for Comparing Between Each Pair of Methods for GM, WM, and eTIV.
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Table 5. Bland-Altman Analysis for Agreement Between Methods.

95% Limits of Agreement

N = 1330 (2580 MR sessions) Bias SD of bias From To

GM

FSL-FAST and CAT12 −67.00 19.00 −105.00 −29.00

FSL-FAST and FreeSurfer −37.47 17.39 −71.55 −3.39

FSL-FAST and ANTs 84.15 18.68 47.54 120.80

CAT12 and FreeSurfer 29.00 16.00 −1.20 60.00

CAT12 and ANTs 150.80 22.54 106.60 195.00

FreeSurfer and ANTs 122.00 18.00 87.00 157.00

White Matter (WM)

FSL-FAST and CAT12 29.00 22.00 −14.00 73.00

FSL-FAST and FreeSurfer 50.00 24.00 2.20 98.00

FSL-FAST and ANTs 90.00 24.00 43.00 136.00

CAT12 and FreeSurfer 20.85 14.83 −8.22 49.92

CAT12 and ANTs 60.00 29.00 3.60 117.00

FreeSurfer and ANTs 39.00 28.00 −16.00 95.00

Estimated Intracranial Volume (eTIV)

FSL-FAST and CAT12 −74.00 53.00 −178.00 30.00

FSL-FAST and FreeSurfer −114.10 63.11 −237.70 9.63

FSL-FAST and ANTs −24.15 47.84 −117.90 69.62

CAT12 and FreeSurfer −40.34 59.76 −157.50 76.79

CAT12 and ANTs 49.57 43.91 −36.50 135.60

FreeSurfer and ANTs 89.91 53.97 −15.88 195.70

segmentation of cortical and subcortical regions using the 
Destrieux atlas and the Desikan-Killiany atlas and is suitable 
for the region of interest studies.

One of the potential drawbacks of the current study is that 
the selected dataset is primarily composed of the elderly 
population (mean age = 70.88 years) and the findings may not 
be representative of younger age groups.

Conclusion

CAT12 and FreeSurfer methods have the highest degree of 
agreement in tissue class segmentation and are most 
reproducible compared to others.

Acknowledgements

Data were provided by OASIS, OASIS-3: Longitudinal 
Multimodal Neuroimaging: Principal Investigators: T. 
Benzinger, D. Marcus, J. Morris; NIH P30 AG066444, P50 
AG00561, P30 NS09857781, P01 AG026276, P01 

AG003991, R01 AG043434, UL1 TR000448, R01 EB009352. 
The author would like to thank Dr. Richa Chaturvedi, 
Professor, School of Computer Science, Starex University for 
her guidance and support.

Statement of Ethics

Not applicable.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding

The data analysis has been carried out on computational 
resources funded by the Department of Biotechnology, 
Government of India under the erstwhile DIC project.



Singh 229

ORCID iD

Mahender Kumar Singh   https://orcid.org/0000-0001-9617-6112

References

1.  Bandettini PA. What’s new in neuroimaging methods? Annals 
of the New York Academy of Sciences 2009; 1156(1): 260–293.

2.  Lalitanantpong D and Lalitanantpong S. Magnetic resonace 
imaging study in major psychiatric disorders. J Med Assoc Thai 
2004; 87(Suppl 2): S300–S308.

3.  Giorgio A and De Stefano N. Clinical use of brain volumetry. 
Journal of Magnetic Resonance Imaging. 2013; 37(1): 1–14.

4.  Raghuprasad MS and Manivannan M. Volumetric and mor-
phometric analysis of pineal and pituitary glands of an Indian 
inedial subject. Annals of Neurosciences 2018; 25(4): 279–288.

5.  Shen L, Firpi HA, Saykin AJ, et al. Parametric surface modeling 
and registration for comparison of manual and automated segmen-
tation of the hippocampus. Hippocampus. 2009; 19(6): 588–595.

6.  Singh MK and Singh KK. A Review of Publicly Available 
Automatic Brain Segmentation Methodologies, Machine Learning 
Models, Recent Advancements, and Their Comparison. Annals of 
Neurosciences 2021; 28(1-2): 82–93.

7.  Fellhauer I, Zollner FG, Schroder J, et al. Comparison of auto-
mated brain segmentation using a brain phantom and patients 
with early Alzheimer’s dementia or mild cognitive impairment. 
Psychiatry Res 2015; 233(3): 299–305.

8.  Velasco-Annis C, Akhondi-Asl A, Stamm A, et al. Reproducibility 
of brain MRI segmentation algorithms: Empirical comparison of 
local MAP PSTAPLE, FreeSurfer, and FSL-FIRST. Journal of 
Neuroimaging 2018; 28(2): 162–172.

9.  Bartel F, Vrenken H, Van Herk M, et al. FAst Segmentation 
Through SURface Fairing (FASTSURF): A novel semi-auto-
matic hippocampus segmentation method. PLOS One 2019; 
14(1): e0210641.

10. Palumbo L, Bosco P, Fantacci ME, et al. Evaluation of the intra- 
and inter-method agreement of brain MRI segmentation soft-
ware packages: A comparison between SPM12 and FreeSurfer 
v6.0. Physica Medica 2019; 64: 261–272.

11. Lamontagne PJ, Benzinger TL, Morris JC, et al. OASIS-3: 
Longitudinal neuroimaging, clinical, and cognitive dataset for 
normal aging and Alzheimer Disease. 2019.

12. Fischl B. FreeSurfer. NeuroImage 2012; 62(2): 774–781.
13. Jenkinson M, Beckmann CF, Behrens TE, et al. Fsl. Neuroimage 

2012; 62(2): 782–790.
14. Zhang Y, Brady M, and Smith S. Segmentation of brain MR 

images through a hidden Markov random field model and the 
expectation-maximization algorithm. IEEE Trans Med Imaging 
2001; 20(1): 45–57.

15. Tustison NJ, Cook PA, Holbrook AJ, et al. The ANTsX ecosys-
tem for quantitative biological and medical imaging. Scientific 
Reports. 2021; 11(1).

16. Gaser C, Dahnke R, Thompson PM, et al. CAT – A computa-
tional anatomy toolbox for the analysis of structural MRI data. 
2022.

17. Ashburner J. Computational anatomy with the SPM software. 
Magn Reson Imaging 2009; 27(8): 1163–1174.

18. Ashburner J. SPM: a history. Neuroimage 2012; 62(2): 
791–800.

19. Altman DG and Bland JM. Measurement in medicine: The 
analysis of method comparison studies. Journal of the Royal 
Statistical Society Series D (The Statistician) 1983; 32(3): 
307–317.

20. Peters R. Ageing and the brain. Postgraduate Medical Journal 
2006; 82(964): 84–88.

21. Cole JH, Ritchie SJ, Bastin ME, et al. Brain age predicts mortal-
ity. Mol Psychiatry 2018; 23(5): 1385–1392.

22. Avants BB, Tustison NJ, Wu J, et al. An open source multi-
variate framework for n-tissue segmentation with evaluation on 
public data. Neuroinformatics 2011; 9(4): 381–400.


