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Abstract

The vaginal microbiome plays an influential role in several disease states in reproductive

age women, including bacterial vaginosis (BV). While demographic characteristics are asso-

ciated with differences in vaginal microbiome community structure, little is known about the

influence of sexual and hygiene habits. Furthermore, associations between the vaginal

microbiome and risk symptoms of bacterial vaginosis have not been fully elucidated. Using

Bayesian network (BN) analysis of 16S rRNA gene sequence results, demographic and

extensive questionnaire data, we describe both novel and previously documented associa-

tions between habits of women and their vaginal microbiome. The BN analysis approach

shows promise in uncovering complex associations between disparate data types. Our find-

ings based on this approach support published associations between specific microbiome

members (e.g., Eggerthella, Gardnerella, Dialister, Sneathia and Ruminococcaceae), the

Nugent score (a BV diagnostic) and vaginal pH (a risk symptom of BV). Additionally, we

found that several microbiome members were directly connected to other risk symptoms of

BV (such as vaginal discharge, odor, itch, irritation, and yeast infection) including L. jensenii,

Corynebacteria, and Proteobacteria. No direct connections were found between the Nugent

Score and risk symptoms of BV other than pH, indicating that the Nugent Score may not be

the most useful criteria for assessment of clinical BV. We also found that demographics

(i.e., age, ethnicity, previous pregnancy) were associated with the presence/absence of spe-

cific vaginal microbes. The resulting BN revealed several as-yet undocumented associa-

tions between birth control usage, menstrual hygiene practices and specific microbiome

members. Many of these complex relationships were not identified using common analytical

methods, i.e., ordination and PERMANOVA. While these associations require confirmatory

follow-up study, our findings strongly suggest that future studies of the vaginal microbiome

and vaginal pathologies should include detailed surveys of participants’ sanitary, sexual

and birth control habits, as these can act as confounders in the relationship between the
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microbiome and disease. Although the BN approach is powerful in revealing complex asso-

ciations within multidimensional datasets, the need in some cases to discretize the data for

use in BN analysis can result in loss of information. Future research is required to alleviate

such limitations in constructing BN networks. Large sample sizes are also required in order

to allow for the incorporation of a large number of variables (nodes) into the BN, particularly

when studying associations between metadata and the microbiome. We believe that this

approach is of great value, complementing other methods, to further our understanding of

complex associations characteristic of microbiome research.

Introduction

The microbiome plays a critical role in human health, and the vaginal microbiome has been

linked to urogential diseases of reproductive age women, including bacterial vaginosis (BV)

[1–3]. BV affects nearly one-third of women in the United States [4] and has been implicated

in poorer pregnancy outcomes, acquisition of sexually-transmitted infections and other vagi-

nal disorders [5,6]. Specific changes in the vaginal microflora are associated with BV, including

a depletion of Lactobacillus species and an increased abundance of strictly anaerobic bacteria

[7]. However, no single bacterial taxon has been shown to cause BV and the condition can be

found in women with widely varying vaginal microbiomes [8–11]. BV is characterized clini-

cally by itching, pain, burning, odor and/or discharge, and is often diagnosed based on a com-

bination of symptoms, vaginal pH and cytological findings [12]. BV is also diagnosed using the

Nugent score, which is the most commonly used diagnostic test for BV within the research

community [13].

Just as the microbial underpinnings of BV are complex and varied [14], so too are the influ-

ences of a woman’s sexual, sanitary and other practices. A wide range of factors have been

shown to increase BV risk, including smoking, douching, menstruation, and new sexual part-

ners [15–18]. Different ethnic groups exhibit varying rates of BV, leading to conclusions that

intrinsic host factors may contribute to the condition [4], although the effect of confounders

on this association has been questioned [19]. Further complicating this picture is evidence that

women from different ethnic groups tend to harbor different vaginal microflora, independent

of BV status [8,20].

BV is therefore a multifactorial disease mediated by a complex interplay of host, microbial

and environmental factors. Fortunately, all three of these influences can be measured and

evaluated using a combination of 16S rRNA gene sequencing of vaginal samples and detailed

questionnaires of study participants. However, the analytical methods for identifying asso-

ciations between multivariate, often categorical metadata with counts of microbial taxa are

either ill-suited, contested or opaque [21,22]. The most widely used analytical method for

community-level data involves ordination of normalized microbiome counts (e.g., principal

coordinates analysis [PCoA] and nonmetric multidimensional scaling [NMDS]) followed by

statistical significance testing of explanatory/metadata variables (e.g., ANOSIM, PERMA-

NOVA). However, these methods reduce the dimensionality of the microbial community

structure to two or three dimensions, obscuring intra-microbiome interactions. In addition,

interactions between explanatory (metadata) variables are difficult or impossible to uncover

because statistical testing usually occurs on a variable-by-variable basis [23]. Therefore, these

methods do not allow for discovery of more nuanced and complex dynamics between and

within the microbiome and host and environmental factors. Identifying such dynamics can be
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crucial for understanding and thus combatting multifactorial conditions such as bacterial vagi-

nosis–particularly when such conditions lack an accurate diagnostic description and/or test

[24]. Bayesian network (BN) analysis offers potential advantages in handling mixed datasets

for complex conditions, and use of this approach may help to elucidate some of the nuanced,

yet important, associations between host, environmental and microbial factors in diseases

such as BV. For instance, BN’s have been proposed as diagnostic tools for such multifactorial

diseases as breast cancer and cardioembolic stroke [25–27]. While the heavy computational

burden of building BNs has impeded their widespread adoption, recent advances in algorithms

have removed this barrier [28]. In addition, software implementations now offer BN analysis

within user-friendly packages [29,30]. Finally, unlike other machine learning approaches, BN’s

possess an inherently intuitive interpretation and allow for a wide range of data input types,

both continuous and categorical [31].

The primary goal of this study was to uncover associations between host behavioral charac-

teristics, vaginal microbiome composition, risk symptoms and diagnostic criteria of BV utiliz-

ing BN’s. Using this approach, we have demonstrated associations between women’s sexual

and menstrual habits, demographics, vaginal microbiome composition, risk symptoms of BV

and the Nugent Score (a BV diagnostic). Our findings support previously-documented associ-

ations between microbiome members (e.g., Eggerthella,Gardnerella, Dialister, Sneathia and

Ruminococcaceae), the Nugent Score and vaginal pH (risk symptom) [8,13,32,33]. However,

we found no connections between the Nugent Score and other risk symptoms of BV such as

vaginal discharge, itch, irritation, abdominal or pelvic pain, yeast infection and underwear

staining within 60 days prior to sampling and any type of current vaginal odor. This suggests

that the Nugent Score may not provide an accurate diagnostic of BV in some women. Addi-

tionally, we found that several microbiome members were directly connected to risk symp-

toms of BV, including L. jensenii, Corynebacteria, and Proteobacteria. Demographics (i.e.,

age, ethnicity, previous pregnancy) also influenced the presence/absence of specific vaginal

microbes. The resulting network also revealed several as-yet undocumented associations

between birth control usage, menstrual hygiene practices and microbiome members. These

associations require confirmatory follow-up study, though strongly suggest that future studies

of the vaginal microbiome and vaginal pathologies include detailed surveys of participants’

sanitary, sexual and birth control habits, as these can act as confounders in the relationship

between the microbiome and disease.

Secondary objectives of this study included demonstrating the hypothesis-generating

power of BN’s through confirmation of previously described microbiome-BV associations, as

well as the wide accessibility of BN’s within a readily available, user-friendly environment. In

addition, we aimed to illustrate the capacity of the BN method to directly associate component

taxa of the microbiome with metadata. This capacity contrasts with common approaches used

to analyze these data types (e.g., PCoA, NMDS and clustering), which rely on reducing the

dimensionality of the total microbial community to two or three dimensions, followed by clus-

tering or correlation of this reduced community with metadata (such as demographics). The

BN approach also circumvents the limits on the number of interactions that can be tested

between metadata and microbiome members that are imposed by tools such as PERMANOVA

[34] or metagenomeSeq [35]. This advantage of the BN approach is especially true when the

number of variables observed in association with the microbiome is large. In such cases, net-

work analysis identifies the hierarchy of relationships between the various metadata and

microbiome taxa (i.e., the nodes of the network), and then represents these relationships

using the arcs (or edges) of the network. When possible, we demonstrated these differences

by providing direct comparisons of the BN approach with results obtained from Nonmetric

Multidimensional Scaling Ordination (NMDS)-Analysis of Similarity (ANOSIM) and
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PERMANOVA. These comparisons should be interpreted with caution, as particularly the

NMDS/ANOSIM approach is limited by the degrees of freedom available for significance test-

ing and for assessing interactions. In addition—and unlike the BN approach—NMDS/ANO-

SIM and PERMANOVA analyses do not allow for the possibility of hierarchical relationships

between variables observed within the data. One promising approach that can incorporate

the hierarchical structure representing the relationships between the different variables in the

data (microbiome and metadata) is structural equation modeling or pathway analysis [36].

Although useful, this approach requires a priori defined model (or models) that is based on the

researchers’ experience and knowledge base [36]. BN analysis, as we use it in this paper, allows

the data to drive the construction of the network and hence facilitating discovery of putative

relationships other than those driven by the experience of the researcher [37]. Roehrig [38]

provides further comparison between BN and pathway analysis.

Although the BN approach is powerful in revealing complex associations within multidi-

mensional datasets, the need in some cases to discretize the data for use in BN analysis can

result in loss of information. Future research is required to alleviate such limitations in con-

structing BN networks. Large sample sizes are also required in order to allow for the in-

corporation of a large number of variables (nodes) into the BN, particularly when studying

associations between metadata and the microbiome. We believe that this approach is of great

value, complementing other methods, to further our understanding of complex associations

characteristic of microbiome research.

It is important to note that the BN approach presented in this work was aimed at inference,

rather than prediction; and that we focused on evaluating associations within the data that

could indicate possible associations in the target population. Use of the BN approach in this

way does not attempt to classify the state of a new individual within the target population, i.e.,

prediction. Hence our network was fitted using all data and we did not attempt to perform

cross validation to assess the ability of the network to predict or classify.

Materials and methods

Study population and sampling

Questionnaire responses (see S1 File) and the relative abundance of 16S rRNA gene sequences

(see S1 File) were obtained from a study of 396 healthy, sexually active, non-pregnant women

of reproductive age (range 12–45 years); details of the study population have been described

previously [8]. Briefly, study participants submitted 2 self-collected vaginal swabs; one swab

was used for 16S sequencing and the other was used to obtain a Nugent score, which is one of

several diagnostic assays for BV and is the most commonly used within the research commu-

nity [13]. High Nugent scores are considered to be diagnostic of BV. Since all study partici-

pants were considered to be healthy, those with high Nugent scores were assumed to have

asymptomatic BV. At the same time as vaginal swab collection, study participants were admin-

istered a detailed questionnaire on their sexual and sanitary habits and health histories ([8], S2

File).

Ethics statement

The institutional review boards at Emory University School of Medicine, Grady Memorial

Hospital and the University of Maryland School of Medicine approved the protocol. Guide-

lines of the universities were followed in the conduct of the clinical research. Participants pro-

vided written informed consent to participate in the study and written informed consent for

use of the data for future studies. The study was registered at clinicaltrials.gov under ID

NCT00576797.
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Data preparation

Several filtering steps were taken with the goal of retaining only those variables (i.e., taxa, sur-

vey responses and demographic information) that would provide robust information during

BN construction. In order to reach this goal, we removed taxa and survey response variables

that were sparsely represented within the dataset, as described below.

Ribosomal 16S sequencing data were processed using the Ribosomal Database Project

(RDP) Classifier [39] as described previously [8]. In order to allow for robust BN construction,

we removed samples that contained <1,000 16S counts. In addition, subjects who were not in

overall general health or who had experienced toxic shock syndrome were removed from anal-

ysis. 16S counts were then normalized to the sample with the lowest number of counts, and

taxa with counts <0.1% of total 16S counts were removed from further analysis to provide

robust inputs into BN analysis. Finally, 16S counts were converted into presence/absence (i.e.,

0/1) data (S3 File). While the implementation of BN analysis used in this study, i.e., bnlearn

[29], is able to incorporate continuous variables with a Gaussian distribution, unfortunately

the sparseness and skewness of the 16S rRNA count distributions in this dataset were such that

we could not justify using abundances without dichotimization (see abundance distributions

of used taxa in S7 File). Furthermore, categorizing these distributions to include more than

presence/absence categories would have inflated the number of parameters that needed to be

estimated, resulting in diminished stability of the BN network given the available sample size.

From the survey data, we removed questions that were related solely to study design factors

(e.g., enrollment information, location of survey administration, survey administrator ID).

Binary questions about specific vaginal odors (i.e., fishy, musty, foul and other) were collapsed

into a single, binary "any odor" variable in order to decrease sparseness. In addition, we

dropped questions about past birth control use in order to focus on current birth control hab-

its, which we hypothesized would exhibit a stronger effect on the vaginal microbiome. Survey

questions for which>5% of respondents did not provide an answer were excluded from BN

analysis so that variables with a significant proportion of missing data did not exert undue

influence over the graph. For the same reason, and after this variable-level exclusion, we

removed any participants with missing data, keeping only those subjects with complete data in

conjunction with the variables under study. After these filtering steps, we discretized any

remaining continuous variables. Respondents’ ages were converted from a continuous into a

categorical variable with 3 levels: less than or equal to 30 (young adults), 31–40, and greater

than 40 years of age (close to menopause). Nugent scores were categorized into low (0–3),

medium (4–6) and high (7–10). Age at menstrual onset was discretized into <11, 11–15 and

>15 years, and number of sexual partners in the last 60 days was categorized into 0, 1 and>1.

Number of vaginal births and duration of menstruation were treated as categorical variables

with 4 levels each (0–3 births and 1–4 days, respectively). Finally, we excluded survey questions

with sparse outcomes, defined as having <5% of respondents within any one outcome level

(i.e., for binary questions, at least 5% of respondents had to be in the "yes" and "no" outcome

levels). This was also done such that stable BN’s could be constructed. The resulting data are

presented in S3 File and a key is available from S4 File.

BN construction

Filtered, dichotomized 16S rRNA gene counts as well as filtered and discretized demographic

and survey responses were provided as input to BN construction, which was performed using

bnlearn [29] implemented within the statistical software R [40]. Age and ethnicity were speci-

fied as roots of the network, and Nugent score was specified as a leaf. Directionality between

all other nodes was not specified in order to allow for the complex, likely multidirectional
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interplay between the microbiome, host factors, vaginal microenvironment and risk symptoms

that might be associated with BV [12,14,41]. The hill-climbing algorithm was used for BN con-

struction with scoring based on the logarithm of the Bayesian Dirichlet equivalence (BDe)

score; an optimal imaginary sample size was estimated using the alpha.star function in bnlearn

[29,42]. To obtain a consensus network, 1,000,000 BN’s were constructed by first generating

1,000 random number seeds and, then, generating 1000 bootstraps of the input data. The aim

of varying the seeds was to alleviate the possibility of being stuck in a local optimum in the

space of all possible networks. The 1000 bootstraps per different starting point were used to

assess stability of the network given each starting point. All 1,000,000 networks were then com-

bined to construct a consensus BN by first using the mean function to pool the bootstrapped

networks and then by using the averaged.network function to construct the consensus. Both of

these functions are part of the bnlearn package. The empirical frequency for every arc within

all BN’s was determined, and arcs that met an empirical threshold frequency of 0.30 or more

were used to produce the consensus BN. Network analysis and inference was performed using

both this threshold and a 0.50 majority rule threshold. The resulting DAG was used in maxi-

mum likelihood estimation parameter fitting through the bn.fit function, as well as network

analysis [29].

BN analysis

Prior to BN analysis, nodes were categorized as either “demographic”, “microbiome”, “sexual/

sanitary habit”, “BV risk symptom”, or “BV diagnostic criteria” (S4 File). Variables that were

categorized as BV risk symptoms included “staining of underwear”, “vaginal discharge”, “vagi-

nal odor”, “vaginal itch”, “vaginal irritation”, “abdominal or pelvic pain” and “yeast infection”

within the past 60 days prior to sampling, and pH and any type of current vaginal odor (any

odor). These variables where chosen based on previously observed associations with increased

risk of BV [6,12,43]. Vaginal pH, vaginal discharge and staining, and odor could be thought of

as proxies for the Amsel symptoms used in BV diagnosis in clinical settings [32]. Given that all

included subjects were considered healthy at the time of this study, our intention was to high-

light possible increased risk of BV due to presence of these risk symptoms. The Nugent Score

was the only variable designated as a “BV diagnostic criteria”. After a priori categorization, the

nodes and edges obtained from bnlearn were used to conduct network analysis in order to

understand the structure of the overall network, as well as the connections within it. Average

Markov blanket size and overall graph characteristics were calculated and reported. Network

density was defined as the proportion of all possible edges that occurred in the final network.

Node degree was defined as the number of incoming and outgoing edges, node closeness cen-

trality was defined as the average shortest path from a node to all other nodes, and node

betweenness centrality was defined as the frequency with which a node was included in the

shortest path between nodes in the network. Node closeness and betweenness centralities were

normalized for comparison purposes. Groupings of nodes (i.e., groupings not related to the a
priori node category, but rather agnostic groupings) were detected using a modularity optimiz-

ing algorithm [44] as implemented in Gephi [45], using a resolution of 1.0 and randomization

without edge weights. Networks were visualized using Gephi [45], using the Force Atlas layout

unless otherwise specified.

Ordination and clustering

Filtered, normalized, non-dichotomized, Hellinger-transformed [46] 16S rRNA gene counts

were used to construct a Euclidean distance matrix, which was then ordinated using NMDS

with multiple random starts and two dimensions [47]. Use of two dimensions resulted in a
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stress value of 0.19, indicating less-than-ideal fit; however, increasing the number of dimen-

sions resulted in failure of convergence, and therefore a better fit could not be achieved. Asso-

ciations between the ordinated microbiome and metadata variables (i.e., host demographics

and survey data) were tested using analysis of similarities (ANOSIM) [48]. A P-value of less

than 0.05 was considered statistically significant.

PERMANOVA

Permutation based multivariate analysis of variance (PERMANOVA) was also used to assess

the influence of metadata on the vaginal microbiome. The process of assessing significance of

association followed a forward elimination, stepwise model selection approach based on

Akaike’s Information Criteria (AIC) and using the step function as implemented in R. PER-

MANOVA was performed onHellinger-transformed microbiome counts. All survey and

demographic response variables that passed the stepwise selection criteria (see above) and

minimized the AIC score were included in the final PERMANOVA model (implemented

using rda function in vegan). A permutation test using 1000 permutations was used to com-

pute P-values to assess significance of associations between the metadata and the observed

microbiome.

Results and discussion

Data filtering and descriptive statistics

Of the 396 participants included in the original study, 2 were removed a priori due to a lack of

any metadata from the questionnaire. Among the remaining 394 participants, 247 genus- and

species-level taxa were identified through 16S sequencing of vaginal swabs. Total 16S counts

per sample ranged from 693 to 7,392 with a median of 2,149. Five samples with<1,000 total

16S counts were removed from the analysis, for a remaining 389 samples; all 247 taxa were rep-

resented within these 389 samples. 16S counts were normalized to a count of 1,006, which was

the total number of 16S reads in the sample with the lowest total count. The distribution of 16S

counts was strongly right-skewed, and therefore 220 taxa were present at<0.1% abundance

(i.e., fewer than an average of 2 reads per sample) and were removed from further analysis.

From the 389 study participants with 16S data that passed filtering, a further 4 participants

were removed because they answered "no" or did not answer the question of whether they

were in overall good health; and a further 9 were removed because they either answered "yes"

to previous toxic shock syndrome or did not answer this question. A further 91 respondents

were excluded from analysis due to missing data for survey questions. The decision to remove

subjects with missing data was not made lightly and was based on two reasons: 1) data imputa-

tion, although useful, could be faulty or could reduce the variability of the estimates of the net-

work parameters [49] resulting in overconfidence in the network and 2) adding the missing

data as a category by itself would substantially hamper interpretability of results. Accordingly,

the decision was made to err on the conservative side (i.e., increased variability), rather than

on the side of overconfidence or weak interpretability. This left a total of 285 healthy study par-

ticipants for inclusion in BN analysis, encompassing a total of 27 taxa with a median preva-

lence of 89/285 samples (31%, range 24–228 out of 285 samples, S3 File). Among the 285

participants included in the network, 58 self-reported to be Hispanic (20.4%), 71 Asian

(24.9%), 78 White (27.4%) and 78 African-American (27.4%). Nearly half of respondents were

age 30 or under (49.5%, 141/285), and only 25 reported being over age 40 (8.8%).

After removing study-specific questions, redundant questions, past birth control use ques-

tions, questions about frequency of sexual habits and menstrual hygiene, as well as questions

related to study exclusion criteria, a total of 263 survey questions were included in the initial
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survey response data. After removing questions with >5% missing responses, we were left

with 56 study questions. A further 27 questions were removed due to sparseness, resulting in a

total of 29 study questions available for input into the BN (S3 File). A majority of the 285 sur-

vey respondents included in the Bayesian network reported having been pregnant at least once

(170/285, 59.6%). Sixty-three reported having had no sex partners in the 60 days preceding

sampling (22.1%), a further 199 were monogamous in this same time period (69.8%), and 23

respondents had multiple sex partners (8.1%). The majority of women reported an absence of

vaginal itching, irritation, discharge, odor or uro-abdominal pain in the 60 days preceding the

survey (177/285, 62.1%). Vaginal yeast infections in the 60 days preceding sampling were

reported by 19 of the 285 respondents. In addition to the 29 survey questions, we also had data

on the vaginal pH and Nugent score of the 285 women in the study. The majority of partici-

pants had a low Nugent score (188/285, 66.0%), while a smaller proportion were categorized as

intermediate and high (34/285 and 63/285, 11.9% and 22.1%, respectively). Around half of the

285 women had a vaginal pH of less than or equal to 4.5 (152/285, 53.3%), while about half had

a higher vaginal pH (133/285, 46.7%).

Network construction

A total of 60 variables were included in BN construction: the 29 survey response variables and

27 bacterial taxa that passed filtering criteria, as well as age, ethnicity, vaginal pH and Nugent

score. The consensus BN had 152 directed edges with an average Markov blanket size of 9.4.

BN characteristics

The final consensus graph contained 60 nodes within a single sparse network with a density of

0.043. The majority of nodes contained between 1 and 6 connections, while several were more

highly connected (Fig 1). Eggerthella represented the most highly-connected node with 11

edges, followed by Sneathia, previous pregnancy status and current use of any type of birth

control with 10 edges each.

Betweenness centrality measures indicated that Parvimonas, report of vaginal odor in the

60 days prior to the survey, as well as presence/absence of L. vaginalis within the vaginal micro-

biome, were situated along highly-connected paths in the network [S4 File, see column

“Betweenness Centrality”]. Node closeness centrality metrics suggested that presence/absence

of Lactobacillus iners,Mycoplasmataceae, Lachnospiraceae and Streptococcus were all nodes at

the geographic center of the network, along with vaginal irritation in the 60 days preceding the

survey [S4 File, see column “Closeness Centrality”]. Interestingly, Sneathia, Eggerthella, Parvi-
monas and Streptococcus have been described as key members of a vaginal microbiome charac-

terized by a diversity of non-Lactobacillus bacteria found more commonly in black and

Hispanic women [8,50]. The fact that these bacteria are centrally situated in the BN developed

in this study (as defined by closeness, betweenness and degree metrics) lends support to the

idea that these bacteria could play an important role in differentiating the vaginal microbiome

in different women.

Ordination, clustering and PERMANOVA

Univariable clustering analysis with ANOSIM significance testing revealed that six of the 33

metadata variables (including host demographics and survey responses) were statistically sig-

nificantly associated with the microbiome ordination results. This list comprised ethnicity,

vaginal pH, Nugent score, tampon use, as well as previous pregnancy and vaginal birth statuses

[S5 File]. S6 File provides the associated NMDS plots for these six variables. These analyses

suggested that demographic and behavioral traits of participants were associated with
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differences in the microbiome; however, given the nature of these analyses, it was unclear spe-

cifically which microbiome members were being affected, and whether such associations were

direct or indirect. PERMANOVA analysis, alternatively, revealed a best-fit model that also

included vaginal pH, Nugent score and previous pregnancy, as well as participant age, use of

pads during menstruation, staining of underwear in the previous 60 days, and use of male con-

doms as current birth control method, which together explained 25% of the variability in the

data (Table 1). This type of analysis provided more information highlighting associations

between high Nugent Score, Sneathia andMegasphaera and possibly Atopobium, Dialister,
Eggerthella, Ruminococcaceae, and Lachnospiraceae (S1 Fig). It also showed putative

Fig 1. Histogram of node degree for the final BN. The majority of nodes had fewer than 8 connections (i.e., degrees), while a few were more highly

connected.

https://doi.org/10.1371/journal.pone.0191625.g001
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association between intermediate Nugent Score and L. gasseri (S1 Fig). Other relationships

were tenuous and not clearly defined. Furthermore, the above analyses precluded the testing of

more complicated interactions between multiple variables of diverse types. BN analysis was

thus used to identify such relationships within all of the data, including between individual

microbiome members; we point to the results of NMDS/ANOSIM and PERMANOVA where

relevant.

Associations between population demographics, the microbiome and

survey responses

There were 58 edges that bridged nodes of different types, i.e., demographics, sexual and men-

strual hygiene habits, risk symptoms of BV, diagnostic criteria and microbiome (see S4 File for

a priori classification of nodes); compared to 94 edges that connected nodes of like types. Of

these 58 bridging edges, 16 were identified in 50% of the bootstrapped BN networks (Fig 2).

Many of these connections confirmed previously documented relationships between demo-

graphic factors and sexual and menstrual habits. For instance, ethnicity was directly related to

Pap testing status, with Asian women exhibiting a much higher likelihood of never having had

a pap smear compared to Hispanic, White and Black respondents (20.8% versus 4.6%, 2.9%,

and 1.2%, respectively), a disparity that has been described previously [51,52]. At a threshold

of at least 50% bootstrap support, ethnicity also influenced tampon and pad use during men-

struation [53], while at 30% support ethnicity was associated with age at menstrual onset

[54,55] and the likelihood of a woman ever having self-treated a vaginal infection.

At 50% bootstrap support, there were no edges between demographic variables (i.e., age,

ethnicity, age at menstrual onset, previous pregnancy and vaginal birth) and microbiome

nodes (Fig 2), suggesting that these factors may not exert robust influence over the presence of

common microbiome members. However, decreasing bootstrap support to 30% revealed four

such edges, namely associations between participant age and Lactobacillus iners, ethnicity and

Eggerthella, age at menstrual onset and Ureaplasma, andMycoplasmataceae and period length

(Fig 3). PERMANOVA testing supported the associations between the vaginal microbiome

and age, while NMDS/ANOSIM analysis supported the association between the microbiome

and ethnicity and marginally (ANOSIM P = 0.06) between the microbiome and age at me-

narch (Table 1, S5–S7 Files). Additionally, PERMANOVA and NMDS/ANOSIM analyses

revealed associations between the vaginal microbiome and previous pregnancy and/or previ-

ous live birth (Table 1, S5–S7 Files). Given the constraints of PERMANOVA and NMDS/

ANOSIM analysis, we were unable to identify which specific microbiome members may be

involved in these associations.

Table 1. PERMANOVA permutation test results after stepwise model selection using the AIC.

Variable Degrees of freedom p-values

Nugent score 2 0.001

Previous pregnancy 1 0.001

Vaginal pH 1 0.001

Participant age 2 0.012

Use of menstrual pads during menstruation 1 0.023

Staining of underwear in previous 60 days 1 0.027

Use of male condoms as current birth control method 1 0.066

PERMANOVA was used to assess the significance of associations between metadata and the vaginal microbiome

composition. P-values are based on 1000 permutations.

https://doi.org/10.1371/journal.pone.0191625.t001
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However, BN analysis revealed that the probability of harboring L. iners given age>40

years was 93%, compared to 72% and 85% for women ages 30–40 and<30 years, respectively.

To date, longitudinal studies of the vaginal microbiome have been restricted to relatively short

time periods, with subsequently little knowledge about how the microbiome may change with

age. However, studies suggest that variations in estrogen levels influence presence/abundance

of Lactobacilli [56,57], and age has a significant influence on estrogen levels [58], which

together present a possible mechanism for the association we found between age and L. iners.
Existence of an edge between these two nodes suggests significance of association (affirmed

by a Chi-square test-of-independence, p-value 0.0067). BN analysis also revealed a complex

relationship between age and other demographic variables. Age was associated with previous

pregnancy status (which can also affect estrogen levels), as was ethnicity; indeed, previous

pregnancy was a common effect of age and ethnicity within this dataset (i.e., the three nodes

formed a v-structure within the graph). Only 24% of white respondents reported having ever

been pregnant (19/78), compared to 58%, 77% and 86% of Asians, African-Americans and

Fig 2. Inter-category bridging edges with>50% bootstrap. Network displaying all nodes, but depicting only inter-category

bridging edges with>50% bootstrap support (arrows). Node size is proportional to closeness centrality, arrow thickness is

proportional to bootstrap support, and node color signifies category type (orange = demographic, green = microbiome,

turquoise = BV risk symptom, purple = sexual/menstrual habits, and pink = diagnostic criteria of BV). Node label abbreviations and

categorization by type can be found in S4 File.

https://doi.org/10.1371/journal.pone.0191625.g002

Using Bayesian networks to association metadata and the vaginal microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0191625 January 24, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0191625.g002
https://doi.org/10.1371/journal.pone.0191625


Hispanics, respectively. The role of age in likelihood of previous pregnancy was very strong

among Asian and white respondents, and less so for African-Americans and Hispanics. Eth-

nicity also influenced the likelihood of identifying Eggerthellawithin the microbiome, as Afri-

can-Americans were more likely to harbor this bacterium (45.4% versus 18.8%, 16.5% and

3.8% for Hispanics, Caucasians and Asians, respectively). Interestingly, Eggerthellawas one of

28 taxa that were previously found to exhibit a significant interaction with race and BV status

[50], and was also a key member of a certain vaginal microbiome composition that was more

commonly found in black and Hispanic women than white and Asian women [8]. Finally,

previous pregnancy decreased the likelihood of a woman harboring L. crispatus and age at

menarch was associated with Ureasplasma presence. Ureaplasma presence was also influenced

by pap smear status. Ureaplasma in the upper genital tract has been associated with poor preg-

nancy outcomes, and Ureaplasma colonization in the lower genital tract has been found to be

associated with a variety of socioeconomic and demographic factors including educational,

income, ethnicity and marital status [59–61]. Interestingly, age at menarch has also been asso-

ciated with socioeconomic-related factors such as body mass index (BMI) and ethnicity

[62,63], as has pap smear status [51,52]. Results such as these demonstrate the complexity of

interactions between microbiome composition and demographic and behavioral factors, and

strongly suggest that any attempts to associate microbial composition with clinical BV should

include co-analysis of potential confounders. The results presented here indicate that age, eth-

nicity and previous pregnancy status could potentially be used as portmanteau variables for

such confounders.

Fig 3. Network depicting nodes related to demographics (orange) and microbial taxa (green), as well as all edges with at least

30% bootstrap support. Node size is proportional to node degree (i.e., number of incoming and outgoing edges). Arrow thickness is

proportional to bootstrap support. Red arrows bridge demographic and microbiome nodes, while green and orange arrows connect

nodes of the same type (i.e., microbiome-to-microbiome or demographic-to-demographic). Node label abbreviations can be found

in S4 File.

https://doi.org/10.1371/journal.pone.0191625.g003
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Upon modularity analysis, nodes within the network tended to segregate into groupings of

nodes of like type (called “communities” in network analysis), with some exceptions (Fig 4).

Nearly all of the microbiome nodes fell into two largely bacteria-specific groupings, one of

which contained the nodes for Nugent score and vaginal pH. All of the Lactobacilli except L.

gasseri segregated along with nodes related to demographics (including study participant age,

ethnicity, pap smear status, age at menstrual onset and previous pregnancy), menstrual

hygiene habits and douching. All of the nodes related to risk symptoms associated with

increased risk of BV, except for pH, fell into one grouping that also included use of the with-

drawal method for birth control, and all of the other birth control variables were clustered

into a fifth grouping that also included the number of sexual partners in the previous 60 days

(Fig 4).

These modularity-based grouping results highlight the dissociation of the Nugent score (a

BV diagnostic) and vaginal pH from all other risk symptoms of BV, a finding which supports

recent studies suggesting that these may not be the most useful criteria for assessment of clini-

cal BV disease [8,33]. None of the other risk symptom-based nodes fell into the same modular-

ity grouping as the Nugent score and vaginal pH, and indeed the BN contained no directed

paths of any length between vaginal pH or Nugent score and risk symptoms of vaginal irrita-

tion, itch, odor, pain or staining. Furthermore, contingency table propagation showed that

women reporting vaginal odor, itch and irritation had an 11.6% chance of a high Nugent

score, compared to 11.0% for women who did not report vaginal odor, itch and irritation,

again suggesting that the Nugent score might not be reliably associated with these risk symp-

toms. In addition, while bacteria traditionally thought to be determinants of the Nugent score

did belong to the same modularity grouping as the node for Nugent score (e.g., Dialister and

Gardnerella), these bacteria were not associated with BV risk symptoms other than pH (Fig 4).

Fig 4. Network depicting modularity-based communities (node colors) as determined by a modularity

optimization algorithm [44]. Size of node is proportional to node’s betweenness centrality. Node label abbreviations

can be found in S4 File.

https://doi.org/10.1371/journal.pone.0191625.g004
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Associations between pH, Nugent Score and the microbiome

Several microbial taxa nodes were directly associated with vaginal pH and the Nugent Score.

Vaginal pH is one of the four Amsel criteria used to diagnose BV [32]. A vaginal pH of less

than or equal to 4.5 is considered normal, while >4.5 is considered to contribute to BV.

Although all women in this dataset were healthy and did not have clinical BV as determined

by the Amsel criteria, nearly half had an “abnormal” vaginal pH>4.5 (133/285, 46.7%), a find-

ing which calls into question the use of vaginal pH as an indicator of clinical BV. As with previ-

ous studies [64], NMDS/ANOSIM and PERMANOVA analyses both showed association

between the vaginal microbiome and vaginal pH (Table 1, S5–S7 Files). Using BN analysis, we

were able to reveal that vaginal pH was influenced by 4 bacteria: Atopobium, Dialister, Gard-
nerella and Peptoniphilus (Fig 5). These bacteria are all obligate or facultative anaerobes and

the presence of each of these bacteria in the vaginal microbiome increased the likelihood of a

vaginal pH > 4.5. These four bacteria have been described as key members of a vaginal micro-

biome community type characterized by a diversity of non-Lactobacilli bacteria that is found

more commonly in women with a high vaginal pH. It has been hypothesized that the higher

vaginal pH in such women is due to a comparatively low number of lactic acid producing bac-

teria [8], and the results of this study support this hypothesis. As with previous research, how-

ever, the presence of these bacteria and the subsequent increase in vaginal pH were reported in

healthy women without clinical BV.

Fig 5. Network depicting vaginal pH and Nugent Score (pink), and bacteria (green). Size of circle is proportional to

degree (i.e., number of incoming and outgoing edges), and edge thickness is proportional to bootstrap support. Node

label abbreviations can be found in S4 File.

https://doi.org/10.1371/journal.pone.0191625.g005

Using Bayesian networks to association metadata and the vaginal microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0191625 January 24, 2018 14 / 25

https://doi.org/10.1371/journal.pone.0191625.g005
https://doi.org/10.1371/journal.pone.0191625


The Nugent score is a diagnostic test used primarily in research studies of BV [13]. It is

rarely used in practice because it involves time-consuming microscopic examination of bacte-

rial morphology from vaginal swabs. The Nugent score is based on the relative presence of

Gram-positive versus Gram-negative straight and curved rods, and therefore it is unsurprising

that NMDS/ANOSIM and PERMANOVA testing both uncovered associations between the

vaginal microbiome and the Nugent score (Table 1, S5–S7 Files). Using BN analysis, we were

able to assess this association more closely in order to uncover which specific microbiome

members were driving differences in the Nugent score. We found that the Nugent score for

the 285 women in this dataset was influenced by bacteria from two Gram-positive bacteria

(Eggerthella and Ruminococcaceae), two Gram-negative bacteria (Dialister and Sneathia) and

one Gram-variable bacterium (Gardnerella) group. Vaginal pH was also connected to Nugent

score; women with a pH of>4.5 were much more likely to have a high Nugent score, a finding

consistent with previous literature [8,65]. Amongst the 64 combinations of parent variable

states that directly influenced the Nugent Score, there were 6 combinations that conferred

100% conditional probability of a high Nugent score; all 6 combinations included Dialister,
Ruminococcaceae and Sneathia, which have been found in higher abundance in women with a

high Nugent score (8, Fig 6). Overall, these results confirm previous findings concerning the

robust association between certain vaginal microbiome members and vaginal pH and Nugent

score. However, the women in this study were BV-negative, and therefore the presence of high

vaginal pH, a high Nugent score and/or microbes associated with these indicators does not

always correlate with clinical BV [8]. It is worth noting that the Lactobacillus species and the

Nugent Score were only conditionally independent given the presence of vaginal pH and

Sneathia—which were directly associated with L. vaginalis and indirectly with both L. jensenii
and L. crispatus—and Ruminococcacea, which shared a direct edge with L. gasseri. This indi-

cates a weaker association between the Nugent Score and the Lactobacilli, which was masked

by the presence of stronger associations, e.g., with vaginal pH.

Fig 6. Conditional probability of a high Nugent Score (y-axis) for all possible combinations of direct parent

variables (x-axis) (binary heatmap, black = present, gray = absent).

https://doi.org/10.1371/journal.pone.0191625.g006

Using Bayesian networks to association metadata and the vaginal microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0191625 January 24, 2018 15 / 25

https://doi.org/10.1371/journal.pone.0191625.g006
https://doi.org/10.1371/journal.pone.0191625


Associations between the microbiome and risk symptoms other than

vaginal pH

While the women in this study did not have clinical BV, 108 of them did report experiencing

at least one risk symptom associated with BV within the 60 days prior to sample collection

(108/285, 38.9%). Vaginal yeast infections were reported by 19 of the 285 respondents during

the same time period. Most risk symptoms clustered together within the BN, with edges con-

necting vaginal discharge to both vaginal irritation and vaginal itch; a fishy/musty vaginal

odor to staining of the underwear; any vaginal odor to vaginal itch; vaginal itch to vaginal

infection; and vaginal infection to yeast infection specifically. Staining of the underwear was

also directly connected to uro-abdominal pain in the preceding 60 days, which in turn was

connected to self-treatment of a vaginal infection. While the Nugent score and vaginal

pH were not connected to these risk symptoms, there were direct connections with specific

microbial taxa. Presence of Lactobacillus jensenii increased the likelihood of a woman report-

ing uro-abdominal pain within the preceding 60 days, from a probability of 3.6% to 10.1% con-

ditional on absence or presence of L. jensenii, respectively. Interestingly, PERMANOVA

analysis showed an association between underwear staining in the previous 60 days and the

vaginal microbiome (Table 1); the results of BN analysis suggest that uro-abdominal pain and

L. jenseniimay be the specific factors that link underwear staining and the microbiome. Use of

pantyliners during menstruation was also associated with L. jensenii, with the conditional

probability of L. jensenii being present in the vaginal microbiome increasing from 37.4% to

60.7% with use of panty liners during menstruation. While the directionality of this relation-

ship is not immediately intuitive, previous work has shown that use of emollient pads changes

the vaginal epithelium and that some women’s vaginal microflora does shift with pad versus

tampon use [66,67], although the evidence on this is mixed [68]. NMDS/ANOSIM testing

indicated that tampon use was associated with the vaginal microbiome, lending further sup-

port to the hypothesis that menstrual habits could impact the microbiome (S5 and S6 Files).

Alternatively, the support for edge directionality in the Bayesian network was based on major-

ity rule and therefore directionality of arcs could potentially be reversed; in such a scenario,

presence of L. jensenii could increase the likelihood of uro-abdominal pain, and thus under-

wear staining and pantyliner use. Furthermore, ethnicity was a potential confounder in the

relationship between the microbiome and menstrual habits, as the network showed an influ-

ence of ethnicity on pad versus tampon use, which in turn directly affected pantyliner use (Fig

4). The relationships between uro-abdominal pain, underwear staining, pantyliner use and L.

jensenii deserve closer study given the importance of this microbe in vaginal health.

Other connections between bacteria and risk symptoms of itch, irritation, odor, staining,

pain or yeast infection included use of a pad outside of menstruation increasing the condi-

tional likelihood of a woman harboring Proteobacteria from 2.8% to 6.7%, as extra-menstrual

pad use could be considered a proxy for vaginal discharge, staining or odor. Because Proteo-
bacteria is such a diverse phylum that includes pathogens and non-pathogens, it is difficult to

formulate hypotheses concerning these relationships. Corynebacterium seemed to play an

important role in symptomology and sexual behaviors, as it was directly connected to vaginal

odor and number of sexual partners in the 60 days preceding the survey. Women with this

bacterium in their vaginal flora were more likely to have reported both no or multiple sexual

partners, and were less likely to have reported a single sexual partner, while presence of Cory-
nebacterium increased the risk of vaginal odor in the 60 days preceding the survey. The associ-

ation of Corynebacteriumwith vaginal pathology is not widely described in the literature,

although it has been recognized as an important vaginal community member for several

decades [69]. More recently, studies indicate that this bacterium is more prevalent in women
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with spinal cord injuries, women with treatment-refractory BV, and women with urgency uri-

nary incontinence [70–72]. Depending on the species, Corynebacterium can be fermentative,

and many species produce amino acids, which can alter pH and the metabolite profile of the

surrounding environment, thus providing a potential mechanism of Corynebacterium’s role in

vaginal odor and pathology. These associations were not and would not have been easily

observed using NMDS/ANOSIM and PERMANOVA.

Presence of Bacteroides had a protective effect against vaginal discharge; the probability of

reporting discharge given the presence of Bacteroides was 2.0%, compared to 28.9% given

absence of these bacteria within the vaginal microbiome. This runs counter to current notions

about Bacteroides, an anerobic bacteria which is considered a commensal of the gastrointesti-

nal tract and has been implicated in BV [73,74]. However, not all vaginal discharge should be

considered abnormal [75,76], and therefore it would not be a contradiction for Bacteroides to

be associated with a decreased prevalence of “healthy” vaginal discharge (such as cervical

mucous released during ovulation) and an increased prevalence of clinical BV. Distinctions

such as these will become increasingly important as the scientific community attempts to

attain a more nuanced understanding of connections between the microbiome and true clini-

cal disease.

Microbiome-behavior connections

Sexual behavior, sanitary practices and microbiome composition have all been associated with

BV as separate factors. However, little is known about how a woman’s sexual and sanitary hab-

its may influence the microbiome, or vice versa; and how this interplay may influence the like-

lihood of developing BV. The network resulting from this dataset showed several direct

connections between the study participants’ habits and the microbiome. Whether or not

women had ever had a pap smear was directly related to presence/absence of Ureaplasma.

Women who reported having had a pap demonstrated a 34.1% likelihood of harboring Urea-
plasma, compared to 18.0% among women who had never had a pap smear. Having had a Pap

test was the only healthcare access question included in the Bayesian network that could be

considered a proxy for socioeconomic status [51].

Microbiome-birth control interactions

Use of certain types of birth control could influence the microbiome by modulating hormone

levels or by introducing chemical or physical barriers into the vaginal environment. Use of an

intrauterine device (IUD) directly influenced the presence/absence of two different bacteria,

namely Lactobacillus gasseri and Sneathia; in both cases, use of an IUD decreased the likeli-

hood of finding the bacterium within the vaginal microbiome. Previous research on the effects

of IUD use on vaginal microflora has been mixed, with both copper and hormone IUDs asso-

ciated with higher levels of Candida fungi [77] but no associations with any bacterial alter-

ations [77–79]. Given the location of IUD use as a relatively highly-connected intercategory

node in the Bayesian network, as well as its potential association with nonspecific vaginitis and

recurrent BV [32,41,71], the associations with L. gasseri and Sneathia warrant follow-up study.

Women who reported ever using any form of birth control were more likely to have Lacto-
bacillus crispatus within their microbiome compared to women who had never used birth con-

trol (conditional probability of 56.6% versus 48.1%, respectively). Women who reported male

condom use in the 60 days preceding the survey were less likely to harbor Lachnospiraceae
than women who did not (conditional probability of 1.3% versus 9.9%). Interestingly, PER-

MANOVA testing also showed a connection between male condom use in the previous 60

days and the overall composition of the vaginal microbiome (Table 1); the BN analysis allowed
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us to pinpoint this relationship to Lachnospiraceae specifically. As with other associations,

there were some directed edges that did not immediately fit the paradigm for host-microbe

interactions. For example, IUD use and abstinence were influenced by status of Parvimonas
and L. vaginalis within the vagina, respectively. It is difficult to hypothesize a mechanism by

which vaginal bacteria could influence a woman’s birth control decisions, even though recent

studies have challenged the paradigm that host-microbiome interactions are largely uni-direc-

tional by suggesting that microbiome composition can directly influence host behavior [80–

82]. This highlights the importance of remembering that the directionality of edges in the BN

are not definitive.

Microbiome-microbiome interactions

Within the entire network, bacterial nodes fell largely within 2 modularity-based groupings,

with some exceptions (Fig 4). Upon isolation of bacterial nodes in a separate graph and subse-

quent modularity optimization, four communities of bacteria became evident (Fig 7). These

groupings did not seem to segregate by either Gram stain, cellular metabolism, or any other

known characteristics. These groupings could be driven by as-yet undiscovered microbial rela-

tionships within the vaginal environment and/or by unmeasured, non-microbiome factors in

this dataset.

With the exception of L. iners and L. gasseri, the Lactobacilli formed a tight cluster to them-

selves. The fact that L. iners segregated separately from the other Lactobacilli is interesting

given that this organism differs substantially in terms of genomic and metabolic characteris-

tics, and its role in vaginal health has been debated despite its very high prevalence [50,83].

One clue in this debate could be the tight association between L. iners and Ureaplasma, the lat-

ter of which has been implicated in several female reproductive conditions including chor-

ioamnionitis leading to premature delivery and pelvic inflammatory disease [84,85]. Presence

of L. iners increased the likelihood of Ureaplasma from 19.4% to 36.3%, a significant increase

that could have health implications and therefore deserves follow-up study.

Conclusions

Using widely accessible software, we have demonstrated the utility of applying a Bayesian Net-

work approach to a multi-dimensional microbiome dataset. Using this approach, we have

demonstrated associations between women’s sexual and menstrual habits, demographics, vagi-

nal microbiome composition and symptoms and diagnostics of BV. Many of these associations

suggested intriguing relationships, indicating that the BN approach is able to highlight impor-

tant associations within complex datasets, which can then be used for hypothesis generation.

While follow-up studies are needed to investigate the significance of these novel associations,

the validity of the associations was buttressed by the presence of many well-documented and

self-evident connections within the overall BN. For instance, our BN confirmed the impor-

tance of vaginal pH and Gardnerella as influencers on the Nugent Score (Fig 4). In addition,

we found a very strong association between previous pregnancy, vaginal birth and tubal liga-

tion. Indeed, all 17 participants who reported tubal ligation had previously been pregnant. The

most recent data available suggest that nearly half of tubal ligations were performed in the

postpartum period and that younger women were more likely to have tubal ligation performed

post-partum [86]. As with the BN produced here, this suggests a tight association between

tubal ligation and previous pregnancy. Another confirmatory association showed that women

who reported vaginal itch in the 60 days preceding the survey were much more likely to also

have reported a yeast infection in the same time period. Vaginal itch has been closely associ-

ated with vulvovaginitis candidiasis (yeast infection) [87]. While relationships such as these do
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not provide novel insight, they can be used as a “sanity check” in order to gain confidence in

the structure of the BN to then move on to analysis of less well-understood network

connections.

An advantage of the BN approach to datasets such as the one presented here is that BN algo-

rithms are now easily accessible through well-documented and well-supported packages such

as bnlearn [29], which has been integrated with the packages “parallel” (which is included in

R-core) and “snow” [88] to support multi-threading for construction of large networks, and

which now supports both categorical and continuous variables. Numerous GUI-based pack-

ages exist to support network visualization once the BN has been constructed [45,89], allowing

for interactive graph exploration in an intuitive interface. Given the increasing use of multi-

level, multivariate microbiome datasets, this accessibility should pave the way for more scien-

tists to implement the BN analysis for such data. The need for such an approach has been

Fig 7. Network depicting only microbiome nodes, colored by modularity-based community type, as determined

using a modularity optimizing algorithm [44]. Node size is proportional to betweenness centrality, and edge

thickness is proportional to bootstrap support. Node label abbreviations can be found in S4 File.

https://doi.org/10.1371/journal.pone.0191625.g007

Using Bayesian networks to association metadata and the vaginal microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0191625 January 24, 2018 19 / 25

https://doi.org/10.1371/journal.pone.0191625.g007
https://doi.org/10.1371/journal.pone.0191625


demonstrated in the complexity of the relationships that we found within and between the vag-

inal microbiome, women’s sexual and menstrual habits, demographics and symptoms/diag-

nostics. While non-network approaches such as PERMANOVA and ordination/clustering can

be used to uncover associations between individual metadata variables and the microbiome as

a whole (as we demonstrate in this work), there are important limitations to these methods:

first, these methods collapse the microbiome data into a single datapoint projected into two or

a maximum of three dimensions, and therefore preclude assessment of intra-microbiome

interactions, as well as interactions between metadata variables and specific microbiome mem-

bers; second, these methods usually approach statistical testing on a variable-by-variable basis,

and are thus ill-suited to understanding complex interactions between subsets of variables and

the microbiome; and third, these approaches fail to show intra-metadata interactionswithin an

analysis. BN analysis overcomes these limitations by testing for all possible associations

between every node within the data–thus uncovering complex interactions within hierarchical,

multidimensional datasets. Such datasets increasingly typify microbiome studies, and the need

for rich and standardized metadata to support microbiome studies has been recently noted

and implemented [90,91]; such initiatives would be well-complemented by the data-flexible

and intuitive nature of BN’s. It is important to note, however, that the incorporation of more

metadata variables (nodes) into BN analyses will necessitate larger sample sizes in order to sup-

port BN construction and inference. Similarly, the data distributions currently accommodated

by available BN analysis packages for continuous variables are limited to the Normal (Gauss-

ian) distribution. This constraint results in the need to discretize most microbiome data,

which are commonly characterized by zero-inflated, skewed counts that do not conform to a

Gaussian distribution. As was the case in this report, the need to dichotomize may cause loss

of information, resulting in less-than-optimally refined inference. Fortunately, BN analysis

methods form an active area of research, and extensions to accommodate distributions other

than the Gaussian are currently being developed [92]. As these efforts evolve, the BN approach

is likely to become more flexible, and thus even better-suited to the unique characteristics of

microbiome datasets.
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