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A B S T R A C T

Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans
can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning
models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We
propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and
seamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pre-
trained models with clinically relevant uncertainty quantification. We validate our method across four chest CT
distribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampus
and the prostate. Our results show that the proposed method effectively detects far- and near-OOD samples
across all explored scenarios.
1. Introduction

Automatic segmentation of lung lesions in chest computed to-
mography (CT) scans could standardise quantification and staging of
pulmonary diseases such as Covid-19 and open the way for more ef-
fective utilisation of hospital resources. Ground glass opacities (GGOs)
and consolidations are characteristic of pulmonary infections onset by
the SARS-CoV-2 virus (Parekh et al., 2020). Since the early phases
of the pandemic, many institutions have compiled scans from af-
flicted patients in intensive care, and some initiatives have publicly
released cases with ground-truth delineations from expert thorax ra-
diologists (Roth et al., 2021; Jun et al., 2020; Morozov et al., 2020).
Deep learning has shown promising results in segmenting these pat-
terns. Particularly the fully-automatic nnU-Net (Isensee et al., 2021)
secured top spots (Henderson, 2021) (9 out of 10, including the
first) in the leaderboard for the Covid-19 Lung CT Lesion Segmentation
Challenge (Roth et al., 2021).

Unfortunately, models trained with publicly available cohorts may
not generalise well to real-world clinical data, thus posing safety issues
when deployed without extensive testing and/or quality assurance (QA)
protocols. Deep learning models are known to fail for data that diverges
from the training distribution (Mehrtash et al., 2020); a phenomenon
commonly referred to as domain shift. This hinders the deployment of
AI solutions during the Covid-19 pandemic (Hu et al., 2020), as most
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institutions do not dedicate resources to annotate in-house datasets.
There are many potential causes for domain shift, ranging from changes
in the acquisition process to naturally shifting patient populations.
Some can unknowingly occur within the same institution, rendering
even models trained with in-house data unreliable with the passage of
time (Srivastava et al., 2021).

This performance deterioration is visualised in Fig. 5 for an nnU-
Net trained on data from the COVID-19 Lung CT Lesion Segmentation
Challenge (Roth et al., 2021; An et al., 2020; Clark et al., 2013).
Featuring 199 cases, 160 of which were used for training, the data pool
is much larger than single institutions realistically collect and annotate,
considering how time-intensive the process of lung lesion delineation is.
The data is also multi-centre and diverse with regard to patient group
and acquisition protocol, yet the model fails to generalise to different
distribution shifts. Lung lesions do not manifest in large connected
components (see Fig. 12), so it is not trivial for novice radiologists to
identify incorrect segmentations.

While we have so far painted a sombre outlook for clinical use
of deep learning models, these could still be safely utilised alongside
proper quality assurance mechanisms. The problem is that human-
performed QA is time-consuming and expensive, ultimately defeating
the promise of AI in radiology. On the other hand, automatic methods
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may be an inexpensive and effective first step in identifying low-
quality cases. In particular, reliable out-of-distribution (OOD) detection
can signal when the model is unsuitable for a patient.

Existing methods for OOD detection or uncertainty quantification
either (a) observe the network logits, which often fail silently exhibiting
plausible behaviour mimicking in-distribution (ID) cases even for novel
inputs (Hein et al., 2019) or (b) require special training considerations
that reduce their usability, such as a self-supervision loss term or outlier
detector. In practice, models are used which exhibit the best perfor-
mance in the target task. Widely-used segmentation frameworks are not
designed with OOD detection in mind, and so a method is needed that
reliably identifies OOD samples post-training while requiring minimal
intervention.

We propose to directly estimate the similarity of new samples to
the training distribution in a low-dimensional feature space. A large
distance signals that the model has not seen specific activation patterns
in the past, and therefore outputs produced from such novel features
cannot be trusted. Our method (Gonzalez et al., 2021), initially presented
at MICCAI 2021, is lightweight and requires no changes to the network
architecture of the training procedure, allowing it to integrate into
complex segmentation pipelines seamlessly. Further, as the distance es-
timation process follows after training, it can provide clinically-relevant
uncertainty scores for pre-trained models.

Building on our previous work, in the present article we provide
more context into our methodology, perform an ablation study on
selecting feature maps and considerably extend our evaluation. We
validate our proposed method across four scenarios with a nnU-Net
trained on Challenge data.

1. For the first setting, we perform inference on the publicly avail-
able Radiopedia and Mosmed datasets. This setting, which we
have explored in the past, simulates a dataset shift situation
where the user does not know exactly which changes are intro-
duced.

2. Secondly, we apply affine transformations and synthetic arte-
facts to the ID test data in order to simulate, respectively, ge-
ometric changes in the subject population and common quality
problems in CT acquisition.

3. We also evaluate a diagnostic shift scenario on an in-house data
cohort with 50 Covid-19 and 50 new non-Covid pneumonia
patients.

4. Finally, we carry out a far-OOD evaluation where we feed colon
and spleen CT examinations from the Medical Segmentation De-
cathlon (MSD) to the model.

In addition, we explore two additional segmentation tasks to assess
the transferability of our method to other settings, namely hippocampus
and prostate segmentation from, respectively, T1- and T2-weighted
Magnetic Resonance Images (MRIs). We also perform experiments on
a HighResNet (Li et al., 2017) architecture, which does not follow the
classic encoder–decoder structure.

Our results show that our proposed distance-based method reliably
detects out-of-distribution samples that other approaches fail to identify
across a wide array of use cases.

2. Related work

Several strategies have shown acceptable OOD detection perfor-
mance in classification tasks. Output-based methods assess the confi-
dence of the logits by estimating their distance from a one-hot en-
coding. Hendrycks and Gimpel (2017) propose using the maximum
softmax output as an OOD detection baseline. Guo et al. (2017) find
that replacing the regular softmax function with a temperature-scaled
variant produces truer estimates, and Liang et al. (2018) complement
this approach by adding perturbations to the network inputs. Simi-
larly, Liu et al. (2020b) use Energy Scoring to detect OOD samples
in a post-hoc fashion. Given access to explicit OOD samples, training
2

Fig. 1. Desirable properties for OOD detection and corresponding paradigms. A method
should ideally (1) be widely applicable (2) work on a post-hoc basis even if OOD
detection was not a goal during training and (3) reliably detect OOD samples.

Table 1
Comparison between Output- (O), Sample- (S) and Distance-based (D) methods. We
compare important factors for applicability: parameters, number of modifications (0–3)
and additional inference time from high [− −] to none [++].

Method Type Parameters Mod. level Inf. time

Max. Softmax O t 0 ++
Temp. Scaling O t,T 1 ++
KL O t, 𝑝(𝜃) 2 +
Energy Scoring O t,T 1 ++
MC Dropout S t, p 3 –
TTA S t, 𝐼𝐴𝑢𝑔 2 − −
Ours D t, 𝜇, 𝜎 2 +

with an energy-based loss can further improve OOD detection. Other
methods (Hendrycks et al., 2019; Lee et al., 2018a) instead look at the
KL divergence of softmaxed outputs from the uniform distribution.

Sample-based Bayesian-inspired techniques (Blundell et al., 2015)
consider the divergence between several outputs produced under differ-
ent conditions as the uncertainty. Commonly-used methods are Monte
Carlo Dropout (MC Dropout) (Gal and Ghahramani, 2016) and Deep
Ensembles (Lakshminarayanan et al., 2017). The latter usually per-
forms better but requires several models to be trained, whereas MC
Dropout can assess uncertainty for any model trained with Dropout
layers. Ashukha et al. (2019) show that Test-Time Augmentation (TTA)
can significantly improve both singular models and ensembles. Sample-
based methods have shown promising results in the field of medical im-
age segmentation (Jungo et al., 2020; Jungo and Reyes, 2019; Mehrtash
et al., 2020).

Other approaches use OOD data to explicitly train an outlier detec-
tor (Bevandić et al., 2019; Hendrycks et al., 2018; Lee et al., 2018a).
However, as they require OOD detection to be a primary goal through-
out the training process, they cannot be applied post-hoc to pre-trained
models.

Methods that modify or make certain assumptions on the archi-
tecture or training procedure have shown good performance (Kohl
et al., 2018; Monteiro et al., 2020a,b; Fuchs et al., 2021). For instance,
self-supervision losses provide valuable assessments for novelty (Pid-
horskyi et al., 2018; Golan and El-Yaniv, 2018; Hendrycks et al., 2019;
Gonzalez and Mukhopadhyay, 2021). However, their applicability to
widely-used segmentation frameworks – which do not typically use
self-supervision – is limited.

In Fig. 1, we illustrate how existing paradigms perform in terms
of different desiderata. We are interested in approaches that can be
directly used with any model, and so we restrict our analysis to the
methods outlined in Table 1.

Unlike previous work, our method observes model activations at the
end of the encoder. We project these to a lower-dimensional feature
space and estimate a multi-variate Gaussian with the training data.
During inference, we detect samples with a high Mahalanobis distance
to this distribution, which is suitable for quantifying differences in the
latent space (Lee et al., 2018b; Çallı et al., 2019).
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Fig. 2. Proposed method for OOD detection on a full-resolution nnU-Net model. The input image first goes through a series of pre-processing steps and is divided into patches.
For each patch, we take the feature maps generated at the end of the encoder during the forward pass. We then project these into a lower-dimensional, flattened subspace. During
the training phase, we estimate a Gaussian distribution from the feature space by calculating 𝜇 and 𝛴. At inference time, we calculate the Mahalanobis distance to the training
distribution and project the resulting point value into the dimensions of the original patch. Finally, a filtering operation is performed to weigh voxels at the centre more heavily,
and the result is aggregated into a volume with the same dimensionality as the input image.
3. Material and methods

Our proposed method, visualised in Fig. 2, assesses the uncertainty
as the distance of new samples to the training distribution in the feature
space. First, we extract feature maps from the trained model and project
these to a low-dimensional space to ensure a computationally inexpen-
sive calculation. We then estimate a multi-variate Gaussian distribution
from ID train samples. At test time, we repeat the feature-extraction
process and calculate the Mahalanobis distance.

We first briefly introduce the patch-based nnU-Net architecture in
Section 3.1 and outline how our method links to it. In Section 3.2
we describe our proposed method for OOD detection, which follows a
three-step process: (1) estimation of a Gaussian distribution from training
features (2) extraction of uncertainty masks for test images and finally
(3) calculation of subject-level uncertainty scores.

3.1. Patch-based nnU-Net

The nnU-Net is a standardised framework for medical image seg-
mentation (Isensee et al., 2021) that has reported state-of-the-art results
across several benchmarks and challenges (Henderson, 2021). Without
deviating from the traditional U-Net structure (Ronneberger et al.,
2015), it automatically chooses the best architecture and learning
configuration for the training data. The framework also performs pre-
and post-processing steps during both training and inference, such as
adapting voxel spacing and normalising the intensities.

We use the patch-based full-resolution variant, which is recom-
mended for most applications (Isensee et al., 2021). After performing
all necessary prepossessing operations, input image 𝑥 is divided into
patches following a sliding window approach with an overlap of 50%.
This results in 𝑁 patches

{

𝑥𝑖
}𝑁
𝑖=1. A forward pass is made for each

patch, at which point we extract feature maps for our method. Pre-
dictions for each patch are multiplied by a filtering operation that
weights centre-voxels more heavily. Finally, weighted predictions are
aggregated into an output mask with dimensionality of the original
image.

We also experiment with a 3D HighResNet model (Li et al., 2017),
which we integrate into the nnU-Net framework and thus follow the
same steps for image preparation and combination of the outputs into
a coherent prediction.

3.2. Distance-based OOD detection

We are interested in capturing epistemic uncertainty, which arises
from a lack of knowledge about the data-generating process. While
3

most uncertainty estimation methods quantify this uncertainty for pre-
diction boundaries, we want to do so for whole regions, which is chal-
lenging for OOD data (Kendall and Gal, 2017).

One way to directly assess epistemic uncertainty is to calculate the
distance between training and testing activations. As a model is unlikely
to produce reasonable outputs for features far from any seen during
training, this is a reliable signal for bad model performance (Lee et al.,
2018b).

Model activations have covariance, and they do not necessarily re-
semble the mode for high-dimensional spaces (Wei et al., 2015), so the
Euclidean distance is not appropriate for identifying unusual activation
patterns. Instead, inspired by the work of Lee et al. (2018b), we make
use of theMahalanobis distance 𝐷, which rescales samples into a space
without covariance. Fig. 3 illustrates how the Mahalanobis distance
better captures the behaviour of in-distribution data and correctly
identifies samples outside the unit circle as OOD.

The following sections describe how we leverage the Mahalanobis
distance in our approach. Note that only one forward pass is necessary
for each patch, keeping the computational overhead at a minimum.

3.2.1. Estimation of the training distribution
We start by estimating a multivariate Gaussian distribution  (𝜇,𝛴)

over training features. For all training patches
{

𝑥𝑖
}𝑁
𝑖=1, features  (𝑥𝑖) =

𝑧𝑖 are extracted from the encoder  .
For modern segmentation networks, the dimensionality of the ex-

tracted features 𝑧𝑖 is too large to calculate the covariance 𝛴 in an
acceptable time frame. We thus project the latent space into a lower
subspace by applying average Pooling operations with a kernel size
of (2, 2, 2) and stride (2, 2, 2) until the dimensionality falls below 1𝑒4
elements. Finally, we flatten this subspace and estimate the empirical
mean 𝜇 and covariance 𝛴.

𝜇 = 1
𝑁

𝑁
∑

𝑖=1
𝑧𝑖, 𝛴 = 1

𝑁

𝑁
∑

𝑖=1
(𝑧𝑖 − 𝜇)(𝑧𝑖 − 𝜇)𝑇 (1)

In Table 2 we demonstrate that for a dimensionality of 1𝑒4 elements
we can estimate the covariance in a maximum of a few minutes (rows
3 and 4) with the Scikit Learn on an AMD Ryzen 9 3900X CPU, whereas
for higher dimensions the times increase abruptly (row 5).

3.2.2. Extraction of uncertainty masks
During inference, we estimate an uncertainty mask for a subject

following the process illustrated in Fig. 2 (right). First, we perform
the same preprocessing steps as during training and divide the image
into patches. Next, we extract features maps for each patch 𝑥𝑖 and
project them onto 𝑧 as done during training. We then calculate the
𝑖



Medical Image Analysis 82 (2022) 102596C. González et al.
Fig. 3. Comparison between Euclidean and Mahalanobis distances in a two-dimensional space. Left: Euclidean distance fails to detect that OOD samples (orange triangles) strongly
deviate from the expected behaviour of training samples (grey circles). Right: Mahalanobis distance adequately detects OOD samples, assigning them a distance outside the unit
circle whilst properly admitting ID test samples (blue circles).
Table 2
Times in seconds required for estimating the covariance 𝛴 (column 3) and calculating
the Mahalanobis distance 𝐷 to one sample (column 4).

Nr. samples Dimensionality 𝛴 time (s) 𝐷 time (s)

1e3 1e3 0.260 0.001
1e6 1e3 8.480 0.001
1e3 1e4 69.11 0.050
1e4 1e4 81.80 0.051
1e3 2e4 6555.13 0.194

Mahalanobis distance (Eq. (2)) to the Gaussian distribution estimated
in the previous step.

𝐷(𝑧𝑖;𝜇,𝛴) = (𝑧𝑖 − 𝜇)𝑇𝛴−1(𝑧𝑖 − 𝜇) (2)

Each distance is a point estimate for the corresponding patch. We
replicate this value to the size of the patch and combine the dis-
tances for all patches in the same manner as the segmentation pipeline
combines patch outputs into a coherent prediction.

Following the example of the patch-based nnU-Net, we start by
initialising a zero-filled tensor with the dimensionality of the original
image. We then apply a filtering operation to each patch to weigh
voxels at the centre more heavily and add them to the image-level
mask.

3.2.3. Subject-level uncertainty
The previous step produces an uncertainty mask with the dimen-

sionality of the input CT scan. In order to effectively identify highly
uncertain images, we average over all voxels to obtain one value
 , and normalise uncertainties between the minimum and doubled
maximum uncertainties for ID train data to ensure  ∈ [0, 1].

4. Experimental setup

We start by describing the data used in our experiments in Sec-
tion 4.1. Afterwards, we state relevant details on our models (Sec-
tion 4.2). We then introduce all baselines (Section 4.3) and define our
evaluation metrics (Section 4.4).

4.1. Data

We train our first model with data from the COVID-19 Lung CT
Lesion Segmentation Challenge (Roth et al., 2021; An et al., 2020; Clark
et al., 2013), which we refer to as Challenge or in-distribution (ID).
The dataset contains chest CT scans for patients with a confirmed
SARS-CoV-2 infection from various centres and countries. The data is
also heterogeneous in terms of age, gender, and disease severity of
4

Table 3
Characteristics of the Covid-19 lung lesion segmentation datasets.

Dataset name Nr. cases Mean image size Mean spacing

Challenge 199 [512, 512, 69] [0.8, 0.8, 4.8]
Mosmed 50 [512, 512, 41] [0.7, 0.7, 8.0]
Radiopedia 20 [560, 571, 176] [1.0, 1.0, 1.0]

Table 4
Parameters used to randomly generate artefacts and affine transformations with the
TorchIO library. For each type of shift, three transformed datasets are generated with
increasingly stronger transformations.

Shift Operation Weak Medium Strong

Artefact

Ghost intensity (0, 0.2) (0, 0.4) (0, 0.7)
Spike intensity (0, 0.2) (0, 0.5) (0, 0.7)
Blur STD (0, 0.3) (0, 0.3) (0, 0.3)
Noise STD (0, 15) (0, 30) (0, 30)

Affine

Scales (0.9, 1.4) (0.7, 1.8) (0.6, 2)
Rotation degrees 5 8 9
Translation range (−15, 15) (−20, 20) (−20, 20)
Isotropic True True False

the patients. We use the 199 cases that are made available for the
challenge, which we divide into 160 training and 39 testing cases with
the nnU-Net random splitting function.

We include results for four types of out-of-distribution samples: (1)
dataset shift, where we evaluate the model on two other datasets with
differences in the acquisition and population patterns (2) transforma-
tion shift where we apply artificial transformations to our ID data, (3)
diagnostic shift, where we compare Covid-19 to non-Covid pneumonia
patients, and (4) far-OOD, where we use the Spleen and Colon tasks
of the Medical Segmentation Decathlon (MSD) (Simpson et al., 2019;
Antonelli et al., 2022).

In addition, we perform a study on hippocampus and prostate
segmentation from MR images. We train each nnU-Net model with the
corresponding task of the MSD and use two and three OOD datasets for
hippocampus and prostate, respectively.

4.1.1. Dataset shift
We use two publicly available datasets: Mosmed (Morozov et al.,

2020) contains fifty cases and the Radiopedia dataset (Jun et al., 2020),
a further twenty. Both encompass patients with and without confirmed
infections. Table 3 provides a summary of data characteristics.

4.1.2. Transformation shift
We transform the 39 in-distribution test cases with multiple opera-

tions from the TorchIO (Pérez-García et al., 2021) library.
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Fig. 4. Top row: Exemplary CT slice with overlaid segmentation mask in red after being
transformed to contain artefacts in three magnitudes. Bottom row: Three exemplary CT
slices with overlaid segmentation masks after applying affine transformations in three
magnitudes. The border colours map each example to their corresponding datasets in
Fig. 5.

The artefact transformations include ghosting, k-space spikes, Gaus-
sian blurring, and Gaussian noise. Affine transformations include scal-
ing, rotation, and translation. All affine operations can be either
isotropic or anisotropic. We deploy the same transformation parameters
for the sagittal, coronal, and axial dimensions for the isotropic case.
For the anisotropic case, these parameters change for every dimen-
sion, causing a stronger shift. For both groups of transformations, we
generate three sets (weak, medium, and strong), each with increasingly
stronger augmentation parameters. The parameters used are reported
in Table 4. Examples of the performed transformations are visualised
in Fig. 4.

4.1.3. Diagnostic shift
We utilise an in-house dataset of one hundred cases. Fifty pa-

tients have pulmonary infection of Covid-19 confirmed by RT PCR
test and visible pulmonary Covid-19 lesions in all cases (3/2020 to
12/2020). The remaining fifty cases were composed of various Covid-
mimics, manifesting similar pulmonary lesions but acquired prior to the
Covid outbreak or tested negative for Covid-19 by RT PCR (3/2017 to
2/2020). Cases were collected and annotated in the RACOON project
(Roefo, 2022). Covid-mimics included are viral non-Covid pneumonia,
bacterial pneumonia, fungal pneumonia, tuberculosis, chronic obstruc-
tive pulmonary disease, cystic fibrosis, interstitial pulmonary fibrosis,
acute interstitial pneumonia, cryptogenic organising pneumonia, med-
ication associated pulmonary toxicity, radiogenic pulmonary fibrosis,
acute lung embolism, chronic lung embolism, pleural pathologies, pul-
monary vasculitis, bronchial carcinoma, pulmonary metastasis, as well
as a control case without any lung pathologies.

A clinical radiologist with 8 years of experience in reading chest
CT reviewed all scans and found them to be of good enough quality
for accurate visual diagnosis. Manual annotations of the entire image
stack were performed slice-by-slice by two independent readers trained
in the delineation of GGOs and pulmonary consolidations. Central
vascular structures and central bronchial structures were excluded from
all annotations. Care was taken to differentiate between artefacts and
GGO. Consolidations were defined as visible in a soft tissue window
and at least 5 mm in size. An expert radiologist reader reviewed all
delineations. In Table 5 we report some details on the demographic
distribution.

4.1.4. MRI tasks
For hippocampus we consider three T1-weighted datasets: the MSD

task, which we denote MSD H, and contains healthy and schizophrenia
patients, the Dryad (Kulaga-Yoskovitz et al., 2015) dataset with fifty
5

Table 5
In-house data cohort with 50 Covid-19 and 50 non-Covid cases. We report the age
(median Q1/Q3), gender (f/m), voltage (median kV), and tube current-time product
(mAs).

Age Gender Voltage mAs

Covid-19 57.17 [49/67] 16% 100 121.21 ± 55.91
Non-Covid 60.24 [47/73] 42% 120 114.77 ± 82.56

Table 6
Characteristics of the MR hippocampus (top) and prostate (bottom) segmentation
datasets. Models were trained with the respective tasks of the Medical Segmentation
Decathlon.

Dataset name Nr. cases Mean image size Mean spacing

MSD H 260 [50, 35, 36] [1.0, 1.0, 1.0]
Dryad 50 [64, 64, 48] [1.0, 1.0, 1.0]
HarP 270 [64, 64, 48] [1.0, 1.0, 1.0]

MSD P 32 [316, 316, 19] [1.0, 1.0, 1.0]
ISBI 30 [384, 384, 19] [0.5, 0.5, 3.7]
UCL 13 [384, 384, 24] [0.5, 0.5, 3.3]
I2CVB 19 [384, 384, 64] [0.5, 0.4, 1.3]

healthy subjects and the Harmonised Hippocampal Protocol data (Boc-
cardi et al., 2015) (HarP) with senior subjects, some of which have
Alzheimer’s.

For the segmentation of the prostate in T2-weighted MRIs we use a
corpus of four datasets including the MSD data (MSD P) and three OOD
sets: the cases provided in the NCI-ISBI 2013 Challenge (Bloch et al.,
2015) (ISBI) and the I2CVB (Lemaître et al., 2015) and UCL (Litjens
et al., 2014) datasets as made available by Liu et al. (2020a). To align
label characteristics, we unify the labels of head and body for the
hippocampus and of central gland and peripheral area for the prostate. A
summary of the relevant dataset characteristics can be found in Table 6.

4.2. Models

We train three patch-based nnU-Nets (Isensee et al., 2021) and one
HighResNet (Li et al., 2017) on a Tesla T4 GPU. Our configurations
have patch sizes of [256, 256, 28], [56, 40, 40] and [320, 320, 20] for the
Challenge, MSD H and MSD P tasks, respectively. In all cases, adjacent
patches overlap by 50%, and we train with a loss of Dice (smoothing 1e-
5) and Binary Cross-entropy weighted equally until after convergence.
Training begins with a learning rate of 0.01 and a weight decay of 3e-
5. No test-time augmentation was applied to extract predictions, as this
signifies a speed-up of 8 times for 3D data.

4.3. Baselines

We compare our approach to output- and sample-based techniques
that assess uncertainty information by performing inference on a
trained model. Max. Softmax consists of taking the maximum softmax
output (Hendrycks and Gimpel, 2017). Temp. Scaling performs tempera-
ture scaling on the outputs before applying the softmax operation (Guo
et al., 2017). KL from Uniform computes the KL divergence from a
uniform distribution (Hendrycks et al., 2019). Note that all three
methods output a confidence score (higher is more certain), which we
invert to obtain an uncertainty estimate (lower is more certain). Energy
Scoring (Liu et al., 2020b) assesses uncertainty as the logarithmic sum
of the softmax denominator.

MC Dropout (Gal and Ghahramani, 2016) consists of doing several
forward passes whilst activating the Dropout layers that would usually
be dormant during inference. We perform 10 forward passes. Test-Time
Augmentation (TTA) follows a similar strategy by augmenting images
during testing (Wang et al., 2019). We use image-flip as augmenta-
tion and generate eight predictions by flipping the input image once
clockwise and counter-clockwise for every axis. We report the standard
deviation between outputs as an uncertainty score for both methods.
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Fig. 5. Performance deterioration of a model trained with ID (Challenge) data and tested on (1) Radiopedia and Mosmed; Challenge test cases after applying (2) artefact and (3)
ffine transformations with different levels of intensity; and (4) in-house Covid-19 and non-Covid pneumonia patients.
For all baselines and our proposed method we calculate a subject-
evel metric by averaging voxel values, and normalise the uncertainty
ange between the minimum and doubled maximum uncertainty rep-
esented in ID train data. For Energy Scoring and Temp. Scaling, we
lways report the result with lowest ESCE from among three different
emperature settings 𝑇 ∈ {1, 10, 100}.

.4. Metrics

For OOD detection, we calculate the 95% true positive rate (TPR)
oundary on ID data, i.e. the boundary that covers at least 95% of
rain samples. Samples with uncertainties greater than this boundary
re predicted to be OOD. We report the false positive rate, defined as

𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

, (3)

here a false positive (FP) is an OOD sample incorrectly deemed to be
n-distribution, the Detection Error

𝑟𝑟𝑜𝑟 = 1
2
(1 − 𝑇𝑃𝑅) + 1

2
𝐹𝑃𝑅 (4)

and the area under the receiving operating curve (AUC), calculated with
the Scikit Learn library (Pedregosa et al., 2012).

While the detection of OOD samples is a first step in assessing the
suitability of a model for a new image, an ideal uncertainty metric
would inversely correlate with model performance. For this, we calcu-
late the Expected Segmentation Calibration Error (ESCE). Inspired by Guo
et al. (2017), we divide the 𝑛 test scans into 𝑀 = 10 interval bins 𝐵𝑚.
or each bin, the absolute difference is calculated between average Dice
𝐷𝑖𝑐𝑒(𝐵𝑚)) and inverse average uncertainty (1 − (𝐵𝑚)) for samples in
he bin. A weighted average is reported that weights the score for each
in by the number of samples in it (Eq. (5)).
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|
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𝑛
|

|

𝐷𝑖𝑐𝑒(𝐵𝑚) − (1 − (𝐵𝑚))|| (5)

. Results

We first analyse the dataset shift scenario, where a model trained
n the Challenge dataset is tested on publicly available Radiopedia and
osmed cases (Section 5.1). Afterwards, we evaluate how robust the
odel is against the presence of artefacts and affine transformations

f different magnitudes and explore to what extent these are correctly
etected (Section 5.2). As a third setting, we apply our method to an
n-house data cohort with both Covid-19 and non-Covid patients in
ection 5.3.

In Section 5.4, we perform a far-OOD study where we examine
hether our method detects samples very far from the raining distribu-

ion. We then carry out an ablation study where we measure the use of
ifferent network layers for feature extraction (Section 5.5) and repeat
he dataset shift experiments on a HighResNet model (Section 5.6).
n all these experiments, we explore whether our method can distin-
uish between ID cases – test subjects from the Challenge data – and
6

Table 7
Dataset shift results. Ability of assessing segmentation quality as Estimated Segmenta-
tion Calibration Error (ESCE) and identifying samples from Radiopedia and Mosmed as
OOD in terms of Detection Error (Error), False Positive Rate (FPR) and Area Under the
ROC (AUC).

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .39 .43 .84 .61
MC Dropout .28 .41 .79 .75
KL .38 .44 .83 .69
TTA .36 .41 .77 .74
Temp. Scaling .02 .47 .89 .42
Energy Scoring .46 .51 .90 .31
Ours .15 .09 .04 .96

OOD images. We qualitatively look into exemplary predictions and
corresponding uncertainty scores in Section 5.7.

Finally, in Section 5.8, we evaluate the transferability of our method
to MR data, where we look at hippocampus and prostate segmentation
tasks.

5.1. Dataset shift

In Table 7, we report the performance of our proposed method
and six other approaches in identifying the OOD samples, i.e. samples
from the Mosmed or Radiopedia datasets for which the model produces
unreliable predictions (see Fig. 5). Following previous research in
OOD detection (Liang et al., 2018), we find the uncertainty boundary
that covers 95% of in-distribution train samples and deem cases with
uncertainties beyond the ID 95th percentile threshold as OOD. Our
distance-based method is the only approach that successfully flags cases
far from the training distribution, as shown by a low detection error and
FPR and an AUC close to one.

We plot the Dice score against normalised uncertainty for the three
best-performing methods in Fig. 6. The vertical line marks the 95%
TPR boundary. We consider predictions with a Dice score lower than
0.6 to be of low quality as they diverge significantly from the ground
truth (Valindria et al., 2017) and, for the task of Covid-19 lesion
segmentation, provide a misleading assessment of the spread of the
infection.

The lower left (red) quadrant is critical for the safe use of segmenta-
tion models, as it houses silent failures for which low-quality predictions
are made but which are not identified as such. Only our method assigns
sufficiently large uncertainty estimates to poorly segmented OOD sam-
ples, excluding them from this section. Nevertheless, the upper right
(yellow) quadrant shows that our method is too conservative in estimat-
ing uncertainties, not identifying samples for which the model produces
good segmentations. This overly cautious behaviour potentially leads
to an under-utilisation of the model for cases that are technically OOD
but have very apparent lesions which are easy to segment; though any
amount of safe utilisation is advantageous. Another limitation of the
proposed method is that it fails to identify ID samples that the model

segments incorrectly due to the lesions being too small or different from
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Fig. 6. Dice coefficient against normalised uncertainty for test ID (black circles) and OOD (orange triangles) scans. The ID samples are from the Challenge dataset, and the OOD
nes from Mosmed or Radiopedia. The grey vertical line marks the 95% TPR for ID train data. Samples to the right are predicted to be OOD. Clinically relevant is the lower left
red) quadrant that houses silent failures, i.e. predictions with a Dice < 0.6 and low uncertainty scores.
Fig. 7. Dice coefficient against normalised uncertainty. Black circles are the test ID
(unmodified Challenge) images, and the remaining markers stand for the same Challenge
images after applying transformations to simulate common artefacts.

those seen in the training data, highlighting the fact that OOD detection
is only part of a thorough QA process.

Regarding the estimation of segmentation quality, Temp. Scaling
reaches the lowest ESCE (first column in Table 7), but a closer in-
spection of Fig. 6 (left) displays that this is due to most uncertainties
clustering on the fifth bin. An ideal segmentation calibration would
house all samples in the upper left (green) and lower right (blue)
quadrants.

5.2. Artefact and affine shifts

The dataset shift scenario observed in the previous section depicts a
realistic setting whether there are several potential degrees of variation
between the training data and cases encountered during deployment.
However, it is difficult to assess whether the model performance falls
due to (a) changes in the acquisition process, (b) another patient
population or simply (c) a different delineation process for ground truth
segmentation masks. Subsequently, we cannot confidently assess why
ases are flagged as OOD. We therefore artificially transform the same
D test cases in two different ways and three levels of magnitude. More
han any other explored scenario, these images could be deemed near-
OOD (Fort et al., 2021). Nevertheless, there is a significant performance
deterioration for transformed images, which grows with the magnitude
of the perturbation (Fig. 5).

We start by simulating the presence of common image artefacts. In
Fig. 7, we visualise the results of our method.

While non-transformed (original) cases are correctly assigned low
ncertainty scores and most heavily transformed samples are identified
s OOD, several samples for which bad segmentations are produced
re not identified. Most of these are only weakly transformed (mint-
oloured squares). On the other hand, many weakly transformed cases
7

Table 8
Transformation shift results. Segmentation calibration (as ESCE) and OOD detection
scores between original Challenge images and cases modified with synthetic artefacts
and affine transformations, respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .46/.44 .48/.46 .94/.89 .55/.56
MC Dropout .44/.44 .51/.51 1.0/.99 .22/.23
KL .46/.44 .48/.46 .91/.86 .58/.57
TTA .43/.41 .46/.38 .87/.72 .63/.61
Temp. Scaling .05/.04 .51/.35 .95/.62 .50/.76
Energy Scoring .52/.51 .53/.33 .92/.53 .49/.76
Ours .26/.21 .29/.18 .45/.24 .83/.89

for which good segmentations are produced are correctly assigned low
uncertainties despite not being ID. Most heavily transformed images
(turquoise crosses) are correctly deemed too far from the training
distribution to have reliable predictions.

A similar situation occurs when we apply affine transformations
to simulate geometric changes (Fig. 9). These could arise from shift-
ing population patterns, scans being acquired for different ranges, or
using other acquisition parameters. Our method deems many weakly
transformed cases (yellow squares) to be ID. This is positive as good
segmentations are available for most cases. However, a few failure cases
are not adequately identified.

Table 8 compares several approaches in terms of OOD detection
and segmentation quality assessment. While our method displays an
acceptable calibration error and the best OOD detection performance,
this near-OOD problem proves more difficult than dataset shift. It par-
ticularly seems to be very difficult to reliably detect image artefacts.

We further visualise the uncertainty ranges assigned to each shift
and magnitude in Fig. 8. As expected, the uncertainty increases with
the degree of transformation for artefact shifts. For affine shifts, medium
changes result in similar uncertainties to strong ones. This is likely due
to the selected transformation sequences being too similar (see Table 4),
which results in a similar performance for medium and strong artefacts
(Fig. 5).

In general, we can conclude that the uncertainty correlates posi-
tively with the degree of deformation and inversely with model per-
formance. Affine transformations also have a more pronounced effect
on the uncertainties (Fig. 8). This possibly stems from the training data
containing similar patterns to those introduced by the weaker artefact
transformations.

5.3. Diagnostic shift

We have not yet analysed how the segmentation model performs
across disease patterns. To explore this, we segment lung lesions in the
form of GGOs and consolidations for an in-house cohort of 50 Covid-19
and 50 non-Covid cases. The performance of the model on the non-
Covid cases is significantly worse. Table 9 summarises our findings, and
we plot our uncertainty assessment in Fig. 10.
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Fig. 8. Distribution of uncertainty scores estimated by our proposed method for the artefact shift and affine shift scenarios. In general, the uncertainties increase with the intensity
of the transformations.
i
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Fig. 9. Dice coefficient against normalised uncertainty. Black circles are the test ID
(unmodified Challenge) images, and the remaining markers stand for the same Challenge
images after applying transformations to simulate affine shifts.

Table 9
Diagnostic shift results. Segmentation calibration (as ESCE) and OOD detection scores
between test ID Challenge images and in-house cases with and without Covid-19,
respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .29/.42 .22/.32 .42/.62 .86/.87
MC Dropout .22/.38 .30/.46 .58/.90 .84/.69
KL .29/.42 .23/.33 .40/.60 .88/.89
TTA .25/.32 .19/.17 .32/.28 .89/.95
Temp. Scaling .07/.05 .34/.54 .62/1.0 .78/.06
Energy Scoring .38/.54 .49/.56 .86/1.0 .61/.05
Ours .16/.26 .13/.15 .14/.18 .93/.92

Our method reliably detects cases from our in-house cohort, though
t does not distinguish between Covid-19 and non-Covid cases. Though
deally Covid-19 cases for which good predictions are produced should
e deemed low-uncertainty, the fact that badly segmented non-Covid
ases are flagged as OOD is more relevant for clinical use as unsure
ood predictions are preferred over confident faulty ones.

.4. Far-OOD examinations

We have extensively examined near-OOD (Fort et al., 2021) cases
here a performance deterioration is unexpected. In contrast, far-OOD

situations occur when an input is erroneously fed into a model, and
there is no realistic expectation that a model can produce a sensible
prediction.

In Table 10, we examine what happens when we feed CT spleen
and colon cancer examinations from the Medical Segmentation Decathlon
into our model trained to segment pulmonary lesions from chest CTs.
Our method distinguishes between ID and far-OOD cases, correctly
identifying all colon examinations as OOD (FPR = 0) and showing
detection errors of up to 0.1 for both anatomies.
8

Fig. 10. Dice coefficient against normalised uncertainty for ID test (Challenge) data and
n-house chest CTs of Covid-19-positive (purple triangles) and non-Covid (pink triangles)
atients.

Table 10
Far-OOD results. Segmentation calibration (as ESCE) and OOD detection scores be-
tween test ID Challenge images and CT scans for spleen and colon examinations,
respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .58/.71 .44/.42 .85/.81 .89/.89
MC Dropout .50/.64 .37/.36 .68/.66 .88/.87
KL .59/.72 .44/.42 .85/.81 .88/.88
TTA .48/.58 .18/.22 .29/.37 .95/.95
Temp. Scaling .62/.71 .48/.42 .93/.81 .79/.89
Energy Scoring .31/.16 .49/.51 .93/1.0 .50/.50
Ours .34/.41 .10/.06 .07/.00 .96/.98

5.5. Ablation study

We evaluate which features are most expressive for detecting dis-
tribution shifts in Table 11. We compare the use of activations at
the middle of the network, more specifically the convolutional (Conv)
parameters of the sixth encoding block (EB) against those of the first
decoding block (DB), and features at the beginning (1st EB) and final
end (6th DB) of the architecture. In addition, we look into the use
of batch normalisation (BN) layers, as these normalise layer inputs and
therefore contain domain information (Ioffe and Szegedy, 2015). The
results show that features at the middle of the network (6th EB Conv,
followed by 6th EB BN and 1st DB Conv) are the most suitable for
detecting distribution shifts.

5.6. HighResNet model

Not all segmentation models follow an encoder–decoder structure.
For instance, the HighResNet (Li et al., 2017) uses dilated convolutions
and residual blocks to produce accurate segmentations. That raises the
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Table 11
Ablation study on the usability of feature maps. OOD detection and segmentation
calibration for our proposed method using different convolutional (Conv) and batch
normalisation (BN) at different encoding (EB) and decoding blocks (DB). The results are
for the dataset shift and transformed (including both artefact and affine shifts) scenarios,
respectively.

Features ESCE ↓ Error ↓ FPR ↓ AUC ↑

6th EB Conv .15/.23 .09/.24 .04/.35 .96/.86
6th EB BN .18/.23 .11/.25 .09/.37 .95/.85
1st EB Conv .42/.24 .56/.70 .13/.40 .81/.21
1st EB BN .52/.45 .50/.50 .00/.00 .51/.51
1st DB Conv .17/.25 .09/.25 .06/.38 .96/.84
6th DB Conv .52/.45 .50/.50 .00/.00 .50/.50

Table 12
HighResNet results. Segmentation calibration (as ESCE) and OOD detection scores
between test ID Challenge images and OOD samples belonging to the Radiopedia or
osmed datasets, for a HighResNet model trained on Challenge. The bottom part of

he table shows three variations of our method with different feature maps: the 7th
onv. block, the 6th block with dilated conv., and the 12th (last) block with dilated
onvolutions.
Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .35 .48 .94 .57
MC Dropout .35 .49 .96 .59
KL .34 .46 .90 .60
TTA .35 .48 .90 .61
Temp. Scaling .35 .48 .93 .54
Energy Scoring .58 .49 .97 .50

7th Conv Block .41 .47 .00 .94
6th Dil Conv Block .58 .50 .00 .50
12th Dil Conv Block .33 .37 .00 .84

questions of whether our proposed approach would be effective on this
architecture and which features would be most helpful for detecting
distribution shifts. We report these results for the dataset shift scenario
in Table 12. The upper section summarises the results for all baselines,
and the lower part shows the performance of our proposed method for
three different feature maps.

The HighResNet architecture is divided into four sections: (1) seven
convolutional blocks, (2) six blocks with dilated convolutions using a
dilation factor of 2, (3) six dilated convolutional blocks with a factor
of 4, and (4) a final convolutional block. Residual connections with
identity mapping are also included every two blocks to join features at
different levels. We test the use of three feature maps: the last (7th)
convolutional block, the last (6th) dilated convolutional block with
factor 2, and the last (12th) dilated convolutional block.

The best results are for the variant of our method which uses the
last block with dilated convolutions. Though the FPR and AUC are
encouraging, the detection error is relatively high, suggesting that the
TPR is low as the 95% TPR on ID train data does not cover a significant
portion of ID test samples (see Eq. (4)). We plot the performance of the
network vs. normalised uncertainties for the best-performing features
in Fig. 11. A separation is noticeable between ID (Challenge) and OOD
(Radiopedia and Mosmed), but the uncertainty boundary – as hypothe-
sised from the high Detection Error – is too low. This means that OOD
samples are correctly detected, yet the model is under-utilised.

5.7. Qualitative evaluation

We now take a detailed view of some cases in Fig. 12. The first
column shows an in-distribution Challenge case with a good prediction.
The second and third cases are from Mosmed and Radiopedia, respec-
tively. While the Mosmed prediction is significantly different from the
ground truth (incorrectly marking several regions as lesions), a good
segmentation is produced for the third case.

We first notice the complexity of assessing whether a segmentation
mask for lung lesions is correct. An untrained observer would not be
9

able to detect that the second segmentation is so different from the
Fig. 11. Dice coefficient against normalised uncertainty for the variant using the 12th
Dil. Conv. Block. Black circles are test ID (Challenge) images, and orange triangles are
OOD cases from Radiopedia or Mosmed.

round truth, and even trained radiologists may not directly identify
his error, as GGOs can manifest in superior lobes and with multiple
onnected components (Parekh et al., 2020). Similarly, all methods fail
o detect this case except for our distance-based method, which assigns
n uncertainty of 0.61.

The prediction for the third case over-segments some lesions, though
f we observe the difference between the Challenge and Radiopedia

ground truth masks, we notice that delineations are courser for the
first case (we see in the first image that broad regions around lesions
are marked as infected). Therefore, the model learns to mimic this
behaviour. Beyond this, the segmentation model correctly detects all
lesions and only creates a very small additional component. Here, our
method makes an overly cautious uncertainty assessment, assigning this
case an uncertainty of .43 which falls beyond the 95% TPR boundary.

5.8. Application to MRI data

Magnetic Resonance Imaging (MRI) data is even more susceptible to
changes in the acquisition conditions than CTs, as there is no consensus
on the calibration of intensity values. This causes the performance
of segmentation models trained on MR tasks to deteriorate on OOD
data (Zakazov et al., 2021; Kondrateva et al., 2021).

In this section, we evaluate how our proposed method can help
detect such distribution shifts on nnU-Net models trained with the
hippocampus and prostate tasks of the MSD. Fig. 13 illustrates that while
the initial performance of the models is over 0.8 Dice on in-distribution
test data (MSD H and MSD P), it falls significantly for the OOD datasets.

Table 13 summarises our results on OOD detection, and we visualise
the uncertainties of our method in Fig. 14. We immediately see that
– for both MR segmentation tasks – detecting OOD cases is much
easier than for chest CT. In all cases, the proposed method correctly
distinguishes ID from OOD data. This is likely due to the inherent
variability across MRI datasets in terms of intensity histogram and
fields-of-view. The last row includes a far-OOD case where we look
to detect MSD H cases on the model trained with MSD P and vice
versa. This also seems to be an easy problem, and our method correctly
identifies all OOD cases.

6. Discussion

Uncertainty quantification is an unavoidable cornerstone for safely
deploying predictive models in real clinics. Our results show that the
proposed distance-based approach provides valuable information for
detecting images that the model is unprepared to segment.

As distance-based OOD detection can seamlessly augment any seg-
mentation pipeline, there is no reason against performing this quality
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Fig. 12. Axial and coronal slices with overlaid predictions and ground truths and volume renderings of the predictions for three different subjects. First column: a good prediction.
Second column: a poor prediction for an OOD case which our method successfully detects. Though there are considerable differences to the ground truth, these errors are not
directly noticeable even for trained observers. Third column: a good prediction for an OOD case.
Fig. 13. Performance as Dice score of models trained with MSD H (left) and MSD P
(right) data for hippocampus and prostate segmentation, respectively. Plotted are the
ID test (in dark blue) and OOD scores.

check. However, we found in our analysis several areas where there is
room for improvement. Almost all our experiments showed that our
method is overly cautious in its uncertainty estimation. Specifically,
many OOD cases for which the model did produce adequate segmenta-
tion were deemed highly uncertain. Only for the artefact shift scenario
were weekly transformed samples segmented.

The artefact and affine shifts experiments show that – for both ex-
plored synthetic scenarios – the produced distances grow linearly with
the degree of change and are inversely proportional to segmentation
quality. This is ideal behaviour for an uncertainty metric. However, the
same does not hold for the dataset shift and diagnostic shift settings. Par-
ticularly for the last scenario, our method assigns similar uncertainties
to both Covid-19 and non-Covid cases, even though segmentations are
much worse for the last group. Further research should explore which
10
Table 13
MRI results. Segmentation calibration (as ESCE) and OOD detection scores between
test ID and OOD cases for hippocampus and prostate, respectively. The networks were
trained with MSD H and MSD P data, respectively, so these cases are ID. The last row
summarises the results for the far-OOD case of detecting MSD P cases on the MSD H
model and vice versa.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .20/.36 .05/.49 .00/.82 1.0/.74
MC Dropout 𝑁 = 10 .53/.08 .50/.01 1.0/.02 .40/1.0
MC Dropout 𝑁 = 100 .48/.14 .53/.00 1.0/.00 .12/1.0
KL .18/.15 .05/.16 .00/.16 1.0/.83
TTA .20/.40 .09/.25 .00/0.0 1.0/.83
Temp. Scaling .12/.36 .03/.49 .00/.82 1.0/.74
Energy Scoring .68/.53 .50/.49 1.0/.98 .50/.12
Ours .21/.19 .00/.00 .00/.00 1.0/1.0

Ours far-OOD .08/.01 .00/.00 .00/.00 1.0/1.0

distribution shifts negatively affect model performance, and how these
can be distinguished from harmless shifts.

This discrepancy might also be associated with the relatively higher
variety of the pulmonary patterns for the labels GGO and consolida-
tion present in the various pulmonary diseases making up the non-
Covid-19 group, as compared to the Covid-19 group. This group was,
however, purposefully designed to resemble a broad range of non-
Covid-associated pulmonary disease patterns, which represent Covid-
19-mimics. Further, the large time frame in which these cases were
collected, as well as a differing distribution amongst the three CT
scanners used to generate these cases, might contribute to this finding.

Our experiments also show that our distance-based approach does
not adequately detect poorly segmented cases for in-distribution data.
This shortcoming reinforces the notion that uncertainty estimation
methods, which are mainly designed to detect uncertain predictions
in ID data, should complement OOD detection in practice. However,
neither MC Dropout nor TTA were successful at assessing segmentation
quality.
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Fig. 14. Dice coefficient against normalised uncertainty for the segmentation of the
hippocampus (left) and prostate (right) in MR images. Black circles are test ID (MSD)
mages, and orange triangles are OOD cases.

Our ablation study shows that intermediate network layers are the
ost informative for assessing distribution shifts. OOD samples do not
isplay patterns that differ sufficiently from training samples in feature
aps near the inputs or outputs of the model. In contrast, activations

n intermediate layers allow the separation between ID and OOD cases.
or the HighResNet model, which does not follow an encoder–decoder
tructure, dilated convolutions near the end of the model resulted in
he best uncertainty estimates.

Finally, our far-OOD experiments on both CT and MR data confirm
hat our proposed method accurately detects cases very far from the
raining distribution. Such far-OOD cases may arise when an erroneous
nput is fed into the model, and automatically signalling such mistakes
an be helpful for inexperienced users.

. Conclusions

Despite ample progress in the development of segmentation so-
utions, these are not ready to be deployed in clinical practice. The
ain reason behind this is the fact that predictive models fail silently,

oupled with a lack of appropriate quality controls to detect such
ehaviour. This is particularly true when it is not trivial to identify a
aulty output, such as segmentation of SARS-CoV-2 lung lesions.

Increasingly, institutions are taking part in initiatives to gather
arge amounts of annotated, heterogeneous data and release it to the
ublic. This could allow the training of robust models and potentially
lleviate the burden of radiologists. However, even models trained with
eterogeneous cohorts are susceptible to distribution shifts.

We propose a distance-based method to detect images far from the
raining distribution in a low-dimensional feature space, and find that
his is a lightweight and flexible way to signal when a model prediction
hould not be trusted.

Future work should explore how to improve uncertainty calibra-
ion by identifying high-quality predictions. For now, our work in-
reases clinicians’ trust while translating trained neural networks from
hallenge participation to real clinics.
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