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Abstract

Background: We evaluate three methods for competing risks analysis with time-dependent covariates in
comparison with the corresponding methods with time-independent covariates.

Methods: We used cause-specific hazard analysis and two summary approaches for in-hospital death: logistic
regression and regression of the subdistribution hazard. We analysed real hospital data (n=1864) and considered
pneumonia on admission / hospital-acquired pneumonia as time-independent / time-dependent covariates for the
competing events ’discharge alive’ and ’in-hospital death’. Several simulation studies with time-constant hazards were
conducted.

Results: All approaches capture the effect of time-independent covariates, whereas the approaches perform
differently with time-dependent covariates. The subdistribution approach for time-dependent covariates detected
effects in a simulated no-effects setting and provided counter-intuitive effects in other settings.

Conclusions: The extension of the Fine and Gray model to time-dependent covariates is in general not a helpful
synthesis of the cause-specific hazards. Cause-specific hazard analysis and, for uncensored data, the odds ratio are
capable of handling competing risks data with time-dependent covariates but the use of the subdistribution
approach should be neglected until the problems can be resolved. For general right-censored data, cause-specific
hazard analysis is the method of choice.

Keywords: Time-dependent covariates, Subdistribution approach, (Internal) left-truncation, Fine and gray model

Background
Competing events occur frequently in time-to-event stud-
ies in clinical epidemiology [1]. For instance, discharge
is a competing event for hospital death since discharged
patients are usually in a better health condition (with
improved survival) than hospitalized patients. It is com-
mon that there are time-dependent covariates in combi-
nation with competing events. A widely discussed topic is
hospital-acquired infections (a time-dependent covariate)
and their effect on the risk of dying in the hospital (dis-
charge as a competing event) (see e.g. [2]). The first step in

*Correspondence: poguntke@imbi.uni-freiburg.de
1Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical
Center – University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
Full list of author information is available at the end of the article

such settings is to conduct a cause-specific hazard (CSH)
analysis and to infer the effect from these findings.
The subdistribution by Fine and Gray is commonly

used to determine how one of many competing outcome
probabilities is affected by time-independent covariates
[3]. The subdistribution offers an easy way to receive
a summary analysis of all CSH’s and reestablishes the
useful one-to-one relationship with the cumulative inci-
dence function. For time-dependent covariates, the analy-
sis gets more involved and the standard model by Fine and
Gray does not hold anymore [4]. Beyersmann and Schu-
macher offered a solution for using the subdistribution in
a time-dependent framework [5]. This approach and fur-
ther extensions are used in current literature to assess the
influence of a time-dependent covariate on the event of
interest [6–9].
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In this paper, we consider a hospital setting with pneu-
monia on admission/hospital-acquired pneumonia (HAP)
as time-independent/time-dependent covariates for the
competing events ’discharge alive’ and ’in-hospital death’
with time-constant hazards. First, we present our real
data example and reassess the benefits of a CSH analysis
and two types of synthesis of the cause-specifc analyses:
the logistic regression and the regression of the subdis-
tribution hazard by Fine and Gray in a time-independent
framework. We profit here from the specific situation in
hospital epidemiology where survival analysis is used to
investigate time-dependent events, but where follow-up
is essentially complete. Thus, logistic regression may be
applied.
Then, we describe the CSH analysis, the logistic regres-

sion, and the subdistribution approach by Beyersmann
and Schumacher applied in this time-dependent sce-
nario thoroughly. We give a summary table of the
expected properties in both a time-independent and a
time-dependent framework. For further understanding,
we conduct several simulation studies to study the per-
formance more thoroughly. In conclusion, we summarize
the findings of this paper as well as discuss the proper-
ties and results from the simulation study of the different
approaches.

Methods
As already mentioned, a common example of a time-
dependent competing risks setting is a hospital-acquired
infection, e.g. pneumonia, and its effect on hospital death
and discharge alive. Therefore, we will consider a binary
time-independent covariate with values in {0, 1}, incorpo-
rating pneumonia on admission in the following way: 0
as the absence of a pneumonia (risk factor) and 1 as the
presence of pneumonia (risk factor). Note, that we will
not model recovery. In other words, the covariate value
will not change back to 0 when the patient recovers from
pneumonia and patients in state 1 are in-hospital pneu-
monia patients in the sense that pneumonia has occured
in the past. The competing events are death in the hospital
(3, 5 respectively) and discharge alive (2, 4 respectively).
Additionally, no censoring will be modeled. This mimics a
realistic setting in hospital data, since censoring is in gen-
eral uncommon.Most of the patients will be followed until
their death in the hospital or until their discharge (alive).
The censoring is exclusively administrative and typically
negligible. The corresponding 6-state multistate model in
a time-dependent setting can be seen in Fig. 1(top). The
bottom part displays the corresponding subdistribution
process.

Real data example
The data set is from the SIR 3 (Spread of nosocomial Infec-
tions and Resistant pathogens) cohort study conducted at

the Charité university hospital in Berlin, Germany [10].
Patients were followed until discharge or death in the hos-
pital; there was no follow-up beyond discharge. It is the
same data set that Beyersmann and Schumacher used in
their paper to study the usefulness of the subdistribution
approach [5].
For illustrative purposes, we removed the censored indi-

viduals (n=30 (1.6%)) to obtain a complete data set that
suits our assumed setting. This is why our results dif-
fer slightly from the ones obtained by Beyersmann and
Schumacher. The impact of pneumonia on admission
(time-independent) and HAP (time-dependent covariate)
on the risk of dying in the hospital is investigated; dis-
charge alive is the competing event for in-hospital death as
discharged patients have an improved survival compared
to hospitalized patients .
In the data set, there were 1876 admissions to the hospi-

tal, 30 of those were censored, which leaves 1846 patients
in the data set. Two hundred eight patients were admitted
with pneumonia of which 160 were discharged alive. The
remaining 48 patients died in the hospital. In total, 1638
patients were admitted without pneumonia. Of these,
1472 were discharged alive and 166 died in the hospital.
With respect to HAP, of the uncensored 1846 individu-

als, 151 developed a pneumonia in the hospital. Of those,
33 died in the hospital and 118 were discharged alive.
Of the 1695 patients who didn’t acquire pneumonia in
the hospital, 1514 patients were discharged alive and 181
patients died during their stay.

Simulated data
For studying the performance of the different approaches,
we used the following simulation technique. Throughout
this paper, we assume constant hazards. In the simulation
studies we simulated 100 data sets with 10000 individuals
to see if the methods provide accurate results on aver-
age. For the simulation of time-independent covariates,
we have a classical competing risks setting with two risk
factor groups (’pneumonia on admission’ yes or no). For
illustration, we assume time-constant hazard rates. Thus
we have following hazards: discharge hazard of patients
without pneumonia on admission (α02), in-hospital death
hazard of patients without pneumonia on admission (α03)
and the corresponding hazards (α14, α15) for patients with
pneumonia on admission. We simulated data according to
the procedure in the book by Beyersmann [11]. That is, for
patients without pneumonia, length of stay was simulated
with an all-cause hazard α02 +α03, resulting in in-hospital
death with probability α03

(α02+α03)
.

For the time-dependent setting, we simulated individu-
als in the 6-state multistate model as a nested sequence of
competing risks processes as described in [11]. That is, all
patients start in state 0 and we simulate the first transition
as a competing risk experiment between states 2, 3, and



Poguntke et al. BMCMedical ResearchMethodology  (2018) 18:79 Page 3 of 10

Fig. 1 The multistate model including the binary time-dependent covariate hospital-acquired pneumonia and the corresponding model analyzed
in the subdistribution approach (bottom). This holds for the time-independent pneumonia on admission analogously if one removes the transition
from state 0 to state 1

1 with all-cause hazard α01 + α02 + α03 for simulation of
length of stay, e.g. resulting in a pneumonia with probabil-
ity α01

(α01+α02+α03)
. Since the states 2 and 3 are absorbing, the

experiment is over for all patients that make a transition
into one of these states. If however, the patient moved into
state 1, we conduct another competing risks experiment
between states 4 and 5 with an all-cause hazard α14 + α15.
Since both states are absorbing, the simulation ends, once
all individuals make a transition into one of these states.
The R code used for simulation and analysis of the data is
supplied as Additional file 1.

Competing risk analysis for time-independent covariates
Cause-specific hazard analysis for discharge (alive) and
in-hospital death
The classical approach to investigate the binary time-
independent covariate "pneumonia on admission" would
be to conduct a CSH analysis for both competing events,
death and alive discharge. Then, one would compare the
hazard ratios (HR) of both events in order to assess the
impact of the covariate. For time-constant hazards, it is

HR(death) = α15
α03

and HR(discharge) = α14
α02

for pneumonia vs. no pneumonia on admission. Such a
cause-specific analysis gives insights into effects on the
instantaneous (i.e. daily) risk of dying in the hospital and
being discharged from the hospital. Both HR’s have to
be interpreted side-by-side for each risk factor. As it is
an instantaneous risk approach and discharge is a com-
peting event for in-hospital death, it provides no direct
insights into the cumulative risk of dying in the hospital.
Cumulative approaches are presented in the following two
sections.

Logistic regression for in-hospital death
In a simple logistic regressionmodel, one studies the effect
of the binary time-independent covariate pneumonia on
admission on the cumulative risk of in-hospital death at
the end of follow-up. In other words, the odds ratio (OR)
compares the cumulative risk of in-hospital death on the
plateau of the cumulative incidence functions. The odds
for in-hospital death at the end of follow-up for patients
with pneumonia on admission is given through

Odds(death|pneumonia on adm) = P(death|pneumonia on adm)

1 − P(death|pneumonia on adm)

= α15
α14 + α15

:
α14

α14 + α15

= α15
α14

and the odds for in-hospital death at the end of follow-up
for patients without pneumonia on admission is

Odds(death|no pneumonia on adm) = P(death|no pneumonia on adm)

1 − P(death|no pneumonia on adm)

= α03
α02 + α03

:
α02

α02 + α03

= α03
α02

as can be seen in [2, 12]. Then, the OR in our scenario with
constant hazards is the quotient of the HR of the event
of interest, death, and the one for the competing event,
discharge, and resolves to

OR(death) = P(death|pneumonia)
1 − P(death|pneumonia)

:
P(death|no pneumonia)

1 − P(death|no pneumonia)

= α15
α14

:
α03
α02

= HR(death)
HR(discharge)

.

An OR greater than 1 implies a higher risk of experi-
encing the event of interest, here in-hospital death, for
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patients with the risk factor pneumonia. Contrarily, an
OR smaller than 1 connotes a lower risk of in-hospital
death for patients with pneumonia on admission. Look-
ing at the formula of the OR, we see that both cause-
specific HR’s are involved. For example, an HR for dis-
charge of less than 1 and an HR for death of 1 would
lead to an OR greater than 1 and to the interpretation
of a higher risk of dying for patients with pneumonia on
admission.
Summarizing, the OR together with the CSH analysis

is able to capture both indirect (effects through the com-
peting hazard) and direct effects of the covariate if one
additionally considers the baseline hazard. It has a prob-
ability interpretation and an easy-to-communicate way to
assess the effect. It is not a direct probability measure,
but a function thereof. Yet, it does not allow for censor-
ing, does not account for time-to-event, and is only able
to display effects on a cumulative incidence function on a
plateau.

The subdistribution approach for in-hospital death
The subdistribution by Fine and Gray offers an easy way
to receive a summary analysis of all CSH’s by intro-
ducing a subdistribution hazard [3]. The subdistribu-
tion hazard is the hazard that is directly linked to the
cumulative incidence function. For estimation, Fine and
Gray stop individual trajectories with the occurence of
a competing event. In other words, the patients expe-
riencing a competing event stay in the risk set for-
ever. This leads to the subdistribution hazard being
smaller than the CSH since the risk set is artificially
inflated. The higher the competing hazard, the more
patients experience a competing event and the more
the subdistribution hazard is lowered in comparison to
the CSH.
To analyze the effect of a covariate, one would look

at the subdistribution hazard ratio (SHR) of the event
of interest, here death, and get a direct reflection of the
effect of the covariate on the probability of the event of
interest. A SHR of greater than 1 would imply a higher
risk of dying in the hospital with pneumonia on admis-
sion. A SHR of 1 would imply no effect and a SHR
of less than 1 connotes a lower risk of dying in the
hospital with pneumonia on admission. It is an easy-to-
communicate summary analysis of all CSH’s. The SHR
quantifies the effect which is seen in the cumulative inci-
dence functions (over the time in hospital). A crucial point
of criticism is the lack of a exact interpretation and the
misspecificcation cause through proportional CSHs not
implying proportional subdistributions in general [13, 14].
The properties of the subdistribution in comparison with
logistic regression are summarized in Table 1. Next, we
will explain the analysis when time-dependent covariates
are involved.

Competing risk analysis for time-dependent covariates
We will now consider HAP as a time-dependent binary
covariate. This again includes a multistate model with two
competing risks, death and discharge (alive), and only one
binary time-dependent covariate, HAP (see Fig. 1 top).
A patient is admitted to the hospital and can either be
discharged alive or die (with or without experiencing an
HAP). Thus, we additionally obtain the hazard α01 to
acquire HAP.

Cause-specific hazard analysis for discharge (alive) and
in-hospital death
As for time-independent covariates, the CSH analysis
should always be part of the investigation [15]. This
includes looking at the HR’s for death and discharge.
Analogously, separate Cox models will be applied to each
competing event with the only difference that the covari-
ate is now time-dependent. See the time-independent case
for details on the interpretation of the results of the Cox
model.

Logistic regression for in-hospital death
Again, at the end of hospital stay means that the
internal time-dependency within the hospital is
ignored. We denote P(in-hospital death|with HAP) and
P(in-hospital death|without HAP) as the probability of
in-hospital death at the end of hospital stay for patients
with and without an HAP, respectively. As HAP develops
over time, these probabilities are not simple. Accord-
ing to Cube et al. [12], with α0 = α01 + α02 + α03
and α1 = α14 + α15 and the state occupation prob-
abilities P0j(t) = P(in state j at time t), the respective
time-dependent versions are

P(in hospital-death in[ 0, t] |with HAP in[ 0, t] )

= P05(t)
P01(t) + P04(t) + P05(t)

= α15
α1(α1 − α0)

α1 − α0 − α1 · exp(−α0t) + α0 · exp(−α1t)
1 − exp(−α0t)

and

P(in hospital-death in[ 0, t] |without HAP in[ 0, t] )

= P03(t)
P00(t) + P02(t) + P03(t)

= α03(1 − exp(−α0t))
α01 exp(−α0t) + α02 + α03

.

For time-constant hazards, Cube et al. recently showed
[12] that these become the limits of their time-dependent
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Table 1 Overview of the properties of logistic regression (LR) and the subdistribution models in a time-independent and
time-dependent setting

Property Time-independent Time-dependent

Fine&gray LR Beyersmann & Schumacher LR

Allowance for censoring Yes No Yes No

Accounting for time-to-event Yes No Yes No

Ability to display cumulative incidence
functions

Yes Only plateau No Only plateau

Interpretation Challenging See text Challenging See text

Probability interpretation Yes Yes No Yes

Dependency on the infection hazard . . Yes No

Simulation performance:

Ability to capture no effect on cause-
specific hazards (α15 = α03,α14 = α02)

Yes Yes No Yes

Ability to capture negative effect on
death hazard (α15 > α03,α14 = α02)

Yes Yes Yes, magnitude difficult to interpret Yes

Ability to capture positive effect on
death hazard (α15 < α03,α14 = α02)

Yes Yes Questionable Yes

Ability to capture negative effect on dis-
charge hazard (α15 = α03,α14 < α02)

Yes Yes Questionable Yes

Ability to capture positive effect on dis-
charge hazard (α15 = α03,α14 > α02)

Yes Yes Questionable Yes

versions and resolve to
P(in-hospital death|with HAP) = α15/(α14 + α15)

and

P(in-hospital death|without HAP) = α03/(α02 + α03).

With similar arguments as in the time-independent
setting, this includes analyzing the OR for the event of
interest, i.e. death,

OR (in-hospital death) = α15
α03

× α02
α14

= HR(in-hospital death)
HR(discharge)

,

which consists of analyzing the quotient of the two death
odds

Odds of in-hospital death (with HAP) = α15/α14

and

Odds of in-hospital death (without HAP) = α03/α02

[2, 12]. Logistic regression does not allow for censoring.
This is not an acute issue in hospital data since there
usually is very little censoring, but has to be taken into
account in more general settings. The OR is easy to ana-
lyze and the interpretation of the OR stays the same as
in the previous sections. The OR is a summary analysis
of all CSHs and catches the effect of the time-dependent
covariate very well. The properties can also be seen in
Table 1. Other than the fact that logistic regression does

not allow for censoring, it has many of the perks desired in
an approach in a time-dependent competing risks frame-
work. Summarizing, it offers an easy-to-communicate
summary analysis which is independent of the infection
hazard and has a probability interpretation. It is ques-
tionable whether not including the infection hazard holds
enough information to describe a time-dependent set-
ting with a plausible probability interpretation. As we will
see later, including the infection hazard might also be
problematic.

The subdistribution approach for in-hospital death
In 2008 [5] Beyersmann and Schumacher extended the
Fine and Gray model to time-dependent covariates by
modeling competing events and the values of a categor-
ical time-dependent covariate in one multistate model.
Even though the cumulative incidence function for time-
dependent covariates is not clearly defined, the aim of this
approach is to achieve a synthesis of the CSH analysis.
The idea of Beyersmann and Schumacher is to trans-
form the 6-state multistate model in Fig. 1 (top) into a
subdistribution-type model that can be seen in Fig. 1 (bot-
tom) corresponding to the scenario in the time-dependent
setting. The subdistribution-type process (bottom) leaves
individuals who experience a competing event in the risk
set of the previous occupied state. In our example, an
individual would stay in state 0 or 1 after experiencing
a competing event. This alters the risk sets considerably,
keeping individuals with a competing event at risk forever
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as in the Fine and Gray approach, and will be a topic of
a discussion later on. This means that the subdistribution
will be composed of state 0 and state 1 with the difference
that a transition out of state 0 and into state 1 is possi-
ble, that is late entry in state 1 and exit to a non-absorbing
state from state 0. An issue resulting from this is the risk
set in state 1 has to build up first. The covariate process
will be stopped at the last known value. As a consequence
of this, the same covariate is analyzed in a standard Cox
model and in an extended Fine and Gray model, that is
the stopped covariate process Z �→ Z(t ∧ T), where
t ∧ T is the minimum of the time t and the length of stay
T. Therefore, Beyersmann and Schumacher introduced a
time-dependent covariate in a competing risks setting by
combining the multistate with the subdistribution frame-
work. This approach provides one quantity, the SHR, that
measures the impact of the covariate on the event of inter-
est directly and is easy to communicate to statisticians
and non-statisticians. Analogous to the time-independent
setting, the exact interpretation remains unresolved and
is the subject of ongoing discussion [13]. Furthermore,
proportional CSH’s do not in general imply proportional
subdistributions [14].

Results
First, we analyzed the SIR 3 data set according to
the three different approaches with respect to pneu-
monia on admission and additionally with respect to
HAP. The results are summarized in the upper part
of Table 2. The estimated constant hazards can also
be found in this table. The results of the simula-
tion study will be presented on the bottom of this
table and the resulting properties will be compared in
Table 1.

Pneumonia on admission
The Cox analysis of the CSH’s showed no effect of pneu-
monia on admission on the hazard to die in the hospital
(HR(death)=1). Additionally, analysis showed a HR for
discharge of 0.44. Patients with pneumonia on admission
have a lower instantaneous (i.e., daily) chance of getting
discharged alive compared with patients without pneu-
monia on admission and are therefore being exposed to
the risk of dying in hospital for a longer time, each day
anew. This indirect effect make patients with pneumo-
nia on admission eventually die more frequently in the
hospital compared with patients without pneumonia on
admission. Thus, the cumulative risk to die in the hospi-
tal is indirectly increased due to their prolonged length
of stay. It would be useful to receive a summary anal-
ysis via logistic regression or the SHR. The OR in this
data set takes value 2.66, the SHR value 2.37, and they are
both able to catch and summarize the effect of pneumo-
nia on admission on the risk of death very well. Since the

effect on the discharge hazard is pretty distinct, it is not
surprising to have values higher than 2.

Hospital-acquired Pneumonia
The HR for death is 0.9 (the 95%- confidence interval
includes 1) and the one for discharge takes value 0.59.
Therefore, the situation is similar (even though less pro-
nounced) to the one in the time-independent setting, but
the risk sets behave differently, which we illustrated in
Fig. 2. There is no significant effect on the death hazard,
but the discharge hazard is reduced for individuals who
experienced pneumonia in the hospital. The OR is com-
parable to the time-independent setting and takes value
2.34, whereas the SHR is considerably higher compared to
the one in the time-dependent setting with a value of 3.44.
This is surprising since the initial situation is similar in the
two scenarios with respect to the hazards into the absorb-
ing states. Furthermore, the SHR in the time-dependent
setting compared to the one in the time-independent set-
ting is considerably higher. We further investigated this
unexpected result by simulation.
In Fig. 2, a clear difference in the risk sets can be seen

immediately. In the time-independent setting, all patients
already have their final covariate value, 0 or 1, and the risk
sets only shrink during the process when patients make a
transition into an absorbing state.
In the time-dependent setting, all individuals start in the

intitial state 0, whereas the risk set in state 1 is empty and
individuals have to make the transition into state 1 before
they appear in the risk set and are then under the influ-
ence of the hazards of transitions out of state 1. Therefore,
the curves of the risk sets in both the original multistate
model and the subdistribution model are quite different,
and the risk sets in state 0 and in state 1 change in a differ-
ent manner by moving to the subdistribution process. The
risk set in state 0 in the subdistribution approach is bigger
than the corresponding risk set in the multistate model. In
contrast, the risk sets of the infected individuals are almost
equal just after the initial time.

Simulation studies
First, we wanted to study a similar situation as the situ-
ation in the SIR 3 data in the time-independent and the
time-dependent setting. This is why we simulated a new
data set with those constant hazards that we approxi-
mately estimated from the SIR 3 study (Scenario 0). As
we can see, the trend of the results does not change. The
approaches capture the underlying true value in the time-
independent setting very well and both the OR and the
SHR produce similar results, which was already found by
Beyersmann [16]. Again, the SHR is rather large.
Next, we wanted to mimic this setting in a no-effect

model (Scenario 1). We would expect all of the effect mea-
sures to be 1 or at least the confidence intervals to include
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Table 2 Results in the SIR 3 and simulated data sets

Type Pneumonia on
admission

Hospital-acquired
pneumonia

Estimated constant hazards in the data sets:

Infection hazard α01 - 0.0063

Discharge hazard w/o pneumonia α02 0.0671 0.0627

Death hazard w/o pneumonia α03 0.0076 0.0075

Discharge hazard with pneumonia α14 0.0279 0.0334

Death hazard with pneumonia α15 0.0084 0.0093

Results:

HR(death) 1.11; 1.24∗ 1.00 (0.72,1.39) 0.9 (0.6,1.34)

HR(discharge) 0.42; 0.53∗ 0.44 (0.38,0.52) 0.59 (0.49,0.72)

SHR(death) 2.37 (1.72,3.26) 3.44 (2.36,5.03)

OR(death) 2.64; 2.34∗ 2.66 (1.86,3.81) 2.34 (1.54,3.54)

Simulated data:

Scenario 0: α01=0.05, α02 = 0.2,α14=0.1, α03 = α15=0.05

HR(death) 1 1.00 (0.92,1.12) 0.99 (0.91,1.09)

HR(discharge) 0.5 0.50 (0.48,0.53) 0.50 (0.47,0.53)

SHR(death) 1.73 (1.59,1.93) 3.24 (2.99,3.55)

OR(death) 2 2.01 (1.81,2.27) 1.99 (1.77,2.26)

Scenario 1: α01=0.01, α02 = α14=0.05, α03 = α15=0.01

HR(death) 1 1.01 (0.90,1.15) 1.00 (0.87,1.15)

HR(discharge) 1 1.00 (0.95,1.05) 1.00 (0.94,1.06)

SHR(death) 1.01 (0.9,1.17) 1.98 (1.77,2.26)

OR(death) 1 1.01 (0.89,1.18) 1.00 (0.89,1.15)

Scenario 2: α01=0.05, α02 = α14=0.2, α03=0.05, α15=0.1

HR(death) 2 2.01 (1.86,2.22) 1.98 (1.82,2.18)

HR(discharge) 1 1.00 (0.95,1.06) 1.00 (0.95,1.05)

SHR(death) 1.84 (1.68,2.05) 3.57 (3.26,3.92)

OR(death) 2 2.01 (1.81,2.27) 1.99 (1.77,2.26)

Scenario 3: α01=0.05, α02 = α14=0.2, α03=0.1, α15=0.075

HR(death) 0.75 0.75 (0.7,0.82) 0.75 (0.67,0.86)

HR(discharge) 1 1.00 (0.95,1.05) 1.00 (0.93,1.08)

SHR(death) 0.78 (0.72,0.86) 1.50 (1.36,1.70)

OR(death) 0.75 0.75 (0.68,0.84) 0.75 (0.66,0.86)

Scenario 4: α01=0.05, α02=0.2, α14=0.3, α03 = α15=0.05

HR(death) 1 1.01 (0.91,1.16) 0.99 (0.88,1.11)

HR(discharge) 1.5 1.50 (1.42,1.57) 1.50 (1.43,1.59)

SHR(death) 0.71 (0.63,0.83) 1.40 (1.27,1.58)

OR(death) 0.67 0.68 (0.60,0.80) 0.66 (0.60,0.75)

Upper part: Estimated hazards and results in the SIR 3 data set 95% confidence intervals are given in parenthesis. Lower part: Average results of 100 data sets with 10000
individuals per data set with empirical 95% confidence intervals in parenthesis. If applicable, the true HRs and ORs are given. The infection hazard α01 is only applicable for HAP.∗ : The values show the HRs computed with the estimated constant hazards. The first value corresponds to pneumonia on admission, the second to HAP

1 independent of the time-dependency. As we can see, the
time-independent setting delivers the expected results. In
the time-dependent setting, the SHR takes value 1.91 and

would lead to the false conclusion of HAP having a pro-
nounced effect on the death risk, although we assumed a
no-effect model.
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Fig. 2 Risk sets in states 0 (solid lines) and state 1 (dotted lines) in the original multistate process (black lines) and the subdistribution process (grey
lines) in the data of the SIR 3

This is an undesirable artefact and has to be investigated
further. Therefore, we chose three additional scenarios
(Scenario 2−4 in Table 2) with different tendencies of the
effects. Scenario 2 only has an effect on the death hazard,
which is higher for patients with either type of pneumo-
nia. Again, the time-independent simulation showed the
desired results as it will do in the next scenarios, whereas
the SHR with a value of 3.57 is rather large. In scenario
3, pneumonia is set to have a slight effect on the death
hazard, which is reduced out of state 1. Here, the SHR
of the time-dependent setting does not produce a use-
ful result, since it is returning a value that would lead
to the false conclusion of pneumonia having a negative
effect on the event of interest, death. Similar to scenario
3, scenario 4 has an indirect effect on the risk of dying,
which is obtained via an increased discharge hazard for
patients with pneumonia. Again, only the SHR in the
time-dependent setting arises suspicion in leading to the
false conclusion that pneumonia has a negative effect.
These results are not plausible and leaves to the acute need
for clarification of the problems.
We simulated data in a different initial model but

obtained similar undesirable results. To further inves-
tigate the effect of a hazard on the misperformance,
we altered its value around the initial value of the
hazard while keeping the other hazards fixed as in

the initial model and took a look at the returned
SHR. Higher values of α14,α02 respectively, lead to less
plausible, in the sense of closer to the real value 1,
results, whereas higher values of α15,α03 respectively,
lead to more plausible results. The results with vary-
ing infection hazard, α01, will be presented in the
next section.

The infection hazard
With higher infection hazards, there is no clear trend in
performance observable, though a very small infection
hazard leads to more plausible results than with a dis-
tinct infection hazard. We investigated this with another
simulation study, where only the infection hazard α01
was varied, whereas all others were kept constant at the
values of the initial model. The idea was to downsize
the left-truncation. Therefore, we cut the initial infec-
tion hazard of value 0.05 at a predefined time point.
There is a tendency of values closer to value 1 for cutting
the infection hazard sooner. The earlier the internal left-
truncation is curtailed, the closer the setting is to the time-
independent case. This indicated that the infection hazard
is pivotal in the subdistribution approach with time-
dependent pneumonia status. We summarized the prop-
erties in Table 1 and discuss the undesirable findings in the
next section.
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Discussion
We found the subdistribution approach returning unex-
pected effects in a simple simulation study with con-
stant hazards, whereas the simple ad-hoc logistic regres-
sion returned reasonable results. The subdistribution
approach detected effects in a simulated no-effects setting
and provided counter-intuitive effects in other settings.
To our knowledge, this misperformance did not arouse

suspicion in hospital epidemiology. It is very common
that hospital-acquired infections are associated with an
decreased discharge hazard (α14 < α02) and not associ-
ated with the death hazard (α15 ≈ α03). One would there-
fore expect an indirect effect of hospital-acquired infec-
tions on hospital mortality due to an extended length-of-
stay and prolonged exposure to the death hazard. Thus,
a SHR >> 1 would be expected and it is not surpris-
ing that the subdistribution approach was not questioned
in that scenario. In that matter, a current article by van
Vught et. al. arouse our attention [7], where the SHR was
used for the investigation of the time-dependent covariate
hospital-acquired infections and multiple medical inter-
ventions and seemed to mirror the underlying true values
very well. This can be explained by a similar setting to our
simulation study, where we reduced the infection hazard.
Patients that are in the hospital for at least two days are
included in the study. Since the patients are already in the
hospital for two days before they are included in the study
and most of the interventions, e.g. mechanical ventila-
tion, happen before that time, the internal left-truncation
is very limited. Most people that get an intervention dur-
ing their stay are already in state 1 when they are recorded
in the study and only few of them make the transition
after they are included in the study. Since this setting is
closer to a time-independent setting and the internal left-
truncation is cut early, it is plausible that the SHR seems
to capture the underlying true values very well as seen in
our simulation study.
During simulations, the internal left-truncation aroused

suspicion and this example would underline the effect of
better results with an earlier curtailed left-truncation. As
we saw, cutting the infection hazard earlier lead to more
plausible results and explains why van Vught et al. found
plausible subdistribution results.
Additionally internal left-truncation leads to a risk set

shift, in which the risk sets in the initial states representing
covariate values behave in a different manner with time-
dependent covariates than they do with time-independent
covariates especially in the beginning of the study (recall
Fig. 2).
If the competing discharge hazard is very small, the

subdistribution hazard is close to the CSH of death
and therefore the subdistribution approach can cap-
ture the no-effect model more easily. Vice versa, the
higher the death hazard, the more patients leave the

risk set ultimately and the subdistribution and the CSH
are closer. The results of the simulation study confirm
these considerations as the SHR was more plausible
with higher death hazards and lower discharge hazards,
respectively.
These are strong indicators that the internal left-

truncation and the resulting risk set shift might cause
the misperformance of the subdistribution approach. A
weighting technique by Geskus [17] delivered promis-
ing results when applied to the subdistribution approach.
Right now, we are still working on the theoretical back-
ground to support our findings. In a no-effect model,
the weighting produced plausible results and even for
a model with a distinct effect of the time-dependent
covariate the results were more plausible. It is a promis-
ing start but has to undergo more theoretical consid-
erations before this weighted subdistribution approach
can be used in clinical practice. Another adjusted SHR
was used by Ong et. al. to approach this problem more
implicitly [18].
Another issue that cannot be neglected is the misspeci-

fication of the model assumptions as already discussed by
Grambauer et. al. [14]. The proportional hazards assump-
tion for the CSH’s or the subdistribution hazards usually
preclude each other. Grambauer et. al. showed that the
analysis still offers an useful summary analysis even if the
model is misspecified. The possible problems in the sub-
distribution approach caused by misspecification should
not be neglected anyhow. However, the time-dependent
case leads to more problems than already present in
the time-independent case. We have not investigated
the situation of multiple time-dependent covariates, yet
conjecture that the difficulties translate to multiple
regression.
Summarizing, the subdistribution approach has shown

undesireable results in several simulation studies and the
use of the approach should be neglected until this issue
has been resolved. Alternatives and thorough discussion
of time-dependent covariates in a competing risks set-
ting can also be found in a paper by Cortese et. al. [19].
Since the theoretical background is not fully resolved
yet, we strongly recommend avoiding the use of the
subdistribution approach for assessing the effect of a
time-dependent covariate. In hospital epidemiology, we
recommend the use of logistic regression in combina-
tion with a CSH analysis instead. This recommendation
expands to the case of non-constant hazards. It has useful
properties (Table 1) and an easy-to-communicate inter-
pretation. It holds the advantages that we would wish for
in a model and the simulation performance is good. Since
censoring is not a big issue in the setting of hospital-
acquired infections, this lack of allowance for censor-
ing can be accepted as long as no better alternatives
are at hand.
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Conclusions
This manuscript shows that the proposed extension of
the subdistribution approach to time-dependent covari-
ates is in general not a helpful synthesis of the CSH
analysis. The cause-specific hazards should be the primar-
ily analyzed, potentially followed by logistic regression as
a simple ad-hoc analysis in the presence of no censor-
ing to synthesize the cause-specific hazard analyses. The
use of the subdistribution approach for time-dependent
covariates requires methodological improvements before
application.
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