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The molecular and cellular processes driving the formation of secondary lymphoid tissues 
have been extensively studied using a combination of mouse knockouts, lineage-specific 
reporter mice, gene expression analysis, immunohistochemistry, and flow cytometry. 
However, the mechanisms driving the formation and function of tertiary lymphoid tissue 
(TLT) experimental techniques have proven to be more enigmatic and controversial due 
to differences between experimental models and human disease pathology. Systems-
based approaches including data-driven biological network analysis (gene interaction 
network, metabolic pathway network, cell–cell signaling, and cascade networks) 
and mechanistic modeling afford a novel perspective from which to understand TLT 
formation and identify mechanisms that may lead to the resolution of tissue pathology. 
In this perspective, we make the case for applying model-driven experimentation using 
two case studies, which combined simulations with experiments to identify mechanisms 
driving lymphoid tissue formation and function, and then discuss potential applications 
of this experimental paradigm to identify novel therapeutic targets for TLT pathology.

Keywords: multi-scale modeling, tertiary lymphoid tissue, systems immunology, mechanistic modelling, model-
driven experimentation

FOrMAtiON AND FUNctiON OF secONDArY AND tertiArY 
iMMUNe MicrOeNvirONMeNts

Lymphoid tissues are responsible for the orchestration of functional immune responses. This 
is achieved through the development and maintenance of niches that support the retention, 
activation, and proliferation of adaptive immune cells in response to antigenic stimulation. 
Adult lymphoid tissue architecture is organized by an underlying network of stromal cells that 
produce extracellular matrix (e.g., collagens) and provide survival (e.g., BAFF, IL-7), migra-
tory (CCL19/21, CXCL13), and immune activation [the storage and presentation of immune 
complexes by follicular dendritic cell (FDC)] signals (1). Distinct stromal subsets with unique 
secretion profiles (chemokines, other cytokines, and survival factors) develop in response  to 
signaling from lymphocytes with a key role for TNF superfamily receptors; this stromal– 
lymphocyte cross talk ensures the correct cell type is stimulated (or regulated) at the right 
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time and place. Sustained cross talk between mesenchymal 
stroma and lymphocyte subsets is a core feature of lymphoid 
tissue formation and maintenance and occurs irrespective of 
the tissue type or anatomical location.

Formation of lymphoid tissues can occur by different cellular 
and molecular mechanisms. During fetal development, second-
ary lymphoid tissues form in a process dependent on the RAR-
related orphan receptor gamma transcription factor expressing 
lymphoid tissue inducer cells (LTi) responding to localized 
chemotactic gradients leading to the formation of lymph nodes 
(LN) and Peyer’s patches (PPs) in a lymphotoxin β (LTβ)-
dependent process (2). Localized mesenchyme, lymphoid tissue 
organizer (LTo) cells differentiate into adult marginal reticular 
cells, fibroblastic reticular cells, and FDCs (3). Likewise, in the 
adult, innate lymphoid cells type 3, the adult equivalent of LTi 
cells, have a key role in regulating cryptopatches that can mature 
into isolated lymphoid follicles (4). These specialized lymphoid 
structures contain predominantly B cells and often contain ger-
minal center (GC) reactions.

In humans, tertiary lymphoid tissues (TLTs) are found 
in inflammatory immune responses associated with chronic 
pathology from hip joint replacements, keloids, tissues in auto-
immune disease (e.g., the salivary gland in Sjogren’s syndrome, 
multiple sclerosis, and rheumatoid arthritis) to solid tumors 
and follicular lymphomas in the bone marrow (5–9). Although 
the role of specific cell types has been controversial, there is 
an emerging paradigm of a multistep process where localized 
inflammation induces stromal cell activation in a lymphocyte 
independent process, leading to localized microenvironments 
permissive for T and B cells entry (10). These lymphocytes 
have the potential to drive the formation of organized tertiary 
tissue in an autocrine-dependent process. This process closely 
resembles the capacity of naive B cells to drive B cell follicle 
formation in secondary lymphoid tissues in a TNFα- and 
LTβ-dependent process and the capacity of activated B cells 
to generate the GC, a transient microenvironment that drives 
high-affinity immune responses in a self-regulating autocrine-
dependent process. In both secondary immune tissues (LN, 
PPs, and spleen) and TLTs including ILFs and TLT, activated B 
cells prime the formation of the GC reaction. This specialized 
microenvironment contains both activated and proliferating B 
cells and different stromal compartments of CXCL12-secreting 
stroma (dark zone) and CXCL13-secreting FDCs (light zone). 
This facilitates the cyclic selection and expansion of antigen-
specific B cells (11).

Non-lymphoid inflammatory immune structures, granulo-
mas, can form in the liver, intestine, adipose tissue (crown-like 
structures), and lung induced by chronic infection/inflammation 
associated with tuberculosis, sarcoidosis leishmaniasis, schistoso-
miasis, cell death, and Crohn’s disease (12–14). The formation of 
these highly dynamic microenvironments superficially resembles 
TLT; however, their formation and organization is driven by acti-
vated macrophages rather than by the mesenchymal–lymphocyte 
cross talk observed in lymphoid tissues thus do not exhibit 
lymphocyte compartmentalization. Granuloma structures are 
very heterogeneous in presentation within individual patients 
in a continuum between early macrophage centric granulomas, 

self-resolving granulomas, and fibroblastic structures, these often 
being fibrotic rather than taking on a supportive stromal network 
phenotype. The triggers that drive granuloma formation instead 
of TLT formation appear not to be due to differences in the 
different chemotactic cues delivered by activated macrophages 
compared to those delivered by activated stromal fibroblasts, 
leading to a very different cellular make up to the inflammatory 
foci of leukocytes [primarily myelomonocytic (granuloma) vs. 
lymphocytic (TLT)].

cUrreNt APPrOAcHes tO stUDYiNG 
LYMPHOiD tissUe FOrMAtiON: LiMits, 
cHALLeNGes, AND NeW APPrOAcHes

Experimental studies, principally performed in gene knockout, 
lineage-specific fluorescent protein, and Cre reporter mouse 
lines have contributed significant insights into the roles of 
multiple different cell types and molecules in lymphoid tissue 
formation and function. This has been further validated using 
histology and flow cytometry analysis on human secondary 
lymphoid tissues. However, in contrast to secondary lymphoid 
tissues, there are some distinct differences in human tissue 
pathologies to those found in mice including the cellular com-
position of TLTs, granulomas, and other inflammatory tissues. 
This arises in part from genetic and physiological differences 
between human and mice including the timing and duration 
of the immune response (chronic vs. acute inflammation), the 
inflammatory triggers (infection, autoimmunity, and cancer), 
and transcriptional differences in immune cells in the different 
species. In general, mouse models of immune-mediated inflam-
matory disease are acute and fail to replicate the chronic human 
disease characterized by disease flairs followed by remission, 
limiting their translational capacity to human disease. Infection 
and tumor models in mice either rapidly resolve (too quickly 
for chronic pathology to establish) or lead to the mouse hav-
ing to by euthanized for health and welfare prior to tertiary 
lymphoid pathology occurring. In comparison, humans may 
live the rest of their life with the disease pathology, particularly 
in the context of treatment with biologics and small molecules; 
thus, pathology has the opportunity to evolve from localized 
inflammation to fibrotic tissue failure, systemic inflamma-
tion, and autoimmunity working together to prevent disease 
resolution. Increasingly, human 3-dimensional tissue culture 
models containing both stroma and lymphocytes have become 
increasingly common and useful in understanding underlying 
molecule mechanisms of TLT formation. However, it is not 
currently possible to represent the full complexity of chronic 
human pathology in vitro.

Experimental systems (in  vivo and in  vitro) to date have 
proven limited in their ability to explain chronic clinical pathol-
ogy and resolve established Sjogren’s pathology, although TNF 
has an important role in FDC differentiation and B cell organiza-
tion, anti-TNF fails to induce resolution disease (15). To better 
understand the form and function of TLTs, current knowledge 
of stromal regulation through molecular signals and immune 
cell behavior within lymphoid tissue must be consolidated 
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tAbLe 1 | Mathematical and computational techniques for modeling immune processes.

technique Description comments

ODE Ordinary differential equations: describe the rate of change with respect to one 
other variable (e.g., population change over time, t)

Commonly used technique that can be used to quantify 
changes in population size over time

PDE Partial differential equations: describe rate of change of a function of more than 
one variable with respect to one of those variables (e.g., motion through space 
x, y, and z as a function of time t)

Often used to describe changes occurring over both time 
and multiple spatial dimensions

Monte Carlo Statistical random sampling method where outcomes are determined at random 
from input probability distribution functions

Stochastic technique to model deterministic processes, 
very frequently integrated within ABM, CPM, and other 
stochastic modeling approaches

Petri nets Graph-based model describing network of events or “transitions” that occur 
depending on given conditions or “places,” a stochastic methodology

Computationally efficient can be effectively defined using 
SBML2. Capturing explicit spatial representation can be 
difficult

ABMs Agent-based models are composed of individual entities specified as agents, 
which exist independently in a well-defined state: a set of attributes at a specific 
point in, e.g., time and space, with state transitions governed by a rule-set, 
often described in terms of finite state machines and other diagrammatic 
constructs using the Unified Modeling Language

There are a number of methodologies to generate ABMs. 
There are tools with user interfaces for constructing 
simpler lattice-based ABMS or “unconstrained” models 
manually coded as software in languages such as Java 
and C++

(Extended) cellular 
Potts modeling

A lattice-based modeling technique for simulating the collective behavior of 
cells. A cell is defined as a set of pixels within a lattice (sharing a “spin state”) 
and is updated pixel-by-pixel according to a mathematical function, which 
incorporates cell volume and surface/adhesion energies

Similar to an ABM but relies on effective energy functions 
(the Hamiltonian) to describe cellular adhesion, signaling, 
motility, and other physical phenomena

Hybridized models Bringing together a range of different techniques generally within the context 
of an ABM or CPM, incorporating differential equations and a variety of other 
mathematical and computational techniques to effectively capture phenomena 
occurring over different spatiotemporal scales (e.g., intracellular activity)

Can take advantage of different modeling techniques, 
particularly applicable where there are multiple processes 
occurring in different scales of time and space
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and considered in a quantitative, systems-based approach. The 
development of systems-level stochastic computational models 
can bring together a broad understanding across spatiotemporal 
scales of how genetic and molecular factors relate to cellular and 
tissue level form and function and give rise to the complex, 
functional architectures observed in secondary lymphoid 
organs and disease-specific TLTs. These models permit in silico 
experimentation providing a unique platform driving further 
experimentation and assessing novel mechanistic targets and 
intervention strategies where in vivo observed heterogeneity can 
be replicated.

Alan Turing (of code breaking fame) in seminal early work 
in mathematical biology (16) noted that gastrulation arose from 
symmetry breaking, and this leads to fundamental insights and 
principles that drive modern mathematical and computational 
biology: the notion that chaotic, non-linear behavior of indi-
vidual biological processes, including the self-organization of 
complex biological structures (e.g., TLT), can result in emergent 
properties that cannot be understood from consideration of 
each individual component in isolation. The development of 
models that capture the essential, emergent behavior of specific 
biological processes, with extraneous components excluded, 
enables understanding of how complex molecular and cellular 
interactions govern complex, emergent biological processes and 
can therefore lead to new insights and quantitative predictions 
(17). Emergent properties in a TLT model would include stromal 
networks, lymphocyte organization, migration and interactions 
with antigen-presenting cells, and localized cytokine/chemokine 
production.

APPLicAtiON OF MODeL-DriveN 
eXPeriMeNtAtiON (MDe) tO 
UNDerstAND MecHANisMs OF 
LYMPHOiD tissUe DeveLOPMeNt 
AND FUNctiON

Advances in computing resources and computational modeling 
technology have provided the capacity to generate complex 
in silico models of lymphoid tissues that incorporate space, time, 
and cellular heterogeneity found in immune tissues including 
TLT. Applying in  silico approaches to understand secondary 
lymphoid tissue formation and function requires the integra-
tion of experimental data across cellular, molecular, and tissue 
levels of organization. Ensuring that the biological processes are 
appropriately described requires a fine balance between model 
abstraction and interpretation (quantitative and qualitative) of 
experimental data. A number of different modeling approaches 
may be utilized (summarized in Table 1), increasingly, integra-
tion of different mathematical/computational techniques into a 
hybrid model is a common strategy to address the limitations of 
using each technique in isolation. This approach also facilitates 
the consolidation of data across different levels of organization 
(molecular, cellular, tissue, and patient) into a single multi-
scale model. For example, an agent-based model can capture 
an individual cell, which in turn incorporates a differential 
equation-based model capturing a “lower-level” aspect of that 
individual’s behavior, such as surface expression of a receptor 
(42). Adopting an in silico approach provides a platform that can 
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provide insights and generate predictions that can be verified 
in vivo: verification that can lead to increased biological under-
standing and incrementally improved in silico models for further 
experimentation. This iterative approach of combining in vivo, 
in vitro, and in silico approaches has been termed “model-driven 
experimentation” (18).

cAse stUDY 1: iNsiGHts FrOM MDe 
tO secONDArY LYMPHOiD tissUe 
FOrMAtiON

Peyer’s patches are specialized secondary lymphoid tissues 
of the intestine that develop during a fixed window in fetal 
development and have an essential role in maintaining intesti-
nal immunity. PPs form stochastically along the midgut, with 
mice developing 8–12 patches; however, as the absence of or 
reduction in the number of PPs is observed in several differ-
ent gene knockouts, the molecular process that triggers patch 
formation was unclear (19). Using an MDE-based approach had 
the potential to provide new insight into how different signaling 
pathways (RET, chemokine receptors, cytokine receptors, TNF 
superfamily, and adhesion molecules) might integrate to induce 
PP development in silico and to subsequently design key experi-
ments to test hypotheses in  vivo. PPSim is an agent-based PP 
simulator that captures key processes during the 72-h period 
of tissue development in prenatal mice and replicates (statisti-
cally similar) emergent cell behaviors found in vivo, specifically 
populations of hematopoietic cells, known as lymphoid tissue 
initiator (LTin) and lymphoid tissue inducer (LTi) cells, migrates 
into the developing gut, with data from laboratory observations 
suggesting these cells follow a random motion. Both cell popula-
tions express receptors for the adhesion molecule VCAM-1, 
expressed by stromal LTo cells residing in the gut wall (20, 
21). In this computational model, LTi and LTin are captured 
as individual entities that migrate into the developing midgut 
serosa and undergo a random walk, interacting with their 
localized simulated environment through signaling pathways 
including GDRFs/Ret signaling pathways, adhesion molecules, 
and chemokine receptors, as is observed in  vivo. On ensuring 
PPsim adequately represented individual cell responses, statisti-
cal analysis techniques, specifically sensitivity analyses, were 
used to explore mechanisms driving prenatal lymphoid organ 
formation (22, 23). This exploration of the simulated biologi-
cal pathways revealed which pathways had significant impacts 
on simulated cell behavior at different time points during PP 
development. By examining correlations in the level of activity 
of simulated pathways and cell behavior, the hypothesis was 
derived that contact between LTin and LTo cells that leads to the 
localized upregulation of VCAM-1 on stromal cells was the key 
triggering event that determined the site of PP formation on the 
midgut (21). Utilizing this prediction, an in vitro assay imaging 
fetal midgut explants incubated in the presence or absence of 
anti-VCAM-1 antibodies was developed. Using this assay, it was 
verified that early upregulation of VCAM-1 was the triggering 
event that was essential for the initiation of LTi and LTin cell 
clustering. The model simulation results, supported by replicated 

experimentation and safety-critical systems-based fitness-for-
purpose argumentation that details the knowledge integration 
in model composition, provide evidence that the simulation 
was fit for the purpose of aiding exploration of this specific 
research question: understanding the triggering of lymphoid 
tissue development, which was not possible by conventional 
genetic approaches (24, 25).

cAse stUDY 2: APPLYiNG MDe tO 
UNDerstAND Gc DYNAMics AND 
FUNctiON

The GC reaction is a transient microenvironment in which affin-
ity maturation occurs in response to immunization and infec-
tion, bearing key similarities to TLT in its evolution in the role 
of lymphocytes in inducing highly organized stromal networks, 
the essential role of TNF superfamily members in regulating 
its induction and the induction of chemokine gradients (10, 
26). However, in comparison to TLT, the GC is a self-resolving 
tertiary lymphoid microenvironment. Recent technological 
advances, particularly the advent of intravital multiphoton imag-
ing including photo-activated fluorescent proteins has led to the 
unprecedented availability of data on the dynamics B-cell migra-
tion and selection (27–30). However, imaging datasets provide 
a narrow window of insight into a process that occurs over a 
timescale of days and weeks. Furthermore, as imaging techniques 
are optimized for a given time and length scale, they are limited 
in their ability to link molecular, cellular, and tissue level pro-
cesses. This has made the interpretation of imaging datasets in 
the context of the wider literature challenging. To address this 
issue, modeling approaches have been used to test the validity of 
different hypotheses of mechanisms controlling B-cell migration 
and selection within the GC (31–34).

In the GC reaction, model-derived insights have proved use-
ful not only in the analysis of existing datasets but also as a driver 
for further experimentation. Specifically, an MDE approach has 
been used to examine the effects of antibody feedback on the 
process of affinity maturation (35). Analysis of an in  silico GC 
reaction yielded the prediction that GC B-cells, which require 
antigen on FDCs for positive selection, were competing for 
antigen by early low-affinity antibodies. Only higher affinity 
B-cells were able to outcompete for antigen to receive the neces-
sary survival signals. To experimentally validate this prediction, 
the authors manipulated the GC response with monoclonal 
antibodies of defined affinities and were able to confirm that 
antibody feedback provides a dynamic selection threshold to 
maximize Ig affinities (35). A similar approach was employed 
to investigate the role of toll-like receptor 4 (TLR4) on the GC 
where an iterative cycle of in silico and in vivo experimentation 
dissected the importance of TLR4 signaling on the maturation 
of FDCs, key regulators of B-cell selection in the light zone of 
the GC (36). Both of these MDE examples highlight the use of 
in  silico experimentation as a means of refining experimental 
design through the identification of key time points and condi-
tions to test in vivo. These case studies together provide example 
of how theoretical models can consolidate data from different 
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FiGUre 1 | Application of model-driven experimentation to develop 
new mechanistic understanding of tertiary lymphoid tissue (tLt) 
formation and maintenance permitting identification of novel 
therapeutic approaches to resolve localized tLt pathology.

tAbLe 2 | Key questions on tertiary lymphoid tissue (tLt) formation and 
maintenance that can be address in hybridized tLt models.

Formation

What are the minimum cellular requirements to initiate TLT formation? Is this 
driven by different types of stroma, lymphocytes, dendritic cells, or tissue-
resident macrophage?

What is the relative importance of inflammation and antigen in TLT induction? Is 
autoantigen required for induction or just an outcome of the pathology?

What is the role of different cytokines and chemotactic signals on TLT formation?

Maintenance

What is the relative role of inflammatory cytokines, lymphocyte—stromal cross 
talk, immune cell entry, cell death, antigenic stimulation on TLT maintenance?

What are the key signaling pathways required to maintain TLT once it has 
formed? Can these pathways be targeted to induce TLT resolution?

Can TLT self-resolve in humans? If so, what is the balance between new TLT 
induction and resolution of existing structures?
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sources as a platform for the development novel hypotheses 
and a driver for further experimentation.

PersPective ON MDe As APPLieD 
tO tLt FOrMAtiON, FUNctiON, 
AND tHerAPeUtic resOLUtiON

When computational modeling is combined with knowledge 
derived from imaging, multi-dimensional cytometry, and 
gene expression analysis of human TLT pathology, MDE has 
the potential to provide novel insights to key questions on 
molecular and cellular mechanisms involved in TLT formation, 
maintenance, and function similar to its capacity to impact on 
our understanding of lymphoid stromal network and granu-
loma dynamics (Table 2) (37–40). One of the key advantages 
of applying multi-scale modeling is it permits capture of a wide 
range of different phenomena that occur on different orders of 
magnitude in terms of time and length scales that are critical 
in the stochastic processes involved in TLT induction. These 
include different cell types, states and interactions, inflamma-
tory molecules, extracellular matrix, adhesion molecules, and 
chemotactic signals all in the context of an evolving tissue 
microenvironment. Developing in silico models permits tempo-
ral inhibition of different signaling pathways and cellular deple-
tions during different stages of TLT pathology using statistical 
tools (Figure  1). This permits identification of key pathways 
that could be targeted to induce resolution of pre-existing TLT 
rather than inhibiting its formation as has been used to make 
in  silico predictions for the treatment of tuberculosis (41). A 
large number of novel antibody therapies, biologics, and small 
molecular inhibitors have been developed to target immune 
function for the treatment of immune-mediated inflammatory 
diseases. These therapies are unlikely to show maximal efficacy 
against existing tissue pathology when used as monotherapies, 
rather it is more likely that use of therapeutic combinations 
that is most likely to show clinical efficacy. The clinical chal-
lenge is that there are already over 20,000 possible different 

combinations using existing therapeutics that would need to be 
trialed to find optimal targeting strategy to resolve TLT pathol-
ogy. Thus, MDE-based approaches provide a rational approach 
to identify novel combination therapeutic regimes that have a 
best potential in clinical trials (42).

Although the adoption of MDE has only recently started to 
impact on immunology research, it is starting to have a very 
significant impact on other areas of biology. We propose that 
the increased accessibility of computational models, the high-
performance computing resources, the increased familiarity and 
understanding of simulations as tools to understand immune 
function, and the capacity to apply in silico approaches to identify 
potential therapeutic approaches and disease biomarkers will 
accelerate the application of MDE as a methodology understand 
and target disease resolution.
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