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Here we present a mouse model for T-cell targeting of hair follicles, linking the pathogenesis of alopecia to that
of depigmentation disorders. Clinically, thymus transplantation has been successfully used to treat T-cell
immunodeficiency in congenital athymia, but is associated with autoimmunity. We established a mouse model
of thymus transplantation by subcutaneously implanting human thymus tissue into athymic C57BL/6 nude mice.
These xenografts supported mouse T-cell development. Surprisingly, we did not detect multiorgan autoimmune
disease. However, in all transplanted mice, we noted a striking depigmentation and loss of hair follicles. Transfer
of T cells from transplanted nudes to syngeneic black-coated RAG� /� recipients caused progressive, persistent
coat-hair whitening, which preceded patchy hair loss in depigmented areas. Further transfer experiments
revealed that these phenomena could be induced by CD4þ T cells alone. Immunofluorescent analysis suggested
that Trp2þ melanocyte-lineage cells were decreased in depigmented hair follicles, and pathogenic T cells
upregulated activation markers when exposed to C57BL/6 melanocytes in vitro, suggesting that these T cells are
not tolerant to self-melanocyte antigens. Our data raise interesting questions about the mechanisms underlying
tissue-specific tolerance to skin antigens.
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INTRODUCTION
Alopecia is a disfiguring form of hair loss, which may be
reversible, or irreversible, as in scarring alopecias. There are
several subtypes of immune-mediated hair loss, ranging in
severity from small isolated patches of reversible alopecia
(alopecia areata) to extensive or total loss of body hair
(alopecia totalis, AT; alopecia universalis), which in some
cases is permanent (Lew et al., 2009). Disease is thought to
occur when autoreactive T cells attack hair follicles, which are
normally immune privileged (Gilhar et al., 1999, 2007).
Follicular melanocytes are frequently damaged in early
alopecia lesions (Tobin et al., 1990). Clinically, it has been
noted that hair regrowth is often white, and that pigmented
hairs may be preferentially targeted during alopecia (Gilhar

et al., 2007). Autoimmune vitiligo in humans typically
presents as patchy skin depigmentation resulting from a
T-cell response against self-melanocytes (Ongenae et al.,
2003). The etiology of autoimmune subtypes of vitiligo and
alopecia is not fully understood, but is likely to involve the
loss of tolerance to skin antigens.

Here we used the athymic nude mouse (Pantelouris, 1968;
Nehls et al., 1994) as a recipient for human thymus grafts, to
establish a model of thymus transplantation for studying
tolerance induction and autoimmunity. Complete DiGeorge
Syndrome, a rare, fatal congenital athymia, is treated by
unmatched thymus transplantation, which reconstitutes naive
T-cell output, although not to normal levels (Markert et al.,
2007). Autoimmunity has been observed in one-third of
thymus transplant recipients (Markert et al., 2007; Levy
et al., 2012), presumably due to major histocompatibility
complex (MHC) mismatching.

Here we show that de novo mouse T-cell development is
induced by transplanting human thymus epithelium into T
cell–deficient nude mice, and that autoimmunity, consistently
and predominantly directed at hair follicles, resulted from the
presence of this thymus graft. We characterize the cellular
mechanisms underlying this skin-specific immune response
after thymus xenotransplantation. We present an inducible
mouse model for depigmentation and hair loss, and suggest
that there are as yet uncharacterized mechanisms driving
induction of tolerance to skin self-antigens.
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RESULTS
Human thymus tissue supports murine T-cell development in
athymic nude mice

To investigate mechanisms driving autoimmunity in vivo,
we established a mouse model of thymus transplantation.
We implanted fragments of fresh or cultured (Supplementary
Table S1 online) human thymus subcutaneously into the
scruff of nude mice, providing a thymic epithelial niche,
which expressed non-self-MHC and species-inappropriate
antigens. We used subcutaneous implantation because
clinical transplantations are performed in the thigh fascia
(Markert et al., 1997).

Nude mice lack conventional T cells because of congenital
athymia. Other lymphocytes are present, including B cells,
which are functionally limited by the lack of T-cell help
(Mongini et al., 1981), natural killer (NK) cells, some NKT and
gd-T cells, and gut intra-epithelial lymphocytes (De Geus
et al., 1990). Therefore, to screen blood for conventional T
cells, we used a stringent gating strategy to remove B cells,
CD3-expressing NK cells, or gd-T cells/intra-epithelial
lymphocytes, which may express CD8, and dendritic cells
that may express CD4/CD8 (Figure 1a). Nude mice trans-
planted with human thymus tissue (Nu-Tp) accepted xeno-
grafts and displayed mature T cells in peripheral blood

PBL

Wt/Nu

C
D

4

S
S

C

C
D

8

C
D

8

CD3

CD4

CD4

A
nt

i-m
ou

se

80 CD4+ CD8+

CD8

CD4

60

60

50

40

3040

20
20

10

0 0
7 7

Weeks post-Tp

8 812 1217 17

%
 L

ym
ph

oc
yt

es

A
nt

i-h
um

an

CD4

CD8

35

25

30

20

10

5

0
7 8 12 17

Wt/Nu

WT

Nu-Tp

Wt/Nu

Nude

Nude

Nu1

Nu2

Nu2

Nu3

Nu3

Nu4

Nu5

Nu6

Nu7

Nu7

Nu5

Weeks post-Tp

C
D

8

%
C

D
3+

 ly
m

ph
oc

yt
es

CD3

Wt/Nu

Nu-Tp

Nude

B220/NK1.1
γδ/CD11c

NudeNu-Tp

T cells CD4+ CD8+

CD3

Figure 1. De novo T-cell development in nude mice with human thymus xenografts. T-cell output following transplantation was assessed by flow cytometric

analysis of peripheral blood lymphocytes (PBL). Control nudes received no graft; Wt/Nu are immunocompetent. (a) CD4þ /CD8þ T cells identified by gating on

PBL (B, NK, gdT, and dendritic cells were excluded). Example staining at 18 weeks post transplant is shown. (b) CD3 expression on CD4þ and CD8þ PBL.

Example staining of (c) mouse PBL with anti-human antibodies, and of (d) human PBL with anti-human and anti-mouse antibodies. (e) Time-course analysis of %

CD3þ T cells in blood. (f) % CD4þ and CD8þ cells as shown in a for four Nu-Tp mice. (g) Anti-mouse staining of normal mouse thymus and tissue retrieved

from Nu-Tp transplantation site.
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lymphocytes (PBL) 12 weeks post transplant (Figure 1a and b).
These T cells were of mouse origin, staining only with anti-
mouse antibodies. No T cells of human origin were detected
in transplanted mice (Figure 1c), indicating that thymus-
resident human T cells did not persist. Anti-mouse antibodies
did not bind human lymphocytes (Figure 1d). Most trans-
planted mice showed variable but lower proportions of
CD3þ cells than Wt/Nu immunocompetent control animals.
Wt/Nu mice had on average 23.6%±5.7 CD3þ PBL,
whereas Nu-Tp displayed 3.0%±1.9 at 8 weeks, 6.1%±0.7
at 12 weeks, and 8.5%±3.9 at 17 weeks post transplant. A
small number of transplants did not graft, likely because of
failed implantation, with o1% T cells in the PBL gate
(Figure 1a and e, Supplementary Table S1 online).

Reconstitution of T-cell subsets showed different kinetics,
with CD4þ cells appearing in PBL 2–4 weeks later than
CD8þ cells (Figure 1f). Postmortem, we detected immature
mouse T cells (CD4þCD8þCD3� ) in disaggregated sub-
cutaneous scruff tissue (Figure 1g), demonstrating that T-cell
development occurred in Nu-Tp animals.

To confirm that resident nude bone marrow–derived precur-
sors were the source of de novo T cells, we performed
transplants into Nude-RAG2� /� IL2Rg� /� mice, which lack a
thymus and functional murine T precursors. As expected, these
mice were unable to generate T cells after human thymus
grafting (data not shown), remaining profoundly lymphopaenic.

Nude mice given human thymus xenografts develop
depigmentation and hair loss

C57BL/6 nude mice lack fur because of abortive hair growth,
but are not strictly hairless. The presence of hair follicles,
which produce hairs that are unable to fully penetrate the
epidermis, give the skin a black color (Militzer, 2001). Striping
is observed as these hairs progress through murine hair
cycling, and sparse patches of short black hair are
occasionally seen (Eaton, 1976). After appearance of PBL in
Nu-Tp mice, we observed macroscopic changes in body
coloration, where skin appeared smooth and pink compared
with the gray/black striping of untransplanted control nude
mice (Figure 2a). We noted sparse areas of white hair,
particularly on the face (Figure 2a), which were ultimately
lost. We only observed this in mice that developed T cells after
thymus grafting (Supplementary Table S1 online). We per-
formed 11 grafts using tissue from five independent human
donors. Three of these transplants failed. Of the remaining
mice, all eight nude recipients displayed this characteristic
skin phenotype.

Postmortem skin from Nu-Tp mice was thin, liable to tear,
and had lost its black/gray coloration (Figure 2b). Skin
histology revealed hair follicle dystrophy and loss in Nu-Tp
(Supplementary Figure S2 online, Figure 2c–f) compared with
control nude samples (Supplementary Figure S2 online,
Figure 2g–j). Hair follicle disruption was widespread in Nu-
Tp skin, although we were able to identify occasional follicles
in anagen (Figure 2c–f), most of which were not pigmented.
Cellular infiltrates were seen around the hair follicles, fre-
quently in the upper region (Figure 2c and d). We did not
observe epidermal hyperplasia, cysts, trichogranulomas,

fibrotic lesions or external rashes, scarring, scaling, ulcera-
tion/blistering, redness, swelling, or dermatitis (Sundberg
et al., 2011) in Nu-Tp mice. Nu-Tp hypodermis was
severely disrupted, in several cases showing almost total loss
of hair follicles, sebaceous glands, and subcutaneous fat
(Supplementary Figure S2 online). Occasionally, hair follicle
remnants were observed, although we did not observe hair
regrowth in any animal during our experiments (6 months post
transplant). Histomorphometry revealed that Nu-Tp skin
showed significantly fewer follicles than non-transplanted
controls, and most remaining hairs observed in Nu-Tp samples
were white (Figure 2k).

This phenotype occurred after de novo T-cell output,
suggesting that depigmentation and hair loss were mediated
by a T-cell response against hair follicles, resembling auto-
immune alopecia. We therefore examined the lymphocyte
composition of skin from transplanted animals, observing
CD4hiCD3hi T cells in Nu-Tp skin (Figure 2l), which were
largely absent in nude controls. Interestingly, the proportion of
CD4þ cells in digests was higher in Nu-Tp than in immuno-
competent wild-type (WT) mice, typically 6.7% of live cells
compared with 2.4%, respectively. Increased proportions of
CD3þ T cells suggested enhanced infiltration or expansion of
CD4þ T cells in Nu-Tp mice. Transplanted mice showed
lower proportions of PBL than control immunocompetent
animals (Figure 1e), and low but detectable populations of T
cells in the spleen (not shown). Therefore, the presence of
skin-resident T cells in these animals is likely to be function-
ally significant.

Nude mice are widely used for xenotransplantation,
accepting many grafts, including human tissues, with no
reports of adverse ‘‘unconventional’’ host immune responses
or pathological dermatological effects (Manning et al., 1973;
Gershwin et al., 1977; Drago et al., 1979). Therefore, in our
model, it seems likely that the human tissue provides a niche
in which host murine T-cell precursors can develop. Mouse
TCR can bind and be selected on human MHC (Kievits et al.,
1987), and the development and thymic selection of mouse
TCR on HLA can occur without a human coreceptor (Altmann
et al., 1995). In this case, an MHC mismatch would exist
between the T cells’ specificity and the host tissues, which
express ‘‘foreign’’ murine MHC molecules. A widespread
autoimmune syndrome might therefore be expected.
However, we noted no other pathology in Nu-Tp mice
displaying hair loss. To formally rule out chronic
inflammation and autoimmunity, we screened several solid
organs. We saw no histological abnormalities in Nu-Tp
specimens, indicating that species mismatch between
thymus and host tissues did not provoke multiorgan
autoimmune disease (Supplementary Figure S1 online).

Adoptive transfer of transplanted nude lymphocytes to
immunodeficient mice causes coat depigmentation

Hair biology in nude mice is abnormal, and our observations
may relate to an underlying defect in nude skin. To test
this and investigate the mechanism of hair follicle targeting,
we collected lymphocytes from Nu-Tp mice with/without
alopecia and adoptively transferred them into black-coated
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lymphocyte-deficient C57BL/6 RAG� /� mice (Figure 3a,
AT1). We detected CD4þ and CD8þ PBL in mice given
Nu-Tp alopecia lymphocytes, indicating successful transfer.
No T cells were seen in RAG� /� hosts receiving no cells, or
cells from lymph node of control/non-alopecia nude mice
(not shown). Remarkably, at 8 weeks post transfer, mice that
received cells from Nu-Tp with alopecia developed a
striking coat depigmentation, manifesting initially in a white
dorsal stripe (Figure 3b). At 15 weeks post transfer, this

depigmentation had spread (Figure 3c), and eventually white
areas showed hair loss (Figure 3d and e). This experiment
(Figure 3a) was repeated with independent human thymus,
nude host, and RAG� /� recipients. The same results were
seen, except that depigmentation began over the cranium and
extended down the body (Figure 3f). Interestingly, our pheno-
type resembled vitiligo-like autoimmunity seen in mice with a
transgenic TCR specific for Trp-1, a melanocyte antigen
(Muranski et al., 2008).
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We found T cells in skin from depigmented mice
(Figure 3g), a greater proportion of which expressed CD4
and CD3 compared with WT controls. Significantly fewer
intact follicles were observed in AT1 skin compared with WT
animals (Supplementary Figure S2b online, Figure 3h). AT1
hair follicles appeared microscopically to lack pigment, even

in sections from areas of black fur, suggesting an active
process of depigmentation before hair loss.

Histological analysis of AT1 skin showed hair follicle
dystrophy compared with control skin (Supplementary Figure
S2b online). Depigmented hairs (Figure 4a–d), or hairs with
little pigment compared with controls (Figure 4e–g), were
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seen. We noted occasional swarms of cells around follicles,
particularly in the infundibular region of anagen follicles, and
around the receding bulb of telogen hairs (Muller-Rover et al.,
2001) (Figure 4a and d).

More infiltrating CD4þ cells were observed around folli-
cles and in the dermis of Nu-Tp (Figure 4i) and AT1 (Figure 4j)
skin than in control sections. CD8þ cells were present in skin
from experimental animals, although at lower frequencies
than CD4þ cells (Figure 4), suggesting that in our model
CD4þ cells are active in skin.

CD4þ T cells cause depigmentation and hair loss in thymus
xenotransplantation–induced autoimmunity, possibly by
targeting melanocytes

To dissect the cellular mechanism and identify the reactive
T-cell subset/s, we performed further adoptive transfer experi-
ments (Figure 5a). Lymphocytes were collected from lymph
node of AT1 experimental animals (mice in Figure 3b–e), and
T cells were fractionated by fluorescence-activated cell sort-
ing. CD3þCD4þ , CD3þCD8þ , and CD3þ gdTCRþ cells
were purified (498% pure, Figure 5b) and transferred into
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new RAG� /� recipients. At 16 weeks post transfer, a patch of
localized alopecia surrounded by downy white hairs was
observed on the shoulder of an animal that had received
CD4þ cells (Figure 5c). CD3þCD4þ T cells were identified
in skin from this area (Figure 5d). Mice that received CD8þ
and gd-T cells were kept for 21 weeks post transfer, but did not
show any skin phenotype (not shown). Thus, CD4þ cells in
isolation can cause pathology.

Given the hair whitening, loss of follicles in Nu-Tp mice,
and subsequent widespread depigmentation of furred mice in
adoptive transfer experiments, we hypothesized that melano-
cytes were the target-cell population for T cell–mediated
autoimmune attack. Supporting this, we observed decreased

levels of Trp2 staining in Nu-Tp hair follicles compared with
controls, suggesting that there are fewer melanocyte-lineage
cells in Nu-Tp skin (Figure 6a). We therefore tested respon-
siveness of Nu-Tp T cells to murine melanocytes. Splenocytes
(including host antigen-presenting cells) from Nu-Tp and WT
mice were cultured with C57BL/6 melan-a cells, a transformed
melanocyte cell line, which we irradiated to prevent rapid
proliferation. The proportion of T cells in Nu-Tp splenocyte
cultures was lower than WT, reflecting suboptimal T-cell
reconstitution (Figure 1e). However, despite the low frequency
of T cells, after 48 hours in culture, a higher proportion of
CD4þ T cells from Nu-Tp spleen expressed the T-cell activa-
tion marker CD25, compared with WT splenocyte cultures,
indicating that a larger proportion of T cells in the mixed cul-
ture were activated by the presence of melanocytes (Figure 6b).
A higher proportion of T cells in melan-aþNu-Tp spleen
cocultures were of memory phenotype (CD44hiCD62Llo)
compared with melan-aþWT spleen cultures (Figure 6c).
The proportion of naive T cells (CD44loCD62Lþ ) was low in
the Nu-Tp culture, whereas naive T cells were observed in
melan-aþWT spleen cocultures (Figure 6c).

DISCUSSION
Here we showed that subcutaneous grafting of T cell–deficient
nude mice with human thymus fragments restored murine
T-cell development, despite the absence of species-appropri-
ate signals that might be required for grafting, vascularization
and colonization of human tissue. We observed murine T cells
in Nu-Tp blood for 46 months post transplant, suggesting that
the graft continues to function, and/or that human MHC is not
required to support peripheral T-cell survival. The proportion
of T cells in blood and lymphoid organs was low, as observed
after thymus allografting in other systems (Yan et al., 2003;
Markert et al., 2007); thus, tissue mismatching may impair
positive selection and peripheral T-cell homeostasis.

We did not observe multiorgan autoimmunity in the Nu-Tp
mice, suggesting either that graft-educated cells were unreac-
tive, low-affinity clones or that some degree of self-tolerance
was induced, centrally or in peripheral tissues. We cannot
exclude subclinical autoimmunity, but some transplanted
mice were kept for over 35 weeks post transplant without
visible non-dermatological disease. All transplanted animals
developed an alopecia-like disorder, resulting in severe hair
follicle disruption and hair loss, which was not due to
companion barbering. This occurred irrespective of human
thymus donor. In vitro assays indicated that unprimed T cells
from Nu-Tp mice activated in response to syngeneic melano-
cytes, and transfer of pathogenic Nu-Tp T cells to black-coated
animals, led to significant depigmentation and subsequent
localized hair loss. We therefore propose that a proportion of
graft-educated mouse antigen–intolerant T cells attack folli-
cular melanocytes, causing depigmentation. Loss of melano-
cytes then compromises follicle integrity/stability, leading to
hair loss. Further, targeting of melanocyte-lineage cells in the
infundibular region may disrupt the bulge stem-cell niche,
which could prevent hair regrowth. This requires future
investigation, as follicles may remain dormant for some time.
In addition, as we were able to identify some remaining
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follicles in nude mice (Nu5), follicular destruction was not
necessarily complete or irreversible during the time frame of
our experiments.

Spontaneous rodent models of alopecia and vitiligo are
available, but incidence of disease is low and
unpredictable (Lerner et al., 1986; Sun et al., 2008). The
C3H/HeJ skin grafting mouse model has provided insight into
the pathogenesis of murine alopecia areata (McElwee et al.,
1998, 2002, 2005; Sun et al., 2008), but this elegant model
requires appearance of initial disease and surgical expertise.
Recently, models of hair follicle autoimmunity have been
engineered by transgenic expression of melanocyte antigen-
specific TCR (Lambe et al., 2006; Gregg et al., 2010; Alli

et al., 2012; Harris et al., 2012). These sophisticated tools are
valuable, but suffer the disadvantage that autoimmunity is
driven by a non-physiological, single TCR specificity. Our
model, either of thymus grafting to C57BL/6 nudes or transfer
of Nu-Tp T cells to RAG� /� recipients, can be considered
inducible and therefore useful for studying disease onset and
kinetics. Indeed, we were able to observe the active disease
process (Figure 4). In addition, our model will aid investigation
of the etiology of autoimmunity, as it relies on the failure of
self-tolerance during the development of the endogenous
T-cell repertoire.

Our data support the established hypothesis that autoim-
mune hair loss and depigmentation are T cell–mediated and
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melanocytes (irradiated melan-a). (c) The proportion of effector memory CD4þ cells (CD4þCD44hiCD62Llo) and naive (CD4þCD62LþCD44lo) cells in Nu-Tp

spleenþB6 melanocyte cocultures compared with B6 spleenþB6 melanocyte cocultures. WT, wild type.
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suggest that these disorders can share a common pathogen-
esis, as previously reported in mice (Nagai et al., 2006)
and chickens (Smyth and McNeil, 1999). Although there
are clinical reports of coincidence of alopecia areata and
vitiligo (Dhar and Kanwar, 1994; Adams and Lucky, 1999;
Tan et al., 2002; Yadav et al., 2009; Akay et al., 2010;
Ramot et al., 2010), the link between the two diseases is
controversial, with some studies finding no association
(Majumder et al., 1993).

CD4þ and CD8þ T cells have been detected in skin from
alopecia areata and vitiligo sufferers (Gilhar et al., 2007). In
our model, transfer of purified CD4þ T cells alone caused
depigmentation and hair loss in furred RAG� /� mice. This
indicates that CD4þ cells can mediate disease in isolation,
without B cells or CD8þ T cells. CD4þ T cells generally
function to activate other immune cell types. We did not
observe large-scale inflammation in the skin of Nu-Tp or
adoptively transferred mice, or an increase in the proportion of
macrophages or neutrophils in skin (not shown). Melanocytes
can express MHC Class II (Lu et al., 2002) and process antigen
for presentation to T cells (Le Poole et al., 1993). Therefore,
CD4þ T cells may directly recognize antigens presented by
melanocytes (Rivoltini et al., 1998). There are several reports
of CD4þ T cells functioning atypically to act as cytotoxic
effectors (Marshall and Swain, 2011). In the future, it will be
important to investigate this in our model, to determine
whether CD4þ cell depletion strategies or directed
immunotherapy can ameliorate pathology.

The fact that skin was predominantly and consistently
targeted by autoimmune T cells in our system suggests that
there are specific requirements for induction of tolerance to
skin antigens, and is consistent with the observation that skin
is a frequent site of autoimmunity.

In summary, we demonstrate a link between hair loss and
depigmentation and show that these disorders can be caused
by CD4þ T cells, in the absence of other lymphocyte
populations. This study therefore provides an inducible mouse
model to investigate the etiology, induction, and pathology of
T cell–driven hair-follicle disorders.

MATERIALS AND METHODS
Human thymus tissue

Tissue was obtained during elective cardiac surgery at Great Ormond

Street Hospital, London, fragmented by dissection (1 mm3 explants),

or cut into o1-mm-thick slices and cultured for 14 days (Markert

et al., 2010) before fragmentation. This study was conducted with

institutional ethical approval, with written informed consent, and

according to the Declaration of Helsinki principles.

Mice and procedures

C57BL/6 (B6) WT/nude (B6.Cg-Foxn1nu/J heterozygotes) and

RAG1� /� (B6.127S7-Rag1tm1Mom/J) mice were from Jackson Labs

(Bar Harbour, ME). Animals were housed in individually ventilated

cages and underwent procedures in sterile conditions under the UK

Home Office regulations.

Xenografting: Human thymus tissue (o100 mg) was subcuta-

neously injected in phosphate-buffered saline into the scruff under

light inhaled anesthetic.

Adoptive transfer: 5� 105–5� 106 lymphocytes were injected

intravenously in 200ml of phosphate-buffered saline. Mice were

tail-bled at regular intervals.

Skin digests

Skin samples were collected from anatomically matched locations,

minced with scissors, digested with Liberase (0.15 mg ml� 1, Roche,

Burgess Hill, UK) and DNAse (0.5 mg ml� 1, Roche) for 30 minutes at

37 1C, and filtered to obtain a single-cell suspension.

Flow cytometry

Cells were stained with fluorochrome-conjugated antibody (eBio-

sciences, Hatfield, UK or BD Pharmingen, Oxford, UK) in phosphate-

buffered salineþ 5% fetal calf serumþ 0.01% azide for 10 minutes at

room temperature, and washed and analyzed by flow cytometry

(instrument: FACScan, BD; software: Cell Quest, BD, and FlowJo,

TreeStar, Ashland, OR).

Histology, immunohistochemistry and immunofluorescence

Tissues were fixed in Bouin’s solution, embedded in wax, sectioned,

deparaffinized, and examined by hematoxylin and eosin staining.

Unfixed frozen sections (7mm) were stained with rat anti-mouse CD4

and CD8 antibodies (eBiosciences, UK), followed by Alexa-Fluor594

anti-rat antibody (Invitrogen, Paisley, UK). Deparaffinized wax sec-

tions (5mm) were stained with goat-anti Trp2 (Santa Cruz, Insight

Biotechnology, London, UK), anti-goat Biotin (Alpha Diagnostic Intl,

Source BioScience Life Sciences, Nottingham, UK), and Alexa-

Fluor555 Streptavidin (Invitrogen). Sections were viewed by light/

fluorescence microscopy (Leica DMLB, Milton Keynes, UK); repre-

sentative examples are shown.

Melanocyte stimulation assay

C57BL/6-transformed melanocyte cell line, melan-a, was obtained

from the Wellcome Trust Functional Genomics Cell Bank, St George’s

University, London. Melan-a cells were grown to 60% confluence

(Sviderskaya et al., 1997) and irradiated (60 Gy, gamma-source).

Splenocytes were cultured at a density of 1� 106 per ml at a 1:1 ratio

with irradiated melan-a or B6 control splenocytes for 48 hours, before

analysis by flow cytometry.
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