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Cytotoxic chemotherapy with or without a combination of humanized

monoclonal antibodies is regarded as the gold standard of personalized

medicine for the treatment of breast cancer patients. Significant medication-

related side effects are common accompanying phenomena for these patients,

such as oral discomfort, mucositis, or even osteonecrosis of the jaw. In this

study, we analyze the saliva samples of 20 breast cancer patients at three time

points throughout their chemotherapy: at the baseline prior to treatment

initiation (T1), after four-to-six cycles of chemotherapy (T2), and 1 year after

the start of the treatment (T3) to investigate and characterize the long-term

effects of chemotherapy on the oral microbiome. We aimed to characterize

changes in the oral bacterial microbiome based on 16S rRNA gene amplicon

analysis during chemotherapeutic treatment, as a potential target to treat

common oral side effects occurring during therapy. The chemotherapeutic

drugs used in our study for patient treatment were trastuzumab, docetaxel,

pertuzumab, epirubicin, and cyclophosphamide. We find a significant increase

in the relative abundance of potentially pathogenic taxa like Escherichia/

Shigella and non-significant trends in the relative abundance of, for example,

Actinomyces ssp. In conclusion, the role of microbiota in the oral side effects of

chemotherapeutic treatment needs to be considered and should be analyzed

in more detail using larger patient cohorts. Oral side effects in breast cancer

patients undergoing chemotherapy are a common burden and should be

treated for a better tolerability of the therapy.
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chemotherapy, oral microbiome, oral side effects, Actinomyces, microbial pattern,
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Introduction

Deep molecular analyses in the age of personalized medicine

is poised to improve the management of multiple diseases

worldwide, enabling enhanced treatment responses of so-far

deadly illnesses (1). Nevertheless, in addition to the desired

effects of pharmaceutical mechanisms, most substances and in

particular anticancer therapies elicit minor-to-severe adverse

effects. Cancer therapies including chemotherapy, targeted

therapies, and radiotherapy have evolved during the last

decades, to become more effective and tolerable. However,

patients still suffer from a multiplicity of oral, intestinal,

neurologic, systemic, and many more severe adverse effects in

response to cytotoxic and cytostatic drugs that interfere with the

cell cycle and cell proliferation (2). Breast cancer, a disease that is

still the leading cause of cancer death in women worldwide (3), is

regularly treated with chemotherapeutics. Adjuvant and

neoadjuvant therapy options depend on the distinct histological

subtype, molecular tumor biology, and clinical stage (4).

Gene r a l l y , r e commended t r e a tmen t op t i on s a r e

chemotherapeutical substances such as anthracycline, taxane,

platinum, and capecitabine as well as trastuzumab, pertuzumab,

emtansine, and neratinib for antihuman epidermal growth factor

receptor 2 therapy (4). Standard endocrine therapy includes

tamoxifen, aromatase inhibitor, and ovarian ablation or

suppression (4). Classifications are based on the expression of

the hormone receptor and human epidermal growth factor

receptor 2. Additionally, subtypes are determined by the

expression level of progesterone and estrogen receptors.

Furthermore, tumor heterogeneity is found at the molecular

level as genomic testing has revolutionized and highly

individualized therapy decisions (5–7). Regardless of how much

a chemotherapeutic treatment strategy is weighed and tailored to

individual needs, treated patients suffer from a variety of severe

oral phenotypes, among the aforementioned adverse effects. These

oral complaints vary from altered taste sensation, xerostomia,

osteonecrosis of the jaw, or mucositis that may affect the whole

gastrointestinal tract (8, 9) . The probability of the development of

such severe side effects depends on the dose and frequency of the

used drug, the drug itself, a patient’s general health condition (e.g.,

malnutrition, preexisting diseases, and oral health) and age (10).

Painful oral inflammation severely restricts the quality of life of

patients and can cause therapy discontinuation with life-

threatening consequences for the patients (11, 12). In addition

to the cytotoxic effects of therapeutically drugs, often,

superinfections with oral pathogens like Actinomyces ssp. are

detected in the patients (2, 13). To overcome or at least manage

these problems, clinicians and researchers developed guidelines

for the treatment of chemotherapy-induced side effects for nausea

and vomiting (14), while little progress is made to date in the

treatment of the oral complications. For the use of tissue repair

upon mucotoxic injury, platelet-rich plasma, as a source of growth
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factors, has been suggested (15). Similarly, glutamine was

proposed as an important factor for mucosal healing during and

after chemotherapy (16). Natural substances like propolis (15),

curcumin (17), or honey (18) were tested as therapeutics to

ameliorate the cytotoxic and cytostatic side effects. A recent

review summarized studies on natural substances derived from

Plantago major, Isatis indigotica, or Olea europaea with anti-

inflammatory effects, which have been successfully tested in

clinical trials to treat oral mucositis (19, 20).

Moreover, the effects of the oral microbiome on oral and

dental health are well characterized (21, 22). Upon the dysbiosis

of the oral community, pathogenic taxa like Porhyromonas,

Prevotella, Veillonella, or Actinomyces my take over and cause

critical illnesses (13, 23). On the contrary, beneficial microbes

can act anti-inflammatory as already described for intestinal

diseases (24). The successful application of orally administered

probiotics in a mouse model of intestinal mucositis may reflect a

promising approach to prevent or treat the oral adverse effects of

chemotherapy (25). A prerequisite for the microbiome-related

treatment options of severe oral phenotypes is the identification

of chemotherapy-related changes in the microbial pattern

of patients.

In this prospective study, we analyzed the saliva microbiome

of 20 chemotherapeutically treated (and in addition with

monoclonal antibodies and hormones) breast cancer patients

before, during, and after the onset of therapy. We aimed to

analyze (1) the oral microbial community and potential changes

to the community pattern upon chemotherapy in breast cancer

patients and (2) a potential role of Actinomyces ssp. during the

course of therapy as a suspected pathogen for the development

of oral diseases (26). We suggest that chemotherapy in general

changes the oral microbiome as already demonstrated and

reviewed for the gut microbiome (27). The characterization of

the chemotherapy-induced changes of the oral microbiome

might be an important tool to develop new therapeutic

strategies to overcome stressful side effects for patients.
Material and methods

Sample collection

For this study, we collected oropharyngeal saliva from 20

patients older than 18 years, diagnosed with non-metastatic

breast cancer, at three time points: (T1) the first day of

chemotherapy, which was scheduled for 5–6 months, (T2)

after 3 months from the start of chemotherapy, and (T3) 1

year (52 weeks) after the start of chemotherapy (for details, refer

to Table 1). All patients suffered from breast cancer with a

histological subtype of “ductal.” None of them had metastasis.

They were all treatment naive early-stage breast cancer patients,

who were scheduled for standard therapy (neoadjuvant
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chemotherapy). For chemotherapy, the substances epirubicin,

cyclophosphamide, docetaxel, trastuzumab, and pertuzumab

were used according to the current National Comprehensive

Cancer Network guidelines (https://www.nccn.org/; last access

April 2022) and therapeutic schemes are shown in detail in

Table 1. Diagnosed patients were scheduled for neoadjuvant

chemotherapy (mean age ± SD: 51.7 ± 11 years), and all gave

written, informed consent to participate in the study. Exclusion

criteria for participants were: (i) the history of a metastatic

disease and/or having received prior chemotherapy, (ii) the use

of antibiotics within 1 month prior to enrollment, (iii) the use of

bisphosphonates, denosumab, or oral hormone contraceptives

within 3 months prior to enrollment, (iv) having undergone to

immunosuppressive treatments, and (v) a known endocrine

disorder requiring treatment (Table 1). The study was

performed in accordance to the Declaration of Helsinki and

good practical guidelines and was approved by the local ethics

committee (EK1539/2016) of the Medical University of Vienna.

All samples were frozen in 2-ml tubes immediately after

collection in liquid nitrogen and stored at -80°C until nucleic

acid isolation.
Total DNA isolation, 16S rRNA gene
amplification, and sequencing

For total DNA isolation, frozen samples were thawed,

treated with DTT (50 µg/ml at 37°C for 20 min) and 250 µl of
Frontiers in Oncology 03
the sample was used for isolation according to published

protocols in a MagnaPure LC device (Roche, Mannheim,

Germany) with the MagnaPure LC DNA III Isolation Kit

(Bacteria, Fungi) (Roche, Mannheim, Germany) (28). DNA

was eluted in 50-µl elution buffer (Roche, Mannheim,

Germany) and stored at -20°C till analysis. For 16S rRNA

gene PCR, 2 µl of template DNA were used in a standard PCR

setup in 25 µl reactions in triplicates with Roche High Fidelity

Polymerase (Mannheim, Germany) and the target-specific

primers 515F (GTGYCAGCMGCCGCGGTAA) and 926R

(CCGYCAATTYMTTTRAGTTT), 30 amplification cycles,

according to published protocols (28). The indexing of

samples, pooling, purification, and quality control were

performed as published elsewhere, and the final library was

sequenced at 9pM with 20% PhiX on an Illumina MiSeq desktop

sequencer (Illumina, Eindhoven, Netherlands) with v3 600

cycles chemistry in 2×300 sequencing mode. FASTQ files were

used for data analysis, and raw data were archived in the

European Nucleotide Archive (ENA) and can be downloaded

with the accession number PRJEB51689 (https://www.ebi.ac.uk/

ena/; last access March 2022).
Data analysis

Paired end raw sequence reads were analyzed with the

Quantitative Insights Into Microbial Ecology 2 (QIIME2

2018.4) tool according to standard settings described in the
TABLE 1 Detailed clinical information and patient annotations on the 20 breast cancer patients included in the study.

Patient ID Age HER2 Estrogen receptor Progesterone receptor Neoadjuvant chemotherapy*

001GY 49 3+ positive positive EC –> DTP

002GY 41 negative negative negative Dtx –> EC

003GY 43 negative positive positive EC –> Dtx

005GY 52 negative negative negative EC –> Dtx

007GY 65 3+ positive positive EC –> DTP

009GY 42 3+ positive positive EC –> DTP

010GY 36 negative positive negative EC –> Dtx

011GY 60 3+ positive negative EC –> DTP

013GY 63 negative positive negative EC –> Dtx

014GY 64 negative positive positive EC –> Dtx

015GY 46 3+ negative negative DTP –> EC

016GY 64 negative positive positive EC –> Dtx

017GY 58 negative positive negative EC –> Dtx

018GY 33 negative positive positive EC –> Dtx

019GY 62 negative positive positive EC –> Dtx

022GY 44 3+ negative negative EC –> DTP

023GY 60 3+ positive positive EC –> DTP

025GY 31 negative positive positive Dtx –> EC

026GY 52 negative negative negative Dtx –> EC

027GY 65 3+ negative negative EC –> DTP
*EC, epirubicin + cyclophosphamide; DTP, docetaxel + trastuzumab + pertuzumab; Dtx, docetaxel.
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QIIME2 moving picture tutorial (29). Quality filtering,

denoising, dereplicating, and chimera filtering with default

settings were performed using the DADA2 plugin of QIIME2

(30). Taxonomic classification was achieved by using the QIIME

q2-feature-classifier and a pre-classified SILVA database

(version 138) at a 99% sequence identity level (31). Feature

and taxonomy tables were used for further statistical analysis

with MicrobiomeExplorer v1.4.0 (32) on R version 4.1.3. (33)

with default settings. The minimal read number was set to 8,200

reads per sample; for blank values, roll down taxonomy was used

and cumulative sum scaling (CSS) for normalization. Pairwise t-

test, DeSeq2, and Kruskal–Wallis tests were used for differential

abundance analysis to compare microbiome composition across

time points. Correlation analysis for microbiota was performed

with Spearman rank correlation analysis (34). For longitudinal

analyses, we additionally used the mixed-effect model

Microbiome Multivariable Association with Linear Models2

(MaAsLin2) in R as recently published (35, 36) to evaluate

significant differences in alpha and beta diversity and

differential abundance.
Results

In this prospective study, we performed the collection and

metagenomics sequencing of 60 oral samples (20 patients with

chemotherapy at three timepoints) on an Illumina Miseq

desktop sequencer. Sequencing revealed a total of 6,929,221
Frontiers in Oncology 04
raw reads (min. reads 776, max. reads 172,814 per sample, +/-

30,228) and after all quality-filtering steps, denoising, and the

removal of chimeras, a total of 1,601,511 reads were used for

data analysis (min. reads 16, max. reads 109,706, +/- 4,297). One

sample with only 16 reads (T1 group) was removed from further

data analysis, and statistical analysis was performed according to

the three time points of therapy. The quality metrics of reads

were performed in MicrobiomeExplorer according to default

settings (Supplementary Figure S1).
Alpha diversity calculations

For alpha diversity calculations on the phylum and genus

levels, we calculated, after CSS normalization, Shannon diversity

index (pvalue >0.05), Simpson (pvalue >0.05), and richness

(pvalue >0.05). None of the performed alpha diversity

calculations revealed statistical significant differences between

the three sample groups (Figures 1A–C). The phyla with highest

relative abundance in all samples at all timepoints were

Firmicutes (T1: 59%, T2: 69%, T3: 54%), followed by

Bacteroidota (T1: 15%, T2: 15%, T3: 18%), Actinobacteriota

(T1: 8%, T2: 8%, T3: 10%), Proteobacteria (T1: 10%, T2: 7%, T3:

10%), Fusobacteriota (T1: 4%, T2: 4%, T3: 5%), and

Spirochaetota (T1: 1%, T2: 2%, T3: 1%). All other detected

phyla (Synergistota, Cyanobacteria, Desulfobacterota, and

unknown bacteria) were present in the samples with less than

1% (Figure 2A, Supplementary Table S1). The most abundant
B

C

A

FIGURE 1

Alpha diversity calculations over all groups of (A) richness (pvalue > 0.05), (B) Shannon (pvalue > 0.05), and (C) Simpson (pvalue > 0.05) diversity
index at the phylum level. T1: before/at start of chemotherapy, T2: 12 weeks after the onset of chemotherapy, T3: 52 weeks after the onset
of chemotherapy.
frontiersin.org

https://doi.org/10.3389/fonc.2022.949071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Klymiuk et al. 10.3389/fonc.2022.949071
genera detected were Streptococcus, Prevotella, and Veillonella

(Figure 2B, Supplementary Table S1).
Beta diversity calculations

Oral microbiome beta diversity calculations over all samples

of breast cancer patients were characterized by bacterial diversity
Frontiers in Oncology 05
indices (Adonis on Chao, Bray–Curtis, and Jaccard; pvalues =

0.756, 0.721, and 0.747, respectively) at the phylum level

comparing the different time points (Figures 3A–C) and did

not reveal statistically significant differences between the groups.

Calculations on class, order, family, and genus levels did not

reveal significant differences either. Heat map analysis on the

logScale of normalized read counts at the order level clearly

exhibited the dominance of Lactobacillales in all oral samples
B

C D

A

FIGURE 3

Beta diversity calculations at phylum level characterizing the intersample difference: (A) Chao, (B) Bray–Curtis as well as (C) Jaccard indices.
Confidence ellipses indicate a 95% confidence level. (D) Abundance heatmap plotting to visualize hierarchical clustering on the six most
dominant taxa at the order level. Colors from blue to red indicate feature abundance in the log scale. T1: before/at start of chemotherapy, T2:
12 weeks after the onset of chemotherapy, T3: 52 weeks after the onset of chemotherapy.
BA

FIGURE 2

Bar charts of relative microbial abundance at the (A) phylum and (B) genus levels per sample group (the 20 most abundant taxa are shown). T1:
before/at start of chemotherapy, T2: 12 weeks after the onset of chemotherapy, T3: 52 weeks after the onset of chemotherapy.
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(Figure 3D) but did not reveal clustering according to sample

groups (Figure 3D). Interestingly, the order Burkholderiales

showed a trend to build a cluster of eight samples compared

to all others as well as the order Staphylococcales was less

abundant in approximately half of the samples (Figure 3D).
Differential taxa abundance

Finally, we performed differential analysis at phylum and

genus levels over all samples between the three time points and

found one phylum and four genera to be significantly altered

between the sample groups (Figures 4, 5). Further, one phylum

and three genera showed at least a non-statistically significant

trend of difference between the timepoints (Figure 4 and

Supplementary Figure S2). The phylum Firmicutes decreased

significantly in its abundance between 12 and 52 weeks after

onset of the chemotherapy. No difference was found for

Firmicutes after 12 weeks after the onset of treatment

(Figure 4A). Actinobacteriota showed a non-significant trend

of reduction in the number of normalized counts after 12 weeks

and an increase after 52 weeks and return to the basal values

(Figure 4B). On the genus level, Escherichia/Shigella-normalized

read counts differed highly significant between T1 and T2

(pvalue <0.01) as well as between T1 and T3 (pvalue <0.01)

(Figure 5A). No significant differences were observed between

timepoint T2 and T3. The genus Megasphaera increased

between T2 and T3 (pvalue <0.05) with a non-significant

elevation between T1 and T3 (pvalue <0.1) (Figure 5B). The

read counts of Prevotella increased from T1 to T3 (pvalue <0.05),

and Streptococcus, the genus dominating the microbial

community in all sample groups, decreased significantly at T2

and T3 compared to T1 (Figure 5D). Non-significant trends

were found in the genera Actinomyces, Dialister, and

Stenotrophomonas (Supplementary Figure S2). Actinomyces

slightly increased between T2 and T3, whereas the number of
Frontiers in Oncology 06
reads were elevated between T1 and T3 in the genus Dialister.

Stenotrophomonas was nearly absent at T1 in most patients but

successively increased over time until T3 (Supplementary Figure

S2). All normalized feature count data are made available for

download in Supplementary Table S1.
Spearman correlation analysis

The Spearman correlation analysis of the significantly

altered genus Escherichia/Shigella revealed a significant

correlation with Elizabethkingia (pvalue=0.02, rho=0.516),

Actinomyces (pvalue=0.008, rho=-0.578), and Megasphaera at

T2 (pvalue=0.029, rho=-0.488) as well as Porphyromonas at T3

(pvalue=0.014, rho=-0.542) (Supplementary Figure 3).
Longitudinal analysis

MaAsLin2 analyses did not reveal any significant

associations of alpha (Shannon diversity, richness, und

evenness) or beta (Bray–Curtis und Jaccard) diversity

calculations and the time points T1, T2, and T3. Nevertheless,

MaAsLin2 analysis revealed a significant positive association of

Prevotellaceae with T1 and T3; pvalue <0.05) and a significant

negative association of Neisseria with T1 and T3 (pvalue <0.05).
Discussion

In this study, we characterized the salivary 16S rRNA gene–

based microbial pattern of 20 breast cancer patients who

underwent chemotherapy. The drugs used for therapy were

Herceptin (trastuzumab), Taxotere (docetaxel), Perjeta

(pertuzumab), epirubicin, and cyclophosphamide. All

patients received the very same cytotoxic chemotherapy
BA

FIGURE 4

(A) The normalized counts of the phylum Firmicutes and (B) Actinobacteriota. Normalized counts are plotted; *indicates pvalue < 0.05. T1:
before/at start of chemotherapy, T2: 12 weeks after the onset of chemotherapy, T3: 52 weeks after the onset of chemotherapy.
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backbone with docetaxel, epirubicin, and cyclophosphamide.

This combination has a distinct risk for oral mucositis

[reviewed in Seiler etal. (37)] or (febrile) neutropenia and the

mechanism of action. Since it would be unethical to administer

those drugs as single agents in the neoadjuvant curative setting,

the impact of those compounds on the oral mucositis or

dysbiosis remains elusive. Additionally, the eight Her2-

positive patients were exposed to the monoclonal antibodies

trastuzumab and pertuzumab. The combination of

trastuzumab or pertuzumab with chemotherapy does not

significantly potentiate toxicity including stomatitis or

neutropenia (38, 39) but enhances the efficacy by Her2

targeting. Interestingly, it was recently shown that the gut

microbiome affects the efficacy of trastuzumab therapy (40).

While it is unknown if this finding applies to the oral

microbiome as well, there is no evidence that the opposite

holds true, that is, trastuzumab therapy modulates the gut or

oral microbiome. From this background, it seems evident that

this was a homogenous patient population, which was exposed

to the very same cytotoxic chemotherapy regimens. Although it

cannot be ruled out that the sequence of the drugs and/or the

addition of the monoclonal antibodies affected the outcome of

our study, it is rather unlikely based on the data outlines above.

As chemotherapeutics affect not only the cancer cells but

also healthy, rapidly proliferating cells (e.g., in hematopoiesis or
Frontiers in Oncology 07
mucous tissue), the oral cavity is frequently affected by severe

injurious reactions. In addition, medication-related oral

phenotypes are associated with infections mediated by

microbial pathogens due to treatment-induced dysbiosis (2,

23). In mice, studies on probiotic strains such as Streptococcus

salivarius K12 for the treatment of oral mucositis due to

radiotherapy showed promising results. Oral ulcers were

reduced, anaerobic pathogens were less abundant, and the

epithelium and mucosa were of a healthier condition (41).

Therefore, we aimed to identify changes in the abundance of

classic oral pathogens due to chemotherapy as well as alterations

in overall microbial patterns due to treatment- induced dysbiosis

in a long-term scale before (baseline) (T1), during (T2), and 1

year after the onset of the treatment (T3). Overall, alpha and beta

diversity metrics did not significantly differ between the three

time points in our sample cohort. Nevertheless, we found a

significant decrease in the abundance of the phylum Firmicutes

between T2 and T3, indicating a long-term effect of

chemotherapeutical treatment with a microbial dysbiosis even

1 year after chemotherapy. The absence of these changes

compared to T1 might be due to our small sample cohort and/

or the high level of interindividual variation in the abundance of

Firmicutes. As many beneficial oral species belonged to the

genus Firmicutes (e.g., Streptococcus sp. and Lactobacillus sp.),

the decrease in this phylum might be an indication for their
B

C D

A

FIGURE 5

Genera with significant differences in normalized counts between sample groups: (A) Escherichia/Shigella, (B) Megasphaera, (C) Prevotella, and
(D) Streptococcus, one of the most abundant genera. *indicates pvalue < 0.05. **indicates pvalue < 0.01. T1: before/at start of chemotherapy,
T2: 12 weeks after the onset of chemotherapy, T3: 52 weeks after the onset of chemotherapy.
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displacement and a hint for changes toward a more pathogenic

oral microbiome. The abundance of all other phyla

corresponded to previous publications on the oral microbiome

(42). A trend to a significantly increased abundance of the

phylum Actinobacteriota in T3 compared to T2 needs to be

verified in a larger sample cohort.

An in-depth analyses of our results revealed a highly

significant increase in the normalized counts of Escherichia/

Shigella, Megasphaera, and Prevotella. Escherichia/Shigella is a

common oral and intestinal pathogen (22) also associated with

changes in the human microbiome after SARS-CoV-2 infections

(43). Oral Megasphaera was associated with inflammatory

illnesses like rheumatoid arthritis and periodontitis (44, 45).

Their increase might be an indicator for the chronic

inflammatory reaction by the damage to the epithelium.

Prevotella is a common anaerobic oral bacterium that is also

enriched in periodontitis, associated with early childhood caries,

and described as potentially harmful for the mucosal surface

(46). On the contrary, Streptococcus, the most abundant genus in

the samples, decreased significantly during the treatment

corresponding to the observed decrease of Firmicutes. In

addition to pathogenic species, many Streptococcus species

from the genus are known to be highly beneficial in the

oropharyngeal community, preventing the host from oral

infections, tonsillitis, and otitis media (47). Even a protective

effect against viral infections is already described (48). The

negative association of the genus Neisseria over time was

revealed by MaAsLin2 analysis. The representatives of the

genus Neisseria are common, mostly aerobic taxa in the

human oropharynx. Most of them are not pathogenic with

some prominent pathogenic exceptions (N. gonorrhoeae, N.

meningitides, or N. sicca). We hypothesize that the genus

belongs to the normal oral microbiome and becomes reduced

upon chemotherapeutic treatment as a hint of oral microbial

dysbiosis as the oral community is suspected to be a main driver

for oral health and disease (22). Further, other than the taxa

described, we do not find any evidence of an increased

abundance of Actinomyces ssp. upon chemotherapeutic

treatment. Larger studies on the oral and intestinal changes

upon chemotherapy, radiation, and several types of medication

and the different associated phenotypes (mucositis,

osteonecrosis of the jaw) will be required to tailor the adequate

treatment. Probably, nutritional supplementations of pre- and

probiotics might be a therapeutic tool to rebalance

chemotherapeutically induced microbial dysbiosis or

pathogenic oral phenotypes for a better tolerance of

vital therapies.

In conclusion, our saliva data on a cohort of breast cancer

patients suggest the development of dysbiosis in the oral

microbiome upon chemotherapeutic treatment. Recent state-

of-the-art studies suggest a significant involvement of the

microbiome not only in the development and treatment of
Frontiers in Oncology 08
cancer (49) but also in the adverse effects of cancer therapy

(41). Therefore, the determination of the status quo from

patients ’ oral and intestinal microbiomes should be

considered routinely during chemotherapy. In a future

horizon, the administration of next-generation probiotics,

prebiotics, or postbiotics as nutritional supplementation

should be considered for all patients with oral complications

as the side effects of chemotherapy treatment, to support a

healthy oral microbiome and decrease the side effects

of medication.
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