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1  |  INTRODUC TION

Atrial fibrillation (AF) is the most common cardiac arrhythmia,1 af-
fecting 33 million people worldwide annually.2 Given the associa-
tion between AF, obesity, hypertension and other rapidly growing 
health problems, its prevalence is projected to double over the next 
30 years.3 AF is associated with a threefold to fivefold increased 
risk of stroke,4 and AF- related strokes are typically severe, causing 

significant long- term physical disability and cognitive dysfunction, 
high mortality and healthcare costs, compared to other stroke 
subtypes.5 However, the molecular mechanisms underlying stroke 
caused by AF are unclear.6 The risk factors for AF include old age, 
primary hypertension, heart failure, myocardial infarction, structural 
cardiac diseases, obesity, diabetes mellitus, obstructive sleep apnoea 
and exposure to toxicants,7– 10 none of which can accurately predict 
the occurrence and development of AF. Therefore, identifying the 
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Abstract
Atrial fibrillation (AF) is the most common type of persistent arrhythmia. Although its 
incidence has been increasing, the pathogenesis of AF in stroke remains unclear. In 
this study, a total of 30 participants were recruited, including 10 controls, 10 patients 
with AF and 10 patients with AF and stroke (AF + STROKE). Differentially expressed 
genes (DEGs) were identified, and functional annotation of DEGs, comparative toxi-
cogenomic database analysis associated with cardiovascular diseases, and predictions 
of miRNAs of hub genes were performed. Using RT- qPCR, biological process and sup-
port vector machine neural networks, numerous DEGs were found to be related to 
AF. HBG1, SNCA and GYPB were found to be upregulated in the AF group. Higher 
expression of hub genes in AF and AF + STROKE groups was detected via RT- PCR. 
Upon training the biological process neural network of SNCA and GYPB for HBG1, only 
small differences were detected. Based on the support vector machine, the predicted 
value of SNCA and GYPB for HBG1 was 0.9893. Expression of the hub genes of HBG1, 
SNCA and GYPB might therefore be significantly correlated to AF. These genes are 
involved in the incidence of AF complicated by stroke, and may serve as targets for 
early diagnosis and treatment.
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predictors of AF and AF- related stroke is a focus of current efforts. 
Studying the genetic factors responsible for stroke caused by AF is 
vital for understanding its pathogenesis, and providing a theoretical 
foundation for precise treatment.11– 13

In this study, three datasets, GSE75092, GSE64904 and 
GSE58294, were downloaded from the Gene Expression Omnibus 
(GEO), followed by screening and enrichment of differentially ex-
pressed genes (DEGs) and identification of hub genes. Finally, we 
conducted a bioinformatic analysis of DEGs and predicted microR-
NAs (miRNAs) relevant to patients with AF prone to stroke.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

Gene Expression Omnibus is a gene expression database created and 
maintained by the National Center for Biotechnology Information. 
It contains high- throughput gene expression data submitted by re-
search institutions worldwide. We obtained the transcriptome ex-
pression profiles GSE64904, GSE58294 and GSE75092 from GEO. 
The probes were transformed into homologous gene symbols using 
the annotation information of the platform. The GSE64904 dataset 
contained 3 AF samples and 3 control samples; GSE58294 contained 
69 AF with stroke samples and 23 control samples; and GSE75092 
contained 6 AF samples and 3 control samples.

2.2  |  Repeatability test for the datasets

Principal component analysis (PCA) is a statistical method; through 
orthogonal transformation, a group of variables that may be cor-
related is transformed into a group of linearly unrelated variables, 
which are called principal components. PCA was used in this 
study to test the repeatability of the GSE64904, GSE58294 and 
GSE75092 datasets. In addition, Pearson's correlation test was 
performed to verify intra- group data repeatability in each group. 
The R programming language is an operating environment for sta-
tistical analysis and graph plotting, and was used to visualize the 
correlation between every sample from the same dataset using 
heat maps.

2.3  |  Screening of differently expressed genes 
(DEGs)

The Linear Models for Microarray Data (‘Limma’) R package not 
only contains RAW data input and pre- processing (normalization) 
functions for cDNA chip data, but also the ‘linear’ algorithm of dif-
ferentiated gene analysis, especially for a ‘multifactor designed 
experiment’. The Limma package is very scalable and can analyse dif-
ferential genes from either one- channel or two- channel data. It of-
fers many options for data loading, data pre- processing (background 

correction, intra- group normalization and inter- group normalization) 
and differential gene analysis.

The DEGs were screened using Limma; the cut- off criteria for 
GSE64904 were p < 0.05, and a fold change (FC) ≥2 or ≤−2. The 
cut- off criteria for GSE58294 were p < 0.05, and FC ≥0.5 or ≤−0.5. 
The cut- off criteria in GSE75092 were p < 0.05, and FC ≥3 or ≤−3. 
Volcano maps were drawn using the volcano plotting tool (https://
sheng xin.ren) to identify DEGs.

2.4  |  Construction and analysis of protein- protein 
interaction (PPI) network

The Search Tool for the Retrieval of Interacting Genes (STRING) 
database (https://strin g- db.org/) is an online search database for 
known protein interactions and was used for the construction of 
the PPI network. Currently updated to version 10.5, it stores in-
formation on 2031 species, 9,643,763 proteins and 1,380,838,440 
interactions.

2.5  |  Identification of the hub genes

Cytoscape software is used for biological network analysis and two- 
dimensional (2D) visualization. In our study, the PPI network con-
structed using the STRING database was analysed using Cytoscape. 
The hub genes were excavated when the degrees were set to ≥10. 
Three other algorithms (EPC, MCC and MNC) were used to identify 
the hub genes. Next, molecular complex detection (MCODE) (version 
1.5.1, a plug- in of Cytoscape) was used to identify the most important 
module of the network map. The criteria of MCODE analysis were 
as follows: degree cut- off =2, MCODE scores >5, Max depth =100, 
node score cut- off =0.2 and k- score =2. Venn diagrams were deline-
ated using the online VENN tool (http://bioin forma tics.psb.ugent.be/
webto ols/Venn/), which could visualize common DEGs.

2.6  |  Sequence comparison of long intergenic non- 
coding RNAs (LincRNA) and genes

BLAST is the primary tool used in NCBI to compare a protein or DNA 
sequence with other sequences in various databases. The LincRNAs 
in GSE75092 that were differentially expressed between atrial fibril-
lation and control were identified, and the LincRNA and gene se-
quences were compared using BLAST.

2.7  |  Functional annotation of DEGs

Gene Ontology (GO) analysis annotates the functions of genes 
using terms from a dynamic, controlled vocabulary based on three 
aspects of biology: biological processes (BP), cellular components 
(CC) and molecular functions (MF). Kyoto Encyclopedia of Genes 
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and Genomes (KEGG) (http://www.genome.jp) contains information 
about specific pathways and links genomic information with higher- 
order functional information. Gene set enrichment analysis (GSEA) 
(http://www.broad insti tute.org/gsea/downl oads.jsp) is a computa-
tional method that conducts GO and KEGG analyses for a given gene 
list, and is used to analyse genome- wide expression profiling data on 
a chip. Based on the existing knowledge of gene localization, func-
tion and biological significance, a molecular label database contain-
ing several gene sets was constructed. By analysing gene expression 
data, we determined whether the expression status was significantly 
enriched in a certain function.

Metascape integrates many authoritative data resources, such as 
GO, KEGG, UniProt and DrugBank, to perform pathway enrichment, 
biological process annotation, gene related protein network analysis 
and drug analysis.

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v.6.8 comprises a full Knowledgebase update to 
the sixth version of our original web- based programs. DAVID now 
provides a comprehensive set of functional annotation tools for in-
vestigators to understand the biological meaning behind a large list 
of genes.

Gene set enrichment analysis, Metascape, BINGO and DAVID 
are online analysis tools that provide a comprehensive gene list an-
notation and analysis resource. In our study, GO and KEGG analy-
ses of DEGs were performed using GSEA, Metascape and DAVID 
(p < 0.05).

2.8  |  Identification of hub genes associated with 
cardiovascular diseases

CTD is a web- based database that can identify relationships be-
tween genes, proteins and diseases. In our study, the relationship 
between gene products and cardiovascular diseases was analysed 
using this database.

2.9  |  Prediction of miRNAs of hub genes

TargetScan is an analysis tool that can perform predictive analyses, 
and determine possible mechanisms for the co- regulation of the 
expression of hundreds of genes expressed in different cell types. 
In our study, miRNAs that regulate hub genes were screened using 
TargetScan.

2.10  |  RT- qPCR

Total RNA was extracted from the blood samples using TRIzol® 
(Beijing Biolab Technology Co., Ltd.) and reverse transcribed into 
cDNA using the Servicebio®RT First Strand cDNA Synthesis kit (cat. 
no. G3330, Wuhan Servicebio Biotechnology Co., Ltd.) for 60 min 
at 42°C. The reaction was terminated by heating at 70°C for 5 min. 

RT- qPCR was performed in a Light Cycler® 4800 System (Roche 
Diagnostics) with a specific set of primers for the amplification of the 
hub genes. The primers used are shown in Table S1. The thermocy-
cling conditions were as follows: 95°C for 15 s followed by 60°C for 
60 s (a total of 30 cycles). The relative quantification units (relative 
quantification = 2−ΔΔCt, where Ct represents quantification cycle val-
ues) of each sample, were calculated and presented as fold change 
of gene expression relative to the control group. GAPDH was used as 
an endogenous control.

2.11  |  BP neural network

The BP neural network is a type of multilayer feed- forward neural 
network, which is characterized by signal forward transmission and 
error back propagation. In the forward transmission, the input sig-
nal is processed layer by layer from the input layer to the output 
layer. The state of the neurons in each layer only affects the state 
of the neurons in the next layer. If the output layer cannot obtain 
the expected output, it uses back propagation to adjust the weights 
and width of the neural network according to the prediction error, 
so that the predicted output constantly approaches the expected 
output.

The basic algorithm of the BP neural network is as follows:
(1) All weights are given randomly {wji}{vih}, including the thresh-

old, usually with in {−1,1}.
(2) According to the K sample {s(k)}, calculate

Among them sn+1 (k) = 1,vin+1=θi

(3) Calculation

Among them wjp+1 = rj

(4) Calculation

(5) Training {wji}{vih}

(6) Go back to (2) and reiterative training.

(1)netA
i
(k) =

n+1
∑

h=1

vihsh(k), i = 1…p

(2)ai(k) = �

(

netA
i
(k)

)

, i = 1…p

(3)yj(k) =

p+1
∑

j=1

wji(k)ai(k), j = 1…q

(4)eyj(k) = dj(k) − yj(k), j = 1…q

(5)eai(k) = ai(k)(1 − ai(k))

q
∑

j=1

wjieyj(k), j = 1…q

(6)
wji(k+1)=wji(k)−�ai(k)eyj(k), i=1…p+1, j=1…q

vih(k+1)=vih(k)−�eai(k)sh(k), i=1…p+1, h=1…n+1

http://www.genome.jp
http://www.broadinstitute.org/gsea/downloads.jsp
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2.12  |  SVM neural network

Support vector machine (SVM), first proposed by Vapnik, can be used 
for pattern classification and nonlinear regression, such as for multilayer 
perceptron networks and radial basis function networks. The main idea 
of the SVM is to establish a classification hyperplane as a decision surface 
to maximize the isolation edge between positive and negative cases. The 
theoretical basis of SVM is statistical learning theory; more precisely, 
SVM is the approximate realization of structural risk minimization.

This principle is based on the fact that the error rate of the learn-
ing machine on the test data (generalization error rate) is bounded 
by the sum of the training error rate and a term that depends on the 
Vapnik– Chervonenkis (VC) dimension. In the separable mode case, 
the SVM treats the first term as zero and minimizes the second term. 
Therefore, although it does not take advantage of the intra- domain 
problems, a property unique to SVM is that it shows good general-
ization performance on pattern classification problems.

SVMs have the following advantages:

1. Generality: can be applied to a wide range of situations;
2. Robustness: no fine tuning is required;
3. Effectiveness: one of the best methods for solving practical 

problems;
4. Simple calculation: the method requires very simple optimization 

technology;
5. Theoretical perfection: based on the VC extensibility theory 

framework.

The concept of the inner product kernel between ‘support vec-
tor’ x (i) and the input space extracted vector x is the key to con-
structing the learning algorithm for SVMs. The supporting disc 
machine is composed of a small subset extracted from the training 
data using the algorithm.

The architecture that supports directional machines is shown in 
Figure 2.

2.13  |  Statistical methods

Strong correlations among genes were determined using the BP 
neural network and SVM. All statistical analyses were conducted 
using SPSS software (version 24.0; IBM Corp., Armonk, NY, USA) 
and MATLAB (MathWorks Inc., USA, R2017a). Statistical signifi-
cance was set at p < 0.05.

3  |  RESULTS

3.1  |  Validation of the GSE64904 dataset

Principal component analysis analysis indicated that the intra- group 
data repeatability was acceptable in GSE64904. The distances be-
tween samples in the control group were short, and the distances 

between samples in the AF group were also short in the PC1 di-
mension (Figure 1A). Furthermore, Pearson's correlation test indi-
cated strong correlations among the samples in the AF and strong 
correlations among the samples in the control group in GSE64904 
(Figure 1B).

3.2  |  Identification of the DEGs and the hub genes

The volcano map shown in Figure 1C indicates numerous DEGs 
between the AF and control groups; the green plots represent the 
downregulated DEGs, and the red plots represent the upregulated 
DEGs. The heatmap (Figure 1D) indicates significant differences in 
the expression levels of DEGs between the AF and control groups. 
The PPI network of DEGs was constructed using the STRING online 
database and analysed using Cytoscape software (Figure 1E). Five 
different algorithms, namely Degreen (Figure 1F), EPC (Figure 1G), 
MCC (Figure 1H), MNC (Figure 1I) and MCODE (Figure 1J), were em-
ployed to identify the hub genes. Nine hub genes (HBG1, HBD, HBA2, 
ALAS2, SELENBP, SNCA, SLC4A1, HBB and GYPB) were identified 
using a Venn diagram (Figure 1K). Furthermore, three common hub 
genes (ALAS2, HBD and HBG1) were identified between GSE75092 
and GSE64904 (Figure 1L).

3.3  |  Difference the expression of hub genes in 
AF and control groups

The heatmap showed that the expression of hub genes was up-
regulated in the AF group compared with that in the control group 
(Figure 2A).

3.4  |  Functional and pathway enrichment 
analysis of DEGs

The enrichment results of the GO and KEGG analyses of DEGs, 
obtained using DAVID, were mainly enriched in ‘oxygen transport’, 
‘blood coagulation’, ‘positive regulation of cell death’, ‘cellular oxidant 
detoxification’, ‘hemoglobin’, ‘blood microparticle’, ‘haptoglobin- 
hemoglobin complex’, ‘endocytic vesicle lumen’, ‘cytosol’, ‘extracel-
lular exosome’, ‘cell junction’, ‘oxygen transporter activity’, ‘oxygen 
binding’, ‘heme binding’, ‘iron ion binding’ and ‘protein binding’ 
(Figure 2B– D).

3.5  |  GSEA analysis for the KEGG enrichment

The KEGG analysis of DEGs obtained using GSEA showed that they 
were mainly enriched in ‘focal adhesion’, ‘O glycan biosynthesis’, ‘lys-
osome’ and ‘P53 signaling pathway’ (Figure 3A– D). The comparison 
between AF and control was fine based on the enrichment score and 
significance (Figure 3E– F).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75092
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64904
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F I G U R E  1  Validation of the GSE64904 dataset, and identification of the DEGs and the hub genes between AF and control
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3.6  |  Hub gene functions

Analysis of the CTD database indicated that the hub genes targeted 
cardiovascular diseases and neural system diseases, as shown in 
Figure 4.

3.7  |  Elevated expression of hub genes in the 
AF and AF + STROKE Groups

The expression of hub genes in the AF group was higher than that 
in the control group (p < 0.05). Furthermore, the expression of hub 

genes in the AF + STROKE group was upregulated compared to that 
in the AF group (p < 0.05). (Figure 5).

3.8  |  Neural network prediction model and high- 
risk warning range of SNCA, GYPB, and HBG1

The BP neural network of SNCA and GYPB was trained for HBG1; the 
best training performance was 0.018092 at epoch 2999 (Figure 6A), 
and the relativity was 0.96057 (Figure 6B). Verification of the fore-
cast data against the raw values indicated only minor differences 
(Figure 6C, D). Based on the above results, we speculated that the 
expression of SNCA and GYPB might be predictive indexes of HBG1.

F I G U R E  2  Expression difference of hub genes between AF and control, and enrichment analysis by DAVID

(A) (B)

(C) (D)
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F I G U R E  3  GSEA analysis for KEGG enrichment. (A) Focal adhesion. (B) Glycan biosynthesis. (C) Lysosome. (D) P53 Signalling pathway. (E) 
Enrichment score. (F) Normal enrichment score vs. significance
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3.9  |  Predictive value of SNCA and GYPB for HBG1 
via SVM

Support vector machine predicted values of SNCA and GYPB for 
HBG1 were 0.9893 (y = 0.9091*x + 0.1722), and the mean error was 
small (Figure 7).

4  |  DISCUSSION

Atrial fibrillation is a common and highly preventable cause of 
stroke. AF- associated strokes are severe, with a high risk of re-
currence, and may be the first clinical manifestation of AF.14 
Furthermore, even in the absence of clinically manifest AF, sub-
clinical AF is suspected to be the underlying cause for a large pro-
portion of the 20%– 25% of ischaemic strokes that are deemed 
‘cryptogenic’.15 This is particularly concerning, given that patients 
who experience AF- associated stroke have worse outcomes than 
those who experience stroke not related to AF.16,17 Despite rapid 
advances in AF research, effective approaches for diagnosing and 
treating AF and AF- associated strokes are still lacking at the molec-
ular level. Bioinformatic analysis has been widely used to discover 
genetic changes responsible for disease occurrence and develop-
ment, and is a reliable means of identifying targets for disease di-
agnosis or treatment.18

Our bioinformatic analysis showed that in the GSE64904 and 
GSE75092 datasets, ALAS2, HBG1 and HBD genes were significantly 
and highly expressed in the AF group compared to the non- AF group. 
In the GSE64904 and GSE58294 datasets, SNCA and GYPB genes 
were significantly and highly expressed in the AF and AF + STROKE 
group, compared to the non- AF group. DEGs were significantly 

enriched in haem binding, oxygen transporter activity and blood co-
agulation. Clinical sample validation showed that the expression of 
hub genes in the AF group was higher than that in the control group. 
Furthermore, the expression of hub genes in the AF + STROKE group 
was upregulated compared to that in the AF group. Upon training 
the BP neural network of SNCA and GYPB for HBG1, the best train-
ing performance was 0.018092 at epoch 2999, and the relativity was 
0.96057. The BP neural network was verified by SVM.

ALAS2, which catalyses the initial, rate- limiting step during haem 
biosynthesis, is an erythroid- specific mitochondrial gene. The ex-
pression of ALAS2 during erythroid differentiation is strongly acti-
vated to meet the demand for haemoglobin. Haem is an essential 
iron- containing metabolite for aerobic organisms and serves as a 
prosthetic group for haemoproteins involved in numerous cardio-
vascular processes, including oxygen transport, oxygen storage, ox-
ygen metabolism, anti- oxidation, electron transport, signalling and 
enzyme catalysis.19,20 Previous studies have shown that ALAS2 mu-
tations prevent RBC differentiation due to haem deficiency during 
the proerythrocyte phase, thereby causing severe anaemia.21 
Studies have shown that ALAS2 is induced in the failing human heart, 
particularly in patients with ischaemic cardiomyopathy, and mecha-
nistic studies show that ALAS2 overexpression in cultured cardio-
myoblasts results in mitochondrial oxidative stress and cell death 
through increased haem accumulation.22,23

In this study, HBG1 and HBD were identified as hub genes. HBD, 
encoding the unique d- globin chain of HbA2, arose via duplication 
of the HBB gene after the marsupial/eutherian split, and is therefore 
unique to placental mammals.24 HBG1 and HBD are important genetic 
components of haemoglobin β- globin.25 Haemoglobin (Hb), a protein 
highly expressed in red blood cells, is a major oxygen- transporting 
molecule that plays a key role in cellular aerobic metabolism. Human 

F I G U R E  4  Identification of hub genes via the CTD database
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Hb is a tetramer composed of two α- like and two β- like globin chains 
that are covalently linked to haem, the oxygen- binding group. HBG1 
induces erythroid foetal haemoglobin expression and reduces mor-
bidity and mortality from haemoglobin diseases.26 HBD has been 
found to be closely associated with inflammation,24 and upregulation 
of HBD has been observed during infection and inflammation.27 In 
agreement with previous studies, the GO annotations related to HBD 
are oxygen transport, iron ion binding, blood coagulation and com-
bination with oxygen.28 Sickle cell disease (SCD) and β- thalassemia 
are the two most prevalent β- haemoglobinopathies worldwide.29 A 
unifying feature of this heterogeneous group of diseases is reduced 
functional haemoglobin due to altered protein structure in SCD, or 
insufficient β- haemoglobin production in thalassemia respectively.30 

Abnormal formation of haemoglobin eventually leads to disruption 
of oxygen transport, destruction of red blood cells and anaemia. 
Previous studies have reported that anaemia is associated with in-
creased mortality and morbidity in heart failure,31 angina pectoris,32 
acute coronary syndrome,33 cancer34 and human immunodeficiency 
virus infection.35 In patients with AF, anaemia was an independent 
predictor of one- year survival and rehospitalization.36 Chronic 
anaemia can cause many physiological changes in the circulatory 
system. Low blood viscosity and hypoxic vasodilation contribute to 
low peripheral resistance. Hypoxemia directly stimulates chemore-
ceptors in the carotid body, precipitating increased ventilation and 
sympathetic discharges.37,38 Along with sympathetic excitement, 
chronic anaemia leads to an increase in cardiac output, leading to 

F I G U R E  5  Upregulation of hub genes 
in the AF and AF + STROKE groups
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left ventricular (LV) remodelling.39 This might explain why Hb levels 
increase the risk of AF. Katayama et al. showed that haemodynamic 
changes due to low or high Hb levels can affect LA remodelling and 
the development of AF.40 In addition, oxidative stress secondary 
to hypoxia promotes activation of fibroblasts to myofibroblasts, 
leading to perivascular and interstitial fibrosis, which leads to slow 
and heterogeneous conduction.41 One study showed that nitrate- 
functionalized patches confer cardioprotection and improve heart 
repair after myocardial infarction via local nitric oxide delivery.42

SNCA in blood has been tested as a biomarker for Parkinson's 
disease (PD).43,44 It was found that mice expressing the mutant 
forms of SNCA caused familial PD to exhibit aberrant autonomic 
control of the heart, characterized by elevated resting heart rate 
and impaired cardiovascular stress response.45 Beatriz Tijero.el 
found that sympathetic denervation caused by SNCA mutations 
appears to be organ- specific, and selectively affects the heart.46 

In our study, we found that SNCA was highly expressed in patients 
with AF and stroke. We speculate that SNCA can act on adrener-
gic receptors by regulating sympathetic nerve excitation, releasing 
norepinephrine and causing corresponding changes in various ion 
channels. This shortens the effective atrial refractory period, in-
creases the dispersion of the effective atrial refractory period and 
induces AF, which in turn induces sympathetic nerve remodelling, 
increasing the density and heterogeneity of sympathetic nerves in 
the atrium. This ultimately leads to a decrease in the expression of 
the ion channel proteins and a decrease in ion current density, main-
taining the action potential cycle and shortening the effective re-
fractory period. Because of this, the AF arrhythmia persists, which 
in turn leads to the formation and transfer of intra- atrial thrombus, 
and ultimately to stroke.

Glycophorin B, a glycoprotein occurring in high levels on the sur-
face of red blood cells, is a receptor for Plasmodium, the pathogen 

F I G U R E  6  Neural network prediction model and high- risk warning range of SNCA, GYPB, and HBG1
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causing malaria, and is therefore a key determinant of Plasmodium 
invasion.47 The glycophorin gene locus consists of three ~120 kb 
tandem repeats sharing ~97% identity, each repeat carrying a 
closely related glycophorin gene, starting from the centromeric 
end: glycophorin E (GYPE), glycophorin B (GYPB) and glycophorin 
A (GYPA).48 Mutations in the human glycoprotein gene have been 
reported to reduce the risk of severe malaria and prevent malarial 
anaemia.49 Native myeloperoxidase (MPO) binds specifically to the 
major integral proteins of RBCs (GYPB), inducing multiple changes 
in the biophysical properties of the cells. These include the MPO- 
induced ‘freezing’ of membrane lipids, transmembrane potential, 
dynamic changes in the morphology and size of RBCs, increased 
sensitivity to acidic and osmotic haemolysis, and decrease in cel-
lular deformability. The main function of RBCs is oxygenation of 
cells and tissues, which largely depends not only on the ability of 
haemoglobin to bind to and release oxygen, but also on the rheo-
logical properties of RBCs (RBC deformability). Decreases in RBC 
deformability have been well documented in a variety of diseases, 

including atherosclerosis, ischaemic heart disease, sepsis and diabe-
tes.50– 52 We found that GYPB was highly expressed in AF patients 
with cerebral infarction, compared to AF patients alone. Therefore, 
we speculate that GYPB promotes atrial thrombosis and metastasis 
by regulating biophysical properties such as cell membrane fluid-
ity, transmembrane potential, intracellular calcium ions, cell size 
and morphology, haemolysis sensitivity, and cell deformability, ul-
timately leading to stroke.

Our study has several limitations. First, this study was conducted 
to investigate the molecular mechanisms underlying AF. However, 
comprehensive verification of the conclusions of this study using 
animal experiments is needed. Second, the sample size was small, so 
a multi- centre, randomized, controlled trial study should be carried 
out in future to validate our results.

In summary, the hub genes HBG1, SNCA and GYPB might be 
significantly related to AF. These genes are involved in the inci-
dence of AF complicated by stroke by affecting multiple signal-
ling pathways, which may serve as targets for early diagnosis or 

F I G U R E  7  Predictive value of SNCA and GYPB for HBG1 via support vector machine (SVM)
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treatment. Our study provides new evidence and ideas for further 
exploration of the underlying mechanism and treatment of AF 
complicated by stroke.
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