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Decarbonisation of the transport sector is essential to mitigate anthropogenic climate
change. Microbial metabolisms are already integral to the production of renewable,
sustainable fuels and, building on that foundation, are being re-engineered to generate
the advanced biofuels that will maintain mobility of people and goods during the energy
transition. This review surveys the range of natural and engineered microbial systems for
advanced biofuels production and summarises some of the techno-economic challenges
associated with their implementation at industrial scales.

Introduction
Since the industrial revolution, the use of fossilised biomass for energy and chemicals has altered the
natural carbon (C) cycle, with major impacts now felt worldwide [1]. Liquid transport fuels are a con-
venient form of concentrated energy with established production standards, storage facilities and dis-
tribution networks. Transport consumes ∼65% of global petroleum production and accounts for
approximately one third of total energy consumption, annually [2]. Biomass-derived transport fuels
(Figure 1) are therefore key to the decarbonisation of the transport sector [3].
Biofuels encompass solid, liquid or gaseous combustible materials that are derived from, and pro-

duced by, living organisms [5] (Figure 2). Current, commercial biofuels include microbially produced
alcohols, principally ethanol (C2H5OH) from Saccharomyces cerevisiae fermentation and n-butanol
(C4H9OH) from Clostridium bacteria or chemical conversion of ethanol, that are blended with gas-
oline. Biodiesels are produced by the catalytic conversion of tri-acyl-glycerides (TAG) with alkaline
catalysts (e.g. NaOH, KOH or CH3NaO) and methanol, yielding fatty acid mono-alkyl esters (FAMEs
or crude biodiesels) and glycerol. Plant oils can also be chemically hydrotreated to generate hydroge-
nated vegetable oils (HVOs or ‘renewable diesel fuels’ [6]) that are de-oxygenated, linear alkane hydro-
carbons which can directly substitute for fossil-derived automotive gas oil [7].
‘Advanced biofuels’ encompass a range of alternative combustible molecules or biomass that are

typically derived from microbes. The term ‘third generation’ (3G) is often used by researchers in aca-
demia to describe both the biomass and the fuel precursors derived from microalgae and hetero-
trophic microbes other than those commonly used in commercial 1G and 2G biofuel production
[8,9]. Biofuels from genetically engineered microalgae, bacteria and fungi have, by extension, been
dubbed ‘fourth generation’ (4G) [10–12].
Following a summary of the microbial metabolisms used for the production of current, commercia-

lised biofuels, this review presents an overview of the variety of microbial routes to innovative biofuels
and some, though by no means all, of the techno-economic challenges associated with generating
advanced microbial biofuels at industrial scales.

Renewable natural gas and synthetic fuels
Renewable Natural Gas (RNG) can be produced by direct, thermochemical gasification of biomass
feedstocks to generate syngas, a mix of CO, CO2 and H2, followed by chemical methanation [13], or
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by anaerobic fermentation (also termed ‘anaerobic digestion’; AD) of organic matter such as manure, food
waste or sewerage sludge. AD generates a mix of 50–75% CH4 and 25–50% CO2, with traces of H2, siloxanes
and SH2. Chemical upgrading is then performed to remove the contaminants and raise the methane content to
above 90%, resulting in commercial ‘biomethane’ or ‘biogas’ [14].
Microbial methanogenesis involves 4 phases, each of which is performed by different groups of mesophilic

(20–45°C) or thermophillic (50–70°C) microbes that are all present in the reactor consortium [15]. In phase 1,
termed the hydrolytic phase, facultatively anaerobic bacteria degrade organic polymers from the feedstock,
releasing soluble substrates. These substrates are then metabolised during the second, acidogenic phase to
produce a mix of compounds including short-chain volatile fatty acids, organic acids, alcohols, ketones, and dif-
ferent gasses (CO2, NH3, SH2 and H2). In the third phase, acetogenesis, the products of acidogenesis are meta-
bolised by H2-producing, acetogenic and homoacetogenic bacteria. The acetogenic bacteria, represented by
Syntrophomonas, Syntrophospora, Syntrophobacter, Fusobacterium and Paleobacter, metabolise≥ C3 organic
acids, ethanol and aromatic compounds into acetate (CH3COO

−), formate (CH2O2), CO2 and H2. The homoa-
cetogenic bacteria metabolise the substrates produced in the acidogenic phase or can use H2 and CO2 via the
acetyl-CoA pathway to produce acetate (CH3COO

−). Finally, methanogenesis is undertaken by three groups of
methanogenic archaebacteria; the hydrogenotrophs, the aceticlasts and the methylotrophs [16]. During hygen-
otrophic methanogenesis CO2 is reduced to CH4 and H2O, using 4 H2. In aceticlastic methanogenesis, acetate
is cleaved in the presence of H+ to form CH4 and CO2 and estimates suggest that this accounts for ∼70% of
the CH4 generated. In methylotropic methanogenesis, methylated C1 compounds (e.g. methanol, methylamines
and di-methyl sulphide) are converted to CH4, CO2 and H2O.
Like methanated syngas produced by thermochemical biomass gasification, RNG may be used directly for

energy or as precursors for catalytic re-forming to produce advanced fuel hydrocarbons [13,17,18].
Additionally, AD may be combined with other microbial processes to generate additional biofuels. For
example, the fibrous material resulting from AD of cow manure can be pre-treated as a lignocellulosic feedstock
and subsequently fermented to ethanol [19].

Figure 1. Routes to decarbonisation.

Decarbonisation aims to reduce the environmental impact of fossil fuel use, either by the substitution of fossil energy in the

form of coal, petroleum and natural gas by fuels derived from biomass or by direct C-capture and nature-based

C-sequestration strategies (termed ‘Bioenergy with Carbon Capture Solutions (BioCCS or BECCS) [4] which are currently used

to offset emissions in the form of carbon credits. In the transport sector, the market penetration of emission-free electric

vehicles is accelerating but is heavily reliant on C-free electrical generation capacity and accessible rapid charging

infrastructures which may be difficult to implement in non-urban or more isolated settings, or in developing countries, hence

the ongoing (and currently increasing) need for biofuels. Current transport biofuels include alcohols (1), lipid-derived biodiesels

(2) and biomass-derived or microbially generated combustible gasses such as [bio]methane and H2 (3) that can be catalytically

converted to sustainable synthetic fuels. Figure drawn using Biorender software.
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Alcohol biofuels
Ethanol
Worldwide, approximately 100 billion litres of ethanol (C2H5OH) are produced annually through the anaerobic
fermentation of hexoses from 1G biomass by the yeast, S. cerevisiae. Although S. cerevisiae can also metabolise
sugar aerobically via respiration, ‘Crabtree-positive’ yeast strains primarily use the fermentative pathway even
when O2 is present in the medium [20].
The respiratory and fermentative (ethanogenic) pathways start with glycolysis which requires one molecule

of glucose and two molecules of NAD+ to yield two molecules of ATP and two molecules of pyruvate. During
respiration, the pyruvate enters the tricarboxylic acid cycle and is completely metabolised to CO2 and ATP.
Under anaerobic conditions, the pyruvate is metabolised to equimolar quantities of acetaldehyde and thence to
ethanol and CO2 and the recycling of NAD+. The industrial production of ethanol uses highly adapted yeast
strains that can withstand the stresses imposed by large-scale bioreactor cultivation [21,22], including tempera-
ture [23], pH [24], the presence of metabolic inhibitors from treated plant biomass [25] and the accumulation
of ethanol in the medium [26], such that sugar to ethanol conversion can be as high as 90% and ethanol con-
centrations of 20% readily achieved [27].
The production of 2G ethanol from lignocellulose first requires saccharification of the biomass to its con-

stituent hexose and pentose monomers by various pre-treatments including chemical hydrolysis using concen-
trated acid, alkali, ionic liquids, or eutectic solvents; thermochemical hydrolysis that employs mechanical
extrusion (milling); pyrolysis; microwaving; steam- or CO2-based explosion; and biological hydrolysis using
lignin-degrading fungi (notably Trichoderma reesei), eubacteria and archaea, or purified enzyme mixes [28–35].
Lignocellulose pre-treatment yields a slurry containing high concentrations of both hexose and pentose sugars,

Figure 2. Classification of transport biofuels.

First (1G) and second generation (2G) biofuels describe the origin of the biomass used to manufacture the fuel. 1G biofuels are

produced from carbohydrate- or oil-rich food crops whereas 2G biofuels exploit a wider variety of non-comestible and

lignocellulosic energy crops, waste lignocellulosic biomass (agricultural, forestry or sawmill residues) inedible or waste plant

oils, spent cooking oil or rendered animal fats. Advanced biofuels, sometimes referred to as third- or fourth- generation (3G or

4G) biofuels, encompass a range of alternative biomass sources or combustible molecules derived from microbes, notably

microalgae or oleaginous yeasts, or from metabolically engineered microbial cell factories. Figure drawn using Biorender

software.
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the latter which cannot be metabolised by S. cerevisiae [36]. Pentoses, however, can be metabolised by other
yeasts, including Pichia spp., Candida spp., Schizosaccharomyces spp., Pachysolen spp. and Kluyveromyces spp.
[37], enbling the formulation of co-cultures capable of hexose and pentose fermentation [21,38,39].
Alternatively, hybrid yeast strains of S. cerevisiae and species capable of pentose fermentation, produced by
protoplast fusion and interspecific genome shuffling, may be used to ferment both pentoses and hexoses,
increasing the efficiency of the conversion from biomass to ethanol [40,41].

n-Butanol
n-Butanol is a promising alternative to ethanol because of its higher energy density, higher lubricity, lower vis-
cosity, lower corrosiveness and lower hygroscopicity [42,43]. n-Butanol is produced by chemical conversion of
ethanol using Mg or Al mixed oxides or hydroxyapatite catalysts [44], or by fermentation of 1G and 2G feed-
stocks via the Acetone-Butanol-Ethanol (ABE) pathway of Clostridium bacteria [45]. Clostridium are obligate
anaerobes and only four species produce sufficient quantities of butanol to be industrially relevant: C. acetobu-
tylicum (the model for ABE fermentation), C. beijerinckii (a potential candidate for lignocellulosic conversion
to butanol), C. saccaroperbutylacetonicum and C. saccharoacetobutylicum [44]. ABE fermentation occurs in two
stages: In stage 1, growing bacteria produce acetic and butyric acids from acetyl-CoA via a suite of enzymatic
steps involving acetyl-CoA acetyltransferase (AtoB), 3-hydroxybutyryl-CoA dehydrogenase (Hbd), crotonase
(Crt), butyryl-CoA dehydrogenase (Bcd), and alcohol/aldehyde dehydrogenase (AdhE2). In stage 2, the bacteria
enter stationary phase during which they accumulate granulose, form endospores and re-assimilate the meta-
bolic acids to form acetone, butanol, ethanol, CO2 and H2.
Several techno-economic challenges associated with the biocatalytic production of butanol at scale remain,

including the cost of the fermentative process itself compared with production by chemical catalysis, low
butanol yields due to the cytotoxicity of butanol and difficulties in improving or engineering Clostridium dir-
ectly [46–48]. Consequently, the genes encoding the Clostridium butanol production pathway have been engi-
neered in the more tractable and facultatively anaerobic E. coli [49,50] enabling pathway improvements
through enzyme engineering [51]. Finally, as an alternative, ‘advanced’ n-butanol can also be generated
through engineered decarboxylation and reduction in short-chain α-keto acids (Figure 3) by an α-keto acid
decarboxylase/alcohol dehydrogenase combination [52]. However, these improved or alternative metabolic
routes can only be commercially realised if associated with a more profound understanding of the molecular
mechanisms of n-butanol tolerance and the consequent development of new host strains or biocatalysts in
which that tolerance is significantly enhanced [53].

Engineering the production of alternative short chain and higher alcohols
The need to replace petroleum has also focussed on the microbial production of alternative short chain (≤C4)
alcohols, notably n-propanol (C3H7OH) and isopropanol (CH3CHOHCH3) [54]. While n- and iso-propanol
are combustible, their production cost and marginal energy gain relative to ethanol and the advantages of
butanol as a fuel mean that n-propanol is probably better suited as a precursor chemical or fuel additive than
as an alternative bulk biofuel.
Higher alcohols, characterised by C-chains longer than C4 are promising biofuels but, like n- or iso-

propanol, do not accumulate naturally in microbes and so must be produced by metabolic engineering [55].
Higher alcohols may also be produced from amino-acid catabolism via the Ehrlich pathway (Figure 3) to yield
so-called ‘fusel alcohols’. In this pathway, valine, leucine, isoleucine, methionine, and phenylalanine may be
transaminated to α-keto acids and converted by alcohol dehydrogenases into fusel alcohols or, depending on
the cellular redox state, to carboxylic acids. The C-chain of the fusel alcohols is equivalent to that of the
amino-acid substrate minus 1 C [56].
Fatty alcohols, notably 1-octanol, are attractive targets for biofuels as they may be used to increase the

physio-chemical properties of fuel blends [57]. Long-chain acyl-CoAs or acyl-ACPs are reduced to fatty alco-
hols via fatty-aldehyde intermediates by various acyl-CoA/ACP reductases (Figure 3). Alternatively, free fatty
acids may be reduced to fatty alcohols by carboxylic acid reductases (CAR [58]) or by the Lux C/D/E complex
from bioluminescent bacteria [11], also via fatty-aldehydes. The presence throughout the phylogeny of these
different enzyme families provides opportunities for metabolic engineering and production of fatty-alcohols
with specific C-chain lengths, in heterologous hosts including E. coli and yeasts [59–61]. However, the over-
production of fatty-alcohols for biofuels is not trivial; obstacles include metabolic repression that inherently act
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to limit productive titres, accurate C-chain length modification and the functionalisation of the fatty acid inter-
mediates into the desired product(s) [62] and remains an area of intense research.

Third generation microbial oils, mycodiesels and algal
biofuels
Oleaginous microbes are defined as those that can accumulate over 20% of their biomass as TAG [63], usually
in intracellular vesicles. Bacteria store energy principally as poly-β-hydroxy-butyrates or -alkanaoates, not
TAGs, so ‘oleaginous microbes’ are primarily represented by some yeast and filamentous fungi (e.g. Candida,
Cryptococcus, Debaryomyces, Lipomyces, Rhodotorula, Rhodosporidium, Saccharomycodes, Trichosporon and
Yarrowia), and microalgae.

Figure 3. Natural and engineered metabolic pathways to biofuels.

Schematic diagram of natural and engineered pathways to biofuels and biofuel precursors in microbial platforms. Note, not all

pathways are simultaneously present in any single microbe. Metabolic pathways are coloured thus — Core metabolism: light

blue. Short chain alcohol pathways: purple. The Ehrlich degradative pathway to fusel alcohols: orange. Fatty acid metabolism:

yellow. Isoprenoid MVA and MEP pathways: green. Terpenoid synthetic pathways: blue. The various biofuels are highlighted in

red. Black arrows represent enzymatic transformations, with the enzymes or enzyme classes indicated. Blue arrows represent

multiple enzymatic transformations in the metabolic pathways indicated. The red arrow represents abiotic, chemical conversion

of TAGs to FAMEs and FAAEs. Abbreviations for enzymes are: PDC, Pyruvate dehydrogenase complex; ALS, Acetolactate

(acetohydroxyacid) synthase; ADH, Alcohol dehydrogenase; KDC, α-keto acid decarboxylase; PDH, Pyruvate dehydrogenase;

FabH, 3-oxoacyl-[acyl-carrier-protein] synthase; FabD, Malonyl CoA-acyl carrier protein transacylase; Acc A/B/C/D, Acetyl-CoA

carboxylase; ACat, Acetyl transferase; AAS, Acyl-ACP synthase; TES, Thioesterase; AAR, Acyl-ACP reductase; FadD, acyl-CoA

synthase; OleTJE, CYP152L1(cytochrome P450 fatty acid peroxygenase); FAP, fatty acid photodecarboxylase; CAR, carboxylic

acid reductase; CER, Wax ester synthase; DGAT, Diglyceride acyltransferase; FAR, Fatty acid reductase; ACR, acyl-CoA

reductase; AHR, Aldehyde reductase; ADO, aldehyde deformylating oxygenase; HMGS, 3-hydroxy-3-methylglutaryl-CoA

synthase; HMGR, HMG-CoA reductase; MK, mevalonate kinase; PMK, phosphomevalonate kinase; PMD, phosphomevalonate

decarboxylase; DXR/ispC, DXP reductoisomerase; IPPS, IPP isomerase; IDI, Isopentenyl-diphosphate delta isomerase; GPPS,

geranyl diphosphate synthase; PS, pinene synthase; LS, limonene synthase; agBIS, bisabolene synthase; FS, farnesene

synthase.
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Oleaginous yeasts
Oleaginous yeasts (the model for which is Yarrowia lipolytica) are amenable to large-scale fermentation and
present an attractive platform for generating natural and modified long-chain lipids and TAGs from both 1G
and 2G feedstocks [64,65]. TAG accumulation in oleaginous yeasts is dependent on culture conditions such as
a low C:N ratio, temperature, pH, [O2] and the concentration of trace elements and inorganic salts [64,66]. In
response to nitrogen limitation, AMP-desanimase degrades intracellular adenosine monophosphate (AMP) to
inosine monophosphate and NH4

+ for use as an alternative source of nitrogen. The rapid decrease in [AMP]
suppresses the activity of NAD- and NADP-dependent isocitrate dehydrogenase, altering the Krebs cycle and
resulting in the accumulation of iso-citric acid and citrate within mitochondria. Citrate is then exported from
the mitochondria in exchange for cytoplasmic malate, and cleaved by ATP citrate lyase, an enzyme exclusively
found in oleaginous microorganisms, to form oxaloacetate and acetyl-CoA which is the precursor of lipid bio-
synthesis by reverse β-oxidation [64,66]. The fatty acids produced in this manner are subsequently stored as
TAG (Figure 3) that may be extracted and converted to biodiesel.
Economically efficient production of microbial biodiesels requires economically efficient fermentation, har-

vesting and processing i.e. the use of cheap raw materials with minimal fermentation inhibitors [67], simple
monitoring and adjustment of the culture media C : N ratio, and cost-effective processes for lipid extraction
and subsequent processing [68]. For even high-producing oleaginous yeasts, separating the biomass from the
culture medium and disruption of the yeast cell wall to extract the storage lipids is expensive. Consequently,
microorganisms that secrete rather than store the lipids they produce can simplify downstream processing [12]
and increase efficiency. To that end, lipid secretion has been achieved in modified strains of Trichosporon cuta-
neum, Candida lipolytica, and acetyl-CoA synthase deletion mutants of S. cerevisiae [69,70], and, although the
precise mechanism of secretion remains unknown, continued research has the potential to lower processing
costs and increase the potential of oleaginous yeasts as a renewable source of lipid for biodiesel.

Mycodiesels
Mycodiesels [71] describe a range of volatile organic compounds produced by some endophytic fungi, notably
Gliocladeum roseum [72] and Ascoryne sarcoides [73,74], and include acetic acid esters of straight chained
alkanes and higher alcohols that might readily be converted to drop-in biofuels. Currently basic research into
mycodiesels appears somewhat quiescent, however the molecular pathways to these promising metabolic pro-
ducts are largely uncharacterised and may yet be exploited as resources for engineering innovative metabolic
pathways in more tractable microbial hosts.

Advanced biodiesels from microalgae
Microalgae are a polyphyletic grouping comprising over 40 000 identified species of photoautotrophic microbes
living in a range of environments, from Antarctic ice to the edges of volcanic hot-springs and from fresh to
hypersaline waters. The production of advanced biofuels from microalgae has several theoretical advantages com-
pared with terrestrial biomass: Microalgae may be cultured on marginal or non-arable land thus circumventing
the food vs. fuel controversy of G1 biofuels [75] and in brackish, saline or wastewater thereby avoiding use of
increasingly precious freshwater [76,77]. Microalgal cell walls are composed of cellulose, shorter polysaccharides
and protein and only a few species possess lignin [78]. Consequently, microalgal cultures yield a more homogen-
ous biomass than that produced by multicellular plants, which limits post-harvest waste and simplifies the fer-
mentation of non-oleaginous species grown as a (3G) biomass crop or the second-stage processing of algal
residues following extraction of oil or other, higher value compounds for which the algae may be exploited. Most
importantly, depending on the species, location of the algal culture facility and culture conditions, microalgae
have substantially higher biomass and lipid productivity compared with terrestrial feedstocks [79–81]. For
example, an oleaginous microalga that produces 30% of its fresh biomass as oil can achieve biodiesel yields of
∼52 000 kg ha−1 yr−1 compared with ∼150 kg ha−1 yr−1 for Zea mays (maize; corn), ∼860 kg ha−1 yr−1 for
Brassica napus (rapeseed; canola) and ∼5000 kg ha−1 yr−1 for Elaeis guineensis (oil palm), although these figures
are extrapolations from laboratory experiments and may not scale as anticipated [82].
Oleaginous microalgae such as Chlorella vulgaris, Scesedesmus spp. and Nannochloropsis have attracted con-

siderable interest as a source of TAG-derived biodiesel [83]. Under nitrogen or phosphate limitation, normal
cell division is repressed resulting in excess electrons in the photosynthetic electron transport chain which
increases photo-oxidative stress that may damage the photosynthetic apparatus or other cellular components.
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In response, oleaginous algae divert that excess energy towards fatty acid and TAG biosynthesis, consuming
approximately twice the NADPH derived from the electron transport chain than is required to synthesise a
comparable mass of carbohydrate or protein [84]. TAGs accumulate in cytoplasmic liposomes or chloroplastic
plastioglobuli and can represent 20–50% of the dry cell mass [84]. Levels of TAG accumulation is species- or
strain-specific and, despite many screening initiatives, there is little consensus regarding those most suited to
TAG-derived biodiesel production [85,86]. That problem is compounded by the fact that microalgal lipid pro-
files are sensitive to environmental factors and the age of the culture [87] and this variability imposes severe
quality control issues and costs for the biodiesel producer. Moreover, despite decades of research into cultiva-
tion, processing technologies and life-cycle assessments of microalgal culture [88,89], including the possibilities
offered by polyculture to limit population crashes, integrated biorefineries in which the microalgae are used to
fix waste CO2, purify waste water and produce both high-value chemicals and biomass [90], the translation of
laboratory findings to large-scale culture, the upfront capital expenses of suitable land and culture installations
at scales that are compatible with fuel production and the operational and downstream processing costs of algal
biofuels impose extremely high barriers to investment relative to 1G or 2G biomass. Addressing and overcom-
ing these techno-economic barriers remains an area of intense research [91,92].

Microalgal hydrocarbons
The green alga, Botryococcus braunii, has attracted considerable interest as a possible source of advanced biofuel
due to its capacity to both synthesise and secrete 5–80% of its dry mass as C20–C40 hydrocarbons [93–95] that
are readily converted to transport fuels by catalytic cracking [96,97]. B. braunii are grouped into four phenotypic
races — A [98,99], B [100,101], L [102–104] and S [105] — depending on the hydrocarbons produced and the
metabolic pathways employed. In the B race, intracellular liposomes contain ∼7% of total hydrocarbons with the
rest located in the algal cell walls and extracellular matrix of the colony [95], a location that favours
non-destructive extraction of the hydrocarbons [106]. Despite these considerable advantages, the production of
biofuels from B. braunii is hindered by the same economic considerations of large-scale algal culture; the costs of
the installation, culture and processing still vastly exceed that of the product.
A recent and exciting development in algal biology was the discovery of a light-activated enzyme from the

microalga Chlorella variabilis, named fatty acid photodecarboxylase (FAP), which catalyses the decarboxylation
of free fatty acids to n-alkanes or -alkenes in response to blue light [107]. Engineered into E. coli and in con-
junction with a thioesterase FAP expression resulted in the production of C11–C17 hydrocarbons when illumi-
nated by low-irradiance blue light [108].

Engineering microbial metabolisms for advanced biofuels
While short-chain alcohols, biodiesels and HVOs from 1G and 2G feedstocks are the current solution to fossil
fuel mitigation in the transport sector, these are additives that, at high concentrations, compromise fuel quality
[109,110]. Direct replacement of fossil-derived base-fuel with straight and cyclic hydrocarbons of varying
C-chain lengths and degrees of saturation is therefore desirable [11]. Although the metabolic capacity for
hydrocarbon biosynthesis is widely distributed, except for the few oleaginous microbes described above such
molecules are produced only in minute quantities (<0.1% of dry mass) and serve primarily physiological rather
than energy storage functions, including the regulation of membrane fluidity and permeability, cell–cell signal-
ling, and as a defence against desiccation or environmental toxins [111]. Consequently, the production of direct
fuel replacements must be engineered in microbes and would not have been possible without the discovery,
characterisation and engineering of enzymes from across the phylogeny [112] such as aldehyde deformylating
oxygenases (ADO) from cyanobacteria [113], the ECERIFERUMs (CER) from higher plants [114], insect cyto-
chrome P450’s (CYP) [115], the fatty acid decarboxylases P450OleTJE from Jeotgalicoccus [116] and UndA
from Pseudomonas [117] and the FAP [107] that perform the final conversions of endogenous metabolic pro-
ducts to possible fuel molecules. In these investigations, molecules derived from the fatty-acid, terpenoid and
polyketide anabolic pathways are typically targeted as substrates for engineering advanced microbial biofuels
(Figure 3). These developments owe much to the increased use of Synthetic Biology [118,119] for the design,
engineering and iterative development of process-tailored microbes expressing new, proof-of-principle meta-
bolic pathways for the synthesis of potential fuel molecules.
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Engineering fatty-acid advanced derived biofuels
While the enzymes involved are different, fatty acid (FA) synthesis is mechanistically conserved between the
prokaryotes and eukaryotes. During FA synthesis, the intermediate metabolites are covalently bound to acyl
carrier protein (ACP) by thioester linkages between the carboxyl group of the intermediates and the Ser36 of
the ACP. FA synthesis occurs in two stages; initiation and cyclic elongation of the C-chain. During initiation of
straight-chain FAs, malonyl Co-A is converted to malonyl-ACP which is condensed with acetyl-CoA to
produce β-keto-butyryl-ACP. This compound is then reduced to generate D3-hydroxybutyryl-ACP, dehydrated
to 2-enoyl-ACP and then reduced to butyryl-ACP. A cycle of condensation with malonyl-ACP and subsequent
reduction-dehydration-reduction in the intermediate metabolites builds the C-chain. When the elongating fatty
acyl-ACP has achieved a specific length, it is cleaved from the acyl-ACP by thioesterases (TES) to produce free
FA (FFA). Overexpression of different, heterologous TES enable FFA tailoring to specific C-chain lengths [11].
Cellular FFA pools are finely balanced between synthesis and degradation (β-oxidation), which initial step is
FFA conjugation with acyl-Co by acyl-CoA synthase (FadD) to produce fatty acyl-CoAs and thence acetyl-CoA
by degradative thiolases producing metabolic energy. Interestingly, FFA degradation may be reversed (a process
termed ‘reverse β-oxidation’) in which the thiolases function as synthetic enzymes, generating long-chain fatty
acids directly from acetyl-CoA rather than first requiring malonyl-CoA, thereby increasing the C-efficiency of
the overall process [120].
Early metabolic transformations focussed on engineering organisms as catalysts for existing biofuels, for

example the production of biodiesel-like compounds in E. coli through conversion of free FAs to FAME by
heterologous expression of a Mycobacterium marinarum fatty acid O-methyl transferase, using endogenous
S-adenosylmethionione as the methyl donor [121]. FA metabolism has also been engineered to generate
drop-in fuel molecules that are identical with petroleum distillates. FFA can be reduced to fatty aldehydes by
the luxCED complex [11] or by CAR [58] and these are then reduced by ADO [113] to alkanes and alkenes of
varying C-chain lengths. Either system has its merits, with the luxCED system allowing more refined tailoring
of C-chain length and the CAR having a broader range of C-chain selectivity [122]. Alternatively, fatty
acyl-ACPs may also be reduced to fatty-aldehydes by an NAD(P)H-dependent fatty acyl-ACP reductase (AAR)
[59] and thence to alkanes. Fatty aldehydes and acyl-CoA’s may be converted to fatty alcohols, respectively, by
aldehyde reductases (AHR) and acyl-CoA reductases (ACR) [123,124]. Finally, as noted previously, a number
of other enzymes (e.g. CER, CYP, OleTJE UndA and FAP) have been identified that catalyse the products of
lipid biosynthesis to suitable, advanced biofuels. Some bacteria, notably Bacillus subtilis, may generate branched
chain FAs, in which the initial acetyl Co-A is replaced by a different primer — e.g. isovaleryl-CoA,
isobutyryl-CoA, or 2-methylbutyryl-CoA — each derived from the metabolic pathways for valine, leucine and
isoleucine. Blending of branched and straight chain molecules allows tailoring and optimisation of the fuels.
While these proofs-of-principle are encouraging, given the levels of global fuel consumption, it is both neces-

sary and possible to increase the titres of biofuels or precursors produced in this manner [125]. For example, TES
overexpression has been shown to increase FFA titres [126], possibly by enhancing the ‘pull’ of the metabolic
sink, and deletion of FadD, the first enzyme in FA catabolism increases further cellular FFA concentration [127].

Terpenoid-derived biofuels
Isoprenoids and terpenoids are generated via two alternative metabolisms; the mevalonate and the MEP
pathways [128] (Figure 3). In the former, three molecules of acetyl-CoA are condensed via acetoacetyl-CoA to
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid which is the precursor to isopentyl diphos-
phate (IPP) and dimethylallyl pyrophosphate (DMAPP). IPP and DMAPP are the basic 5-carbon isoprene
building blocks for further terpenoid synthesis and undergo a head-to-tail condensation to generate the mono-
terpene (C10) geranyl diphosphate (GPP). Additional condensations with C5 isoprenes yield farnesyl pyrophos-
pahate (FPP), the immediate precursor of C15 sesquiterpenes and a further isoprene addition forms
geranylgeranyldiphosphate (GGPP), the precursor of C20 diterpenes. FPP and GPP may also form homodimers
by head-to-tail condensation, yielding C30 triterpenes and C40 tetraterpenes. In the MEP pathway, IPP and
DMAPP are formed from the glycolytic cycle.
Terpenoid hydrocarbons are suitable candidates for engineering advanced biofuels due to the branches and

rings found in their hydrocarbon chains. The production of C15 bisabolane has been performed in S. cerevisiae
and E. coli [129]; that of limonene and oxidosqualene in Y. lipolytica [130]; farnesane [131,132] a replacement
jet-fuel in E. coli; and the tricyclic sesquiterpenes epi-isozizaene and pentalenene in E. coli, and α-isocomene in
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S. cerevisiae [133]. While the number of possible terpenoids is vast and represents a daunting bottleneck for
further development, recent developments in AI and machine-guided genomic mining hold promise for more
rapid identification and testing of possible biosynthetic pathways [134], thereby accelerating and streamlining
the biosynthesis of novel biofuels.

Biofuels from the polyketide synthetic pathway
Polyketides are a structurally diverse group of metabolic products that are synthesised by multienzyme complexes,
termed polyketide synthases, in a modular, iterative fashion involving three steps; initiation, elongation and func-
tionalisation [135]. Polyketide synthesis is initiated by condensation of a starter unit (usually acetyl-CoA but can
be other metabolic acids/CoA conjugates) with an extender unit, malonyl-CoA or methylmalonyl-CoA. The
resulting diketide can then be extended stepwise to form intermediate polyketide chains. The extender units are
arranged in a linear series of polyketide synthase modules (PKSs) scaffolded by giant polypeptide chains and have
thus been likened to an assembly line. Each PKS in each module consists of an acyltransferase and a ketosynthase.
The manner in which the PKS modules are aligned specifies the unique biochemistries of the products generated.
The modular nature of polyketide assembly is therefore particularly attractive for re-engineering to generate new
compounds [136], of which tailored, drop-in biofuels are a target [137,138].

Challenges to materiality
Despite the fact that microbes already produce the bulk of (1G) biofuel used worldwide and the increasing
body of research into advanced microbial biofuels, the translation from laboratory demonstration to industrial
production and commercial distribution is a substantial, multidisciplinary challenge.
While S. cerevisiae remains a chassis of choice given its general use within the biofuels industry, the potential

of alternative microbial hosts that can metabolise a broader range of substrates are crucial areas for investiga-
tion. Further characterisation leading to the eventual ‘domestication’ of these (currently) unconventional micro-
bial chassis [139–141] must therefore be performed in parallel with the development of the molecular tools for
engineering robust and predictable metabolic pathways in these candidate hosts [142]. Moreover, as it is
improbable that a single, engineered microbe can effectively and simultaneously catabolise complex substrates
and produce desired products in large quantities, the possibilities of engineering synthetic microcosms compris-
ing biocatalysts with complementary functions have considerable potential [143,144].
As noted for single-cell oils [68] or microalgal biofuels [81,91], the production and processing costs, not the

inherent capabilities of the microorganisms, may be the main impediments to commercialisation [145]. For
example, the scale, configuration and operation of the production bioreactor are critical as they dictate the
upfront investment, operational costs and the bio-physical environment in which the biocatalyst must thrive,
including pH, temperature, [O2], type of biomass and possible toxicity of biomass derivatives, waste products
and/or of the biofuel itself, and, for non-axenic substrates, competition with the endemic microbiome.
Upstream, the selection, harvesting, collection logistics and pre-processing of selected biomass determines the
size of the production facility which, in turn will affect the number and geography of the assets and the subse-
quent distribution networks and the increasingly important impacts of overall carbon-emissions [2,3], changes
in land-use or agriculture systems [75], and consequences for global biodiversity [146]. Consequently, new
microbial routes to biofuels should routinely be assessed by rigorous stage-appropriate life-cycle and
techno-economic assessments (LCA and TCA, respectively) in which the benefits derived from each innovation
and the potential costs or diverse impacts of its production and use are clearly stated and quantified [147–149].

Conclusion
Decarbonisation of the transport sector is essential to enable the transition to net zero C-emissions by 2050 but
achieving that aim against a backdrop of increasing energy demand, fragmenting global energy systems and the
unpredictable adoption of different technologies is challenging. Microbes display an array of metabolisms from
which innovative biofuels may be derived using biomass or other renewable substrates. The engineering of
microbial metabolisms by synthetic biology has generated vast new opportunities for the production of
advanced biofuels that can replace petroleum distillates. However, translation from laboratory to industry
remains a challenge, including the requirement for versatile, readily engineered and industrially compatible
microbial biocatalysts with the necessary molecular tools and regulatory sequences, further optimisation of
engineered pathways to increase productivity and ongoing techno-economic and life-cycle assessments of these
opportunities.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 995

Biochemical Society Transactions (2022) 50 987–1001
https://doi.org/10.1042/BST20210764

https://creativecommons.org/licenses/by/4.0/


Perspectives
• Microbes already produce the bulk of commercial biofuel but new, advanced biofuels that can

directly replace petroleum distillates are urgently required to accelerate decarbonisation of the
transport sector.

• Bacteria, yeasts and microalgae possess extraordinarily diverse metabolisms and the design
and engineering of microbial metabolisms by synthetic biology offers great potential for the
production of sustainable, advanced biofuels from diverse organic substrates.

• The translation from laboratory to commercial production of advanced biofuels requires a mul-
tidisciplinaty effort including the development of versatile, readily engineered and industrially
compatible microbial biocatalysts with the necessary molecular tools, further innovation and
optimisation of engineered pathways and systematic techno-economic and life-cycle assess-
ments of these new opportunities.
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