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A B S T R A C T   

Previous studies ignored the geospatial dynamics spillover effects of energy consumption on CO2 
emissions while assessing such impacts in developed and developing countries. Moreover, most 
studies wrongfully assess spillover effects in its aggregated format rather than decomposing by its 
components. This is important as not all energy sources share the same characteristics. We fill 
these gaps in the literature by investigating the spillover effects of various forms of energy, 
including fossil fuels, renewable energy, and nuclear power, on CO2 emissions in 135 developed 
and developing countries from 2000 to 2019. We used the Dynamic Spatial Durbin Model (DSDM) 
to better understand the results. A series of indicative tests confirmed using the DSDM model and 
including spatial interaction of CO2 emissions in the analysis. Our findings show evidence of 
indirect spillover effects of the various energy sources on CO2 emissions. Further considering the 
spillover effects of the energy sources of neighbouring countries, the paper finds that the driving 
increase in CO2 emissions mainly came from the energy consumption of the country itself and 
neighbouring countries’ energy consumption. Nevertheless, the results indicate that the direct 
effects of energy consumption often exceed its indirect effects. The results also confirm that total 
and fossil energy consumption harms the environment, whereas adopting renewable and nuclear 
energy sources reduces CO2 emissions. Lastly, we find nuclear energy is the most environmentally 
sustainable energy source. The study concludes that the Dynamic Spatial Durbin Model is para
mount in estimating the environmental impact of energy consumption in our sample. The prac
tical policy implications drawn from this study could be used to promote increased collaboration 
to hasten the energy transition process and address global warming and climate change.   

1. Introduction 

According to the National Research Council (2020), the observed rise in temperature over the past five decades has been primarily 
attributed to the heightened levels of carbon dioxide and other greenhouse gases in the atmosphere [1]. Scientists have investigated 
the role of greenhouse gas emissions in aggravating global warming since the 19th century. Indeed, Svante Arrhenius, a Swedish 
scientist often referred to as the father of climate change, was the first to inquire about the impact of greenhouse gas emissions on the 
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atmospheric temperature in 1894. As a result, atmospheric carbon dioxide is 50 % higher than pre-industrial levels, reaching a his
torical level of 417.06 parts per million in 2022 [2]. In addition, as per the report by the Intergovernmental Panel on Climate Change 
(2019), failure to decrease net non-CO2 emissions can lead to a lower probability of achieving the goal of limiting global warming to 
1.5 ◦C [3]. Therefore, mitigating global warming and climate change is contingent upon reducing greenhouse gas emissions, specif
ically carbon dioxide. Accordingly, several studies have investigated the causes and effects of CO2 emissions on the environment. 
Research has found that many factors contribute to CO2 emissions, such as the initial levels and conditions of CO2 emissions [4], the 
level of financial development ([5–8]), foreign direct investment flows ([9,10]), the use of fossil fuels ([11]), globalization in eco
nomic, social, and political spheres [12], international tourism [13], demographic changes such as age structure and urbanization 
trends [14], the quality of institutions [15], energy consumption and economic growth [16], government ideology [17], electoral 
systems and political representation [18], political corruption and media [19], religious and social values [20], and gender equality 
[21]. Estimates of the Global Carbon Project (2022) show that fossil fuel CO2 emissions increased from 10.9 billion tons in the 1960s to 
36.6 billion tons annually in 2022, the highest ever [22]. Coal handled 46 % of fossil CO2 emissions, followed by oil at 35 % and natural 
gas at 15 %. A recent study by Ref. [23] explored the determinants of CO2 emissions in 92 developed and developing countries using 
the Bayesian Model, Averaging those accounts for model uncertainty. The analysis suggests that fossil fuel consumption is the most 
robust and common determinant of CO2 emissions in developed and developing countries. There has been a boom in empirical 
research analyzing the effects of energy consumption on environmental quality. However, the findings show that the environmental 
effects of energy depend on the energy source. Fossil fuel energy sources, including coal, oil, and natural gas, have been shown to harm 
the environment and deteriorate the ecosystem ([24–27]). In contrast, renewable energy sources, such as wind, solar, and hydropower, 
are emission-free clean energy sources that help to safeguard the environment ([28–31]). The potential environmental impacts of 
nuclear energy have yet to be thoroughly examined, and a definitive consensus has not been established ([32,33]). 

According to the literature, methodological approaches in the analysis of CO2 emissions have been witnessed by using econometric 
models such as the STIRPAT model ([34–44]). Most STIRPAT studies analyze CO2 emissions in the industrial/service sectors. Addi
tionally, industry participation in total GDP is often used to represent technology. These studies often encompass regions with thriving 
industries, such as China. However, most existing studies have extensively explored the linear relationship between the factors and CO2 
emissions, thus overlooking the spatial correlation of CO2 emissions that can arise among economies [45]. Arguably, spatial depen
dence on CO2 emissions can occur due to two reasons. Firstly, countries may intentionally manipulate environmental standards either 
to attract capital or for trade purposes. Secondly, there may be a geographical interdependence in the technologies used to produce 
goods and services across different countries ([46,47]). 

Although existing studies have widely and deeply discussed the linear relationship between financial development and CO2 
emissions, potential nonlinear relations have not been systematically analyzed [5]. Therefore, given the inappropriateness of tradi
tional IPAT and SPIRAT models, to estimate the effects of CO2 emissions on the environment, substantive studies have developed 
spatial econometric models considering spatial CO2 distribution and interaction and the influencing factors’ spatial role. Khezri et al. 
(2021) examine the spatial effects of financial development on CO2 emission by applying spatial econometric techniques [48]. Doing 
so, the authors have found that as demand and financial growth in neighbouring countries increase, CO2 emissions decrease. Mahmood 
et al. (2020) studied the effects of income, trade, energy consumption, and FDI on CO2 emissions in five North African countries from 
1990 to 2014 [49]. Their results indicate evidence of the negative effect of exports on CO2 emissions, while their spillover effects on the 
neighbouring countries are positive. Moreover, the effects of imports and total trade openness are positive on local economies, and 
their spillovers are negative. Their results also show that FDI does not affect CO2 emissions. Balado-Naves et al. (2018) analyze the 
relationship between economic growth and CO2 emissions [50]. The authors employ a panel data set composed of 173 countries for the 
1990–2014 period to analyze the existence of a spatial EKC for CO2 emissions. Their findings indicate that (i) most regions follow the 
EKC, (ii) neighbouring per capita income has an inverted U-shaped relationship with national per capita emissions in Europe, Asia, and 
globally, (iii) neighbouring energy intensity increases national per capita emissions, and (iv) economic growth will accelerate climate 
change. Wang et al. (2022) used a spatial fixed effects model to analyze the impact of renewable energy on CO2 emissions in 36 
European countries from 2000 to 2018 [41]. Their main results show that CO2 emissions were positively affected by GDP per capita, 
foreign direct investment, urbanization, and energy intensity. 

According to the foregoing, previous studies ignore the geospatial dynamic spillover effects. Further, most studies wrongfully use 
spillover effects in their aggregated format rather than decomposing spillover by its components (direct and indirect effects). 
Therefore, this research aims to contribute to the expanding body of literature on the assessment of spillover effects of energy con
sumption on environmental quality as spatial spillover may unveil the indirect spillover effects of energy consumption and avoid 
underestimating or overestimating its environmental effects. Moreover, there seems to be little research in the literature on the 
spillover (direct/indirect) effects of various forms of energy consumption on CO2 emissions in a geospatial context analysis. In this 
regard, using a non-spatial analysis approach leads to the omission of relevant spatial dependence in the data, which in turn is of 
relevance in the econometric analysis as it could lead to bias/inconsistent and inefficient estimates ([51–53]). 

To fill the above academic gaps, this study investigates the effects of various forms of energy on CO2 emissions in 135 developed 
and developing countries from 2000 to 2019. The research uses, therefore, Explanatory Spatial Data Analysis (ESDA) techniques to 
explore the relationship between variables, followed by spatial econometric models to better understand the results. Therefore, 
compared with the analyses considered in the previous empirical literature, this study makes several novel contributions to literature. 
The econometric modelling framework employed here has several advantages concerning the previous analysis, which only considers 
spillover effects in its aggregated format rather than decomposing spillover by its components (direct and indirect effects). First, this 
study rigorously assesses the spatial spillover effects over a more extensive set of environmental quality determinants and various 
forms of energy. These covariates can be grouped into human, economic globalization, and financial development. Second, this study 
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considers spatial spillover effects that may occur modelling CO2 emissions, which the economic and financial interconnections be
tween countries can support. Therefore, incorporating spatial spillovers resolves misspecification problems [50], and excluding spatial 
terms can lead to flawed estimates [51]. Third, the empirical investigation is also based on two spatial weights matrices used to 
determine the area’s neighbourhood. Following this, ESDA techniques are used to identify spatial autocorrelation that may exist 
between data [54]. Fourth, this study compares the impacts of different energy sources on CO2 emissions, including total, fossil fuel, 
renewable, and nuclear energy. This may extend our understanding of the determinants of CO2 emissions. 

Altogether, the suitable econometric framework proposed in this research effectively provides a systematic example for deter
mining significant drivers of carbon emissions within 135 developed and developing economies. Therefore, policymakers should fully 
consider these results when constructing long-term strategies for reducing CO2. 

The main objective of this research is to determine the spillover effects of energy consumption on carbon dioxide emissions for 135 
developed and developing countries between 2000 and 2019. To achieve this, the study investigated the environmental impact of 
various energy sources, such as fossil fuels, renewable energy, and nuclear power, on CO2 emissions. Additionally, the study 
considered the spatial dependencies among CO2 emissions across different units of study while applying a spatial dynamic model. This 
model was used to argue the significance of using such an approach in accurately estimating and comparing the effects of different 
energy sources on CO2 emissions. This approach is crucial in comprehending the shared effects of direct and indirect sources, which 
were previously disregarded in other studies. 

The rest of the paper is ordered as follows: Section 2 encompasses the research methodology. Results from decomposition and 
empirical analysis have been discussed in section 3, and the study is concluded with relevant policy suggestions in section 4. 

2. Methodology and data 

2.1. Study area 

This study examines the impact of various energy sources on environmental quality in both developed and emerging countries. The 
scope of the study includes Argentina, the Association of Southeast Asian Nations (ASEAN), Australia, Brazil, Canada, China, the 
European Union (EU), India, Japan, Mexico, the Russian Federation, Saudi Arabia, South Africa, Turkey, the United Kingdom (UK), 
and the United States (US). In terms of geography, the selection of the countries is based solely on data availability that can reasonably 
be used over a long period of time and is not related to any specific regional characteristics. The study focuses on developed and 
developing countries, where we believe developing countries’ responsibilities for CO2 emissions are more extensive and growing faster 
than developed countries. In fact, from 1995 to 2015, developing countries were accountable for 43.2 % of the cumulative global CO2 
emissions, whereas developed countries were responsible for 56.8 % [79]. Considerable differences in CO2 emissions have been found 
within the study countries (i.e., country-based CO2 emissions ranging from 0 to 96.79 in developing countries and from 0.5 to 0.9 in 
developed countries). These differences are attributed to variations in economic status, level of industrialization, and spatial associ
ations among countries. Therefore, the study emphasizes the need to incorporate spatial dependence relationships between countries 
into the methodological application to ensure accurate assessments. 

2.2. Spatial dependence test 

Before estimating the spatial spillover effects, examining the presence of spatial dependence is essential. To this end, we perform 
the Moran’s I statistic and the Moran’s scatter. Moran’s, I test is based on the null hypothesis that the dependent variable (CO2 
emissions) associated with different countries is spatially independent. In the case of negative Moran statistics values, spatial 
dispersion characterizes the data. In contrast, positive values of Moran statistics indicate positive spatial autocorrelation and spatial 
concentration. The following equation defines the global Moran’s I index: 

It = n/S0

∑n

i=1

∑n

j=1
wij(xit − μt)

(
xjt − μt

)

∑n

i=1
(xit − μt)

2
(1)  

where xit is the interest variable (CO2 emissions), μt is the average of x in year t. wij denote the spatial weight matrix (Wd or Wc) 
between two countries i and j. n is the number of countries, while S0 is a scalar equal to the sum of all wij. 

Similarly, the local Moran’s I index is used to identify the nature and magnitude of the externality. The index takes the following 
form: 
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where zit is the variable subject to spatial autocorrelation, mt denotes the mean of z at year t. wij represents the weights matrix between 
the two countries i and j, n is the number of countries. 

2.3. Spatial weighting matrix 

Specifying the spatial weighting matrix is fundamental in spatial econometric models, as different matrices capture different 
spillover channels [55]. Two diagonal weight matrices are employed in this study to assess the robustness of the findings. The first 
matrix, specified as Wd, is based on the inverse distance of dimension n ∗ n, where n is the number of countries considered in the 
analysis. This matrix can be written as follows: 

Wd =

{
d− 1

ij , if i ∕= j
0, if i = j

(4)  

where dij is the geographical distance between two countries i and j. 
The second matrix implemented in this research is the contiguity matrix, written as follows: 

Wc =

{
1 if country i is adjecent to country j

0 otherwise (5) 

Moran’s scatter plot technique identified specific spatial configurations for CO2 emissions, including high-high or hot spots, low- 
low or cold spots, high-low or potential spatial outliers, and low-high or potential spatial outliers. 

2.4. Spatial econometric model 

Historically, researchers have long investigated the factors contributing to CO2 emissions through the Environmental Kuznets 
Curve (EKC) hypothesis, which examines the relationship between pollution and income and follows an inverted U-shape [56]. The 
findings on this hypothesis have been inconclusive. As a result, in 1971, Erlich and Holdren developed the IPAT model as a way to 
study environmental impacts (I) [57]. It involves analyzing the factors of population (P), affluence (A), and technology (T). However, 
this model has faced criticism for not analyzing the three variables simultaneously. To address this concern, Dietz and Rosa (1997) 
reformulated the IPAT model into a Stochastic Impact by Regression on Population, Affluence, and Technology (SPIRAT) [58]. This 
new model allowed for the analysis of multiple factors at once, specifically examining the influences of population, industrialization 
level, affluence, technology, and urbanization level on the environment. In this regard, our research examines the environmental 
impact of various energy sources on CO2 emissions. For this purpose, we mostly rely on the STIRPAT econometric model. However, we 
encountered challenges when applying this model in a spatial econometric context. It appears that the STIRPAT model was not suitable 
for our purpose due to several reasons. Firstly, the model in its current form cannot reflect the spatial correlation among countries’ 
carbon emissions, which might affect the correlation results. Secondly, the model cannot account for different concepts of 
cross-country interactions and spillover effects on CO2 emissions. Lastly, we considered the effect of time lag, space lag, and time lag on 
current country carbon emissions, and hence, a spatial panel model should be used in this study. 

A dynamic spatial model was, therefore, proposed to extend our understanding of the determinants of CO2 emissions. Various types 
of dynamic spatial measurement models exist. These models include the dynamic spatial lag model (DSLM), dynamic spatial error 
model (DSEM), and dynamic spatial Durbin model (DSDM). Each of these models has different focuses and implications for the 
economy. However, the DSDM combines the advantages of both the DSEM and DSLM. It considers the spatial dependence of both 
explained variables and explanatory variables, as well as the spatial spillover effects of random shocks at the same time. Its functional 
form is as follows: 

lnCO2i,t = b0 + λlnCO2i,t− 1 + θWlnCO2i,t +φWlnCO2i,t− 1 +α1 ln GDPi,t + α2
(
ln GDPi,t

)2
+ α3 ln EIi,t +α4 ln POPi,t + α5 ln HCi,t

+ α6 ln KOFi,t +α7 ln FDi,t +α8 ln ECi,t + θ1WlnGDPi,t + θ2W
(
ln GDPi,t

)2
+ θ3WlnEIi,t + θ4WlnPOPi,t + θ5WlnHCi,t

+ θ6WlnKOFi,t + θ7WlnFDi,t + θ8WlnECi,t + υi + μi,t

(6)  

Where λ refers to the coefficient used to assess the presence of dynamics of CO2 emissions while θ represents the coefficient measuring 
the structure of the spatial diffusion of CO2 emissions. φ refers to the coefficient of the spatial autocorrelation of CO2 emissions (spatial 
lag coefficient). αK refers to coefficients of the independent variables to be estimated. θk stands for the spatial coefficient for inde
pendent variables. W denotes the spatial weighting matrix (Wc or Wd), υ denotes the country-specific effect, b0 the constant, and finally 
μi,t the error term. 

Model (6) used several variables to reflect their impact on CO2 emissions. These variables include Real GDP (measured in 2017 US 
$), Energy intensity (measured in Btu/2015$ GDP PPP), Population, Human index, KOF economic globalization index, Financial 
Development Index, Total energy consumption (measured in a million Btu), Fossil energy consumption (measured in a million Btu), 
Renewable energy consumption (measured in a million Btu), and nuclear energy consumption (measured in a million Btu). Below, each 
variable is explained in more detail, along with its definition and sources. 
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2.5. Data sources 

The empirical analysis aims to estimate the spatial effects of different energy sources on environmental quality for 135 developed 
and developing economies from 2000 to 2019. CO2 emissions from the U.S. Energy Information Administration measure environ
mental quality. The selection of CO2 emissions depends on their availability for a large sample of countries over a long period. 
Regarding the interest variable, we consider different energy sources: total energy consumption, fossil energy consumption, renewable 
energy consumption and nuclear energy consumption. Data regarding energy consumption are also extracted from the U.S. Energy 
Information Administration. Furthermore, a wide range of control variables that could affect CO2 emissions has been included in the 
specification. It is worth noting that the empirical study is based on the Stochastic Impacts by Regression on Population, Affluence, and 
Technology (STIRPAT) proposed by Dietz and Rosa (1997). According to the model, environmental degradation is affected by three 
factors: population (P), affluence (A) and technology (T). This study measures P by the total population, A by GDP per capita, and T by 
energy intensity [59]. The specification also includes GDP squared to verify the validity of the Environmental Kuznets Curve hy
pothesis. Finally, the specification also incorporates three variables that have received renewed attention as potential drivers of 
environmental quality: human capital, economic globalization, and financial development. The human capital index from the Penn 
World Table is measured by the human capital index, which is based on years of schooling and returns to education [60]. Economic 
globalization is measured by the KOF economic globalization index computed by Ref. [61] and provided by the KOF Swiss Economic 
Institute. Finally, the financial development index, recently developed by the International Monetary Fund, is used as a proxy for 
financial development. The index has the advantage of considering various financial development aspects of financial institutions and 
financial markets. Further definitions and sources of the variables are reported in Table 1. 

3. Empirical findings 

3.1. Data analysis 

Before estimating the dynamic spatial regression, it is essential to check the stationary properties of variables. Since we are con
ducting a panel data analysis, cross-section dependence between the variables may arise. Indeed, cross-section dependence may occur 
due to standard economic and financial shocks affecting the economy. Checking the presence of cross-section dependence is essential 
because it allows the selection and implementation of the appropriate unit root tests. Indeed, first-generation panel unit root tests are 
no longer valid in cross-section dependence, and second-generation tests should be employed. Findings of the cross-section depen
dence test developed by Ref. [62] are reported in Table 2. The CD test suggests rejecting the null hypothesis for all variables except 
nuclear energy consumption. Consequently, one could confirm the presence of cross-section dependence for most countries, which 
implies the invalidity of first-generation panel unit root tests. 

The present study assesses the order of integration of all variables considered in the analysis using the cross-sectionally augmented 
Dickey-Fuller (CADF) test proposed by Ref. [63]. The findings for variables at levels and first differences are summarized in Table 3. 
The results strongly confirm that one cannot reject the null hypothesis of a unit root for all variables. However, when considering the 
first differences, variables become stationary at the 1 and 5 % statistical levels. Therefore, all variables are integrated into order 1. 

Before estimating the dynamic spatial model, it is imperative to perform a spatial autocorrelation test to check whether there has 
been spatial autocorrelation. To do that, we compute the global Moran’s I index for CO2 emissions and energy consumption using the 
inverse distance weighting matrix and the contiguity weighting matrix. The global Moran’s I index results of CO2 emissions are re
ported in Table 4. 

The findings show that the Moran ‘I index is positive and statistically significant at 1 %, with the highest magnitude observed when 
the contiguity matrix is employed. One could also observe that Moran’s I index values are positive but have a downward trend over 
time. This suggests the presence of positive spatial autocorrelation between CO2 emissions in the different countries. These results 
strongly support the presence of significant spatial autocorrelation for CO2 emissions and confirm the appropriateness of the dynamic 
spatial model to estimate the effects of energy consumption on CO2 emissions. To further assess the presence of spatial autocorrelation, 
we conduct the Moran ‘I index for the different energy consumption series. The findings summarized in Table 5 indicate that Moran’s I 

Table 1 
Definitions and sources of variables.  

Abbreviation Definition Source 

CO2 CO2 Emissions (metric tons of carbon dioxide) U.S. Energy Information Administration 
GDP Real GDP (2017 US$) Penn World Table 10.0 
EI Energy intensity (Btu/2015$ GDP PPP) U.S. Energy Information Administration 
POP Population Penn World Table 10.0 
HC Human capital index Penn World Table 10.0 
KOF KOF economic globalization index Gygli et al. (2019) 
FD Financial development Index International Monetary Fund 
TEC Total energy consumption (million Btu) U.S. Energy Information Administration 
FEC Fossil energy consumption (million Btu) U.S. Energy Information Administration 
REC Renewable energy consumption (million Btu) U.S. Energy Information Administration 
NEC Nuclear energy consumption (million Btu) U.S. Energy Information Administration  
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index is significant at the 1 % level for all energy sources and under the two spatial weighting matrices. 
Moreover, using the contiguity weighting matrix, the highest Moran’s I index is observed for renewable energy consumption. In 

contrast, fossil energy consumption has the highest Moran’s I index when using the inverse distance weighting matrix. Finally, nuclear 
energy consumption exhibits the lowest Moran’s I index. Another critical remark is that the index is positive in all cases, suggesting the 

Table 2 
Cross-sectional dependence test results.  

Variables CD statistics p-value 

CO2 emissions 83.714a 0.000 
GDP 348.445a 0.000 
Energy intensity 77.208a 0.000 
Population 247.776a 0.000 
Human capital 347.931a 0.000 
Economic globalization 44.591a 0.000 
Financial development 144.893a 0.000 
Total energy consumption 130.753a 0.000 
Fossil energy consumption 103.303a 0.000 
Renewable energy consumption 162.540a 0.000 
Nuclear energy consumption 0.719 0.472  

a Denote rejecting the null hypothesis of no cross-section dependence at the 1 % level. 

Table 3 
CADF Panel unit root test.  

Variables level 1st. difference 

statistics p-value statistics p-value 

CO2 emissions − 1.576 0.969 − 3.079*** 0.000 
GDP − 1.831 1.000 − 2.441** 0.042 
Energy intensity − 1.990 1.000 − 3.193*** 0.000 
Population − 1.822 1.000 − 4.376*** 0.000 
Human capital − 1.231 1.000 − 24.765*** 0.000 
Economic globalization − 2.073 0.994 − 2.471** 0.019 
Financial development − 1.890 1.000 − 2.966*** 0.000 
Total energy consumption − 1.701 1.000 − 4.033*** 0.000 
Fossil energy consumption − 1.538 0.989 − 2.900*** 0.000 
Renewable energy consumption − 2.228 0.764 − 2.699*** 0.000 
Nuclear energy consumption 0.765 1.000 − 17.000*** 0.000 

Notes: *** and ** denote the rejection of the null hypothesis at the 1 and 5 % levels. 

Table 4 
Moran’s, I index of CO2 emissions.  

Year Wc Wd 

Moran’s I p-value Moran’s I p-value 

2000 0.371a 0.000 0.137a 0.000 
2001 0.368a 0.000 0.137a 0.000 
2002 0.368a 0.000 0.138a 0.000 
2003 0.364a 0.000 0.138a 0.000 
2004 0.356a 0.000 0.137a 0.000 
2005 0.353a 0.000 0.136a 0.000 
2006 0.350a 0.000 0.136a 0.000 
2007 0.348a 0.000 0.134a 0.000 
2008 0.343a 0.000 0.134a 0.000 
2009 0.322a 0.000 0.130a 0.000 
2010 0.326a 0.000 0.129a 0.000 
2011 0.303a 0.000 0.123a 0.000 
2012 0.301a 0.000 0.123a 0.000 
2013 0.289a 0.000 0.119a 0.000 
2014 0.278a 0.000 0.116a 0.000 
2015 0.264a 0.000 0.112a 0.000 
2016 0.269a 0.000 0.113a 0.000 
2017 0.275a 0.000 0.115a 0.000 
2018 0.275a 0.000 0.115a 0.000 
2019 0.274a 0.000 0.115a 0.000  

a Denotes the rejection of the null hypothesis on no spatial autocorrelation at the 1 % level. 
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presence of significant positive spatial autocorrelation exists between units considered in the analysis. 
The local Moran’s I test results are shown in Fig. 1 under Wc and Wd. There is evidence of significant spatial autocorrelation for CO2 

emissions, where most countries are concentrated in positive clustering (High-High/Low-Low). There is also evidence of spatial 
autocorrelation for energy consumption. This finding is valid for total, fossil, and renewable energy consumption. Results relative to 
nuclear energy consumption are comparable to those of Table 5 and suggest the presence of relatively low spatial autocorrelation. In 
conclusion, the previous analysis provides strong evidence that CO2 emissions and energy consumption exhibit significant positive 
correlations. In this case, one could estimate the dynamic spatial model. 

3.2. Results and discussion 

Before estimating the dynamic spatial model, one should select the appropriate spatial model. To do so, we performed the Wald test 
to identify whether the DSAR, DSEM, or DSDM would be fit for our estimations. The results of the Wald test are reported at the bottom 
of Tables 6 and 7. The Wald statistics are significant at the 1 % level in all cases, suggesting that the DSDM model is more appropriate 
for our estimation than the DSAR and DSEM models. The superiority of the DSDM model is observed for both weighting matrices. It is 
worth noting that the DSDM model allows considering the spatial interaction at the levels of the dependent variable and the different 
explanatory variables. 

Table 5 
The Moran’s I index of energy consumption.   

Total energy consumption Fossil energy consumption 

Year Wc Wd Wc Wd 

Moran’s I p-value Moran’s I p-value Moran’s I p-value Moran’s I p-value 

2000 0.386*** 0.000 0.138*** 0.000 0.378*** 0.000 0.138*** 0.000 
2001 0.378*** 0.000 0.137*** 0.000 0.373*** 0.000 0.138*** 0.000 
2002 0.377*** 0.000 0.137*** 0.000 0.370*** 0.000 0.138*** 0.000 
2003 0.377*** 0.000 0.138*** 0.000 0.669*** 0.000 0.139*** 0.000 
2004 0.374*** 0.000 0.138*** 0.000 0.367*** 0.000 0.139*** 0.000 
2005 0.370*** 0.000 0.137*** 0.000 0.361*** 0.000 0.139*** 0.000 
2006 0.368*** 0.000 0.137*** 0.000 0.356*** 0.000 0.138*** 0.000 
2007 0.362*** 0.000 0.135*** 0.000 0.347*** 0.000 0.134*** 0.000 
2008 0.356*** 0.000 0.133*** 0.000 0.343*** 0.000 0.133*** 0.000 
2009 0.351*** 0.000 0.130*** 0.000 0.337*** 0.000 0.130*** 0.000 
2010 0.338*** 0.000 0.121*** 0.000 0.325*** 0.000 0.128*** 0.000 
2011 0.320*** 0.000 0.123*** 0.000 0.304*** 0.000 0.122*** 0.000 
2012 0.318*** 0.000 0.123*** 0.000 0.304*** 0.000 0.121*** 0.000 
2013 0.313*** 0.000 0.120*** 0.000 0.292*** 0.000 0.118*** 0.000 
2014 0.304*** 0.000 0.118*** 0.000 0.282*** 0.000 0.116*** 0.000 
2015 0.294*** 0.000 0.115*** 0.000 0.269*** 0.000 0.112*** 0.000 
2016 0.298*** 0.000 0.116*** 0.000 0.275*** 0.000 0.114*** 0.000 
2017 0.302*** 0.000 0.117*** 0.000 0.282*** 0.000 0.115*** 0.000 
2018 0.303*** 0.000 0.118*** 0.000 0.282*** 0.000 0.115*** 0.000 
2019 0.300*** 0.000 0.116*** 0.000 0.279*** 0.000 0.114*** 0.000  

Renewable energy consumption Nuclear energy consumption 
Year Wc Wd Wc Wd 

Moran’s I p-value Moran’s I p-value Moran’s I p-value Moran’s I p-value 

2000 0.453*** 0.000 0.101*** 0.000 0.192*** 0.000 0.085*** 0.000 
2001 0.452*** 0.000 0.101*** 0.000 0.189*** 0.000 0.084*** 0.000 
2002 0.437*** 0.000 0.097*** 0.000 0.189*** 0.000 0.084*** 0.000 
2003 0.435*** 0.000 0.096*** 0.000 0.187*** 0.000 0.083*** 0.000 
2004 0.430*** 0.000 0.095*** 0.000 0.188*** 0.000 0.083*** 0.000 
2005 0.226*** 0.000 0.053*** 0.000 0.189*** 0.000 0.083*** 0.000 
2006 0.501*** 0.000 0.078*** 0.000 0.189*** 0.000 0.083*** 0.000 
2007 0.503*** 0.000 0.075*** 0.000 0.189*** 0.000 0.083*** 0.000 
2008 0.489*** 0.000 0.065*** 0.000 0.190*** 0.000 0.083*** 0.000 
2009 0.516*** 0.000 0.071*** 0.000 0.189*** 0.000 0.083*** 0.000 
2010 0.503*** 0.000 0.075*** 0.000 0.190*** 0.000 0.077*** 0.000 
2011 0.457*** 0.000 0.066*** 0.000 0.225*** 0.000 0.075*** 0.000 
2012 0.342*** 0.000 0.082*** 0.000 0.231*** 0.000 0.075*** 0.000 
2013 0.357*** 0.000 0.084*** 0.000 0.231*** 0.000 0.074*** 0.000 
2014 0.374*** 0.000 0.090*** 0.000 0.240*** 0.000 0.073*** 0.000 
2015 0.368*** 0.000 0.096*** 0.000 0.232*** 0.000 0.074*** 0.000 
2016 0.346*** 0.000 0.093*** 0.000 0.230*** 0.000 0.073*** 0.000 
2017 0.355*** 0.000 0.098*** 0.000 0.230*** 0.000 0.073*** 0.000 
2018 0.344*** 0.000 0.093*** 0.000 0.229*** 0.000 0.073*** 0.000 
2019 0.333*** 0.000 0.094*** 0.000 0.238*** 0.000 0.073*** 0.000 

*** denotes the rejection of the null hypothesis on no spatial autocorrelation at the 1 % level. 
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The DSDM model is estimated for total energy consumption and the different energy sources (fossil, renewable and nuclear). 
Tables 6 and 7 summarize the total and disaggregated energy consumption results under the weighting matrices Wc and Wd, 
respectively. The impact of energy intensity is positive and statistically significant. In addition, we also found its spatial spillover effect 
to be significantly positive. These findings show that local energy intensity increases CO2 emissions in the same country. In addition, 
the rise in energy intensity in neighbouring countries also increases local CO2 emissions. 

The impact of human capital is negative and significant. Its spatial spillover effect is significantly positive. When the inverse 
distance weighting matrix is used, the externality effect is higher than the local effect. This result suggests that enhancing human 
capital can have a positive impact on a country’s environmental performance. By improving human capital, better energy efficiency 
can be achieved, which in turn reduces carbon emissions [64]. Consequently, if a country’s carbon emissions are steadily decreasing, 
this can lead to a reduction in environmental degradation not only within the country itself but also in neighbouring countries. 
Therefore, investing in education and other forms of human capital can help build knowledgeable and skilled human capital, leading to 
a reduction in carbon emissions in the long term, which benefits both the country and its neighbours [65]. It is worth noting that the 
relationship between financial development and CO2 emissions has been unclear so far. On the one hand, studies conducted by Refs. [6, 
7,37], and [66] suggest that financial development can effectively reduce CO2 emissions. On the other hand, financial development 
may also promote economic growth, leading to an increase in CO2 emissions, as suggested by Refs. [67,68], and [69]. According to the 
empirical results in Table 7, the direct and spillover effects of financial development were significantly adverse. The significantly 
negative direct effect indicated that a one-unit increase in financial development decreased CO2 emissions by 0.05 % (total direct 
effect). This finding is consistent with that of [70] but is inconsistent with [71,72]. On the other hand, the significant negative spillover 
effect suggests that a one-unit increase in the financial development of neighbouring countries would decrease CO2 emissions by 1.7 % 
(total spillover effect) in the local country. More importantly, we observed that the spillover effect of financial development was much 
greater than the direct effect, resulting in a negative total effect of financial development. Therefore, neighbouring countries that have 
higher levels of financial development can boost the spillover of advanced technological diffusion, knowledge sharing, improved 

Table 6 
The estimation results of the DSDM under Wc.   

(1) (2) (3) (4) 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Lagged CO2 emissions 0.657*** (0.005) 0.613*** (0.008) 0.660*** (0.005) 0.693*** (0.005) 
GDP 0.174*** (0.055) 0.132*** (0.040) − 0.154*** (0.046) 0.062 (0.052) 
Squared GDP 0.003*** (0.001) 0.0039*** (0.000) 0.0051*** (0.000) 0.0067*** (0.001) 
Energy intensity 0.023 (0.021) 0.108*** (0.022) 0.133*** (0.008) 0.122*** (0.007) 
Population 0.007 (0.006) 0.043*** (0.008) 0.008*** (0.002) 0.029*** (0.007) 
Human capital − 0.078*** (0.010) − 0.130*** (0.009) − 0.038*** (0.007) − 0.161*** (0.009) 
Economic globalization − 0.001*** (0.000) − 0.0001 (0.000) − 0.0011*** (0.000) − 0.0002 (0.000) 
Financial development − 0.001*** (0.000) − 0.001*** (0.000) − 0.0005*** (0.000) − 0.0005*** (0.000) 
Total energy consumption 0.129*** (0.020) –  –  –  
Fossil energy consumption –  0.297*** (0.017) –  –  
Renewable energy consumption –  –  − 0.001*** (0.000)   
Nuclear energy consumption –  –  –  − 0.010*** (0.001) 
Wc × CO2 emissions 0.021*** (0.005) 0.077*** (0.008) 0.082*** (0.008) 0.087*** (0.007) 
Wc× lagged CO2 emissions − 0.490*** (0.005) − 0.470*** (0.007) − 0.467*** (0.005) − 0.533*** (0.005) 
Wc× GDP 0.037*** (0.008) 0.039*** (0.007) 0.015** (0.007) 0.025*** (0.008) 
Wc× squared GDP − 0.001 (0.000) − 0.0026*** (0.000) − 0.001*** (0.000) − 0.0001 (0.000) 
Wc× energy intensity 0.145*** (0.047) 0.298*** (0.023) 0.153*** (0.008) 0.119*** (0.013) 
Wc× Population 0.020*** (0.005) 0.020*** (0.004) 0.047*** (0.006) 0.024*** (0.005) 
Wc× human capital − 0.056*** (0.005) − 0.029*** (0.005) − 0.015 (0.011) − 0.052*** (0.007) 
Wc× economic globalization − 1.65e-05 (0.000) − 0.0006*** (9.87e-05) − 0.0005*** (0.000) 2.81e-05 (0.000) 
Wc× financial development − 0.005*** (0.000) − 0.004*** (0.000) − 0.005*** (0.000) − 0.004*** (0.000) 
Wc× x total energy consumption 0.052*** (0.005) – – –  –  
Wc× fossil energy consumption –  0.217*** (0.023) –  –  
Wc× renewable energy consumption –  –  − 0.003*** (0.000) –  
Wc× nuclear energy consumption –  –  –  − 0.025*** (0.002) 
VIF 8.51 8.25 5.40 5.02 
Wald 1 (p-value) 126.88 (0.000) 178.23 (0.000) 165.55 (0.000) 147.02 (0.000) 
Wald 2 (p-value) 120.23(0.000) 122.75 (0.000) 126.72 (0.000) 125.33 (0.000) 
LL 3464.1817 3468.3737 3481.6708 3633.0193 
R-squared 0.98 0.98 0.98 0.98 

Notes: ***, **, and * denote the significance at the 1 %, 5 %, and 10 % levels. Values in ( ) denote the standard error (SE). W is the spatial weight 
matrix. W x X stands for the product of W and the variable X, representing the spillover effect of the variable X on CO2 emissions. The Wald test is 
applied to determine whether DSAR, DSEM, or DSDM would be fit for our estimations. VIF is used to check whether multiple mutual linear problems 
exist. LL is the log-likelihood.  

Fig. 1. Scatter plots of Moran’s I index.  
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governance, stable policies, and the transfer of skills. This can greatly help to reduce CO2 emissions in the local country. This 
conclusion differs from previous studies that concluded that financial development reduced local CO2 emissions ([7,73]). Based on the 
spatial relationship between financial development and CO2 emissions, this study infers that financial development, through spillover 
effects, reduces CO2 emissions. The environmental effects of economic globalization are also found to be negative and statistically 
significant. Notably, the coefficients exhibit a relatively low magnitude, showing that economic globalization has a limited effect on 
reducing CO2 emissions. In addition, the spatial environmental effect is weaker than the direct effect of economic globalization. As for 
financial development, the weak effect of economic globalization (trade and financial flows) on the environment may be because of 
two competing effects. According to Ref. [74], introducing new production techniques and speeding up economic activity through 
international trade may negatively impact the environment. Free international trade may improve the environment by facilitating the 
import of new green technologies. However, foreign direct investments also have conflicting effects. They could improve the envi
ronmental quality (Pollution Halo Hypothesis) or deteriorate it (Pollution Haven Hypothesis). 

Our research yielded significant results regarding the spatial impact of energy consumption on CO2 emissions. The local impact of 
total energy consumption is positive and statistically significant using both weighting matrices. Similar findings are observed for the 
spatial spillover effect of total energy consumption, which has a positive externality. Increasing the total energy consumption of 
neighbours increases local CO2 emissions. A similar result is obtained for fossil energy consumption since the associated coefficient is 
positive and statistically significant. This finding supports [75] conclusion that burning fossil fuels increases CO2 emissions. The local 
hike in fossil energy consumption increases CO2 emissions, while an increase in fossil energy consumption in neighbouring countries 
further deteriorates the environmental quality and increases local CO2 emissions. However, it should be mentioned that the local and 
spillover adverse effects of fossil energy consumption are higher than those of total energy consumption. The potential explanation of 
this result could be attributed to total energy, encompassing fossil, renewable, and nuclear energy sources, each of which may have 
different environmental implications. In contrast, the coefficients of renewable energy consumption and nuclear energy consumption 
are found to be negative and statistically significant. This result is consistent with the findings of [76], who discovered that the use of 
renewable energy leads to a significant decrease in CO2 emissions. The local increase of these two categories of energy sources de
creases CO2 emissions. The results, also, show that the local impact of nuclear energy consumption is much higher than that of 
renewable energy. Similarly, the increase in nuclear and renewable energy consumption in neighbouring countries decreases local CO2 

Table 7 
The estimation results the DSDM under Wd.   

(1) (2) (3) (4) 

Coeff. SE. Coeff. SE Coeff. SE Coeff. SE 

Lagged CO2 emissions 0.883*** (0.002) 0.852*** (0.002) 0.880*** (0.001) 0.888*** (0.002) 
GDP 0.325*** (0.047) 0.280*** (0.040) 0.250*** (0.030) 0.199*** (0.032) 
Squared GDP − 0.171*** (0.000) − 0.166*** (0.000) − 0.180*** (0.000) − 0.163*** (0.001) 
Energy intensity 0.005 (0.021) 0.028*** (0.007) 0.138*** (0.003) 0.092*** (0.003) 
Population 0.013*** (0.004) 0.019*** (0.004) 0.014*** (0.005) 0.032*** (0.005) 
Human capital − 0.067*** (0.009) − 0.027*** (0.007) − 0.046*** (0.009) − 0.051*** (0.010) 
Economic globalization − 0.0003*** (9.91e-05) − 0.0002*** (5.99e-05) − 0.0005*** (0.000) − 0.0003*** (9.08e-05) 
Financial development − 0.0005*** (0.000) − 0.0005*** (8.36e-05) − 0.0005*** (0.000) − 0.0003*** (0.000) 
Total energy consumption 0.123*** (0.019) – – – – – – 
Fossil energy consumption – – 0.120*** (0.006) – – – – 
Renewable energy consumption – – – – − 0.001*** (0.000) – – 
Nuclear energy consumption – – – – – – − 0.0004*** (0.000) 
Wd × CO2 emissions 0.344*** (0.008) 0.222*** (0.007) 0.394*** (0.007) 0.450*** (0.008) 
Wd× lagged CO2 emissions − 0.743*** (0.002) − 0.721*** (0.002) − 0.740*** (0.002) − 0.759*** (0.001) 
Wd× GDP 0.370** (0.149) 0.312** (0.141) 0.340** (0.165) 0.351*** (0.130) 
Wd× squared GDP − 0.095 (0.003) − 0.072*** (0.002) − 0.072*** (0.003) − 0.074*** (0.002) 
Wd× energy intensity 0.233*** (0.054) 0.179*** (0.031) 0.150*** (0.013) 0.119*** (0.016) 
Wd× Population 0.139*** (0.023) 0.091*** (0.022) 0.201*** (0.020) 0.104*** (0.022) 
Wd× human capital − 0.207*** (0.022) − 0.220*** (0.015) − 0.272*** (0.024) − 0.526*** (0.023) 
Wd× economic globalization − 0.006*** (0.000) − 0.006*** (0.000) − 0.005*** (0.000) − 0.005*** (0.000) 
Wd× financial development − 0.017*** (0.000) − 0.016*** (0.000) − 0.013*** (0.000) − 0.008*** (0.000) 
Wd× total energy consumption 0.096*** (0.006) –  –  –  
Wd× fossil energy consumption –  0.487*** (0.020) –  –  
Wd× renewable energy consumption –  –  − 0.004*** (0.000) –  
Wd× nuclear energy consumption –  –  –  − 0.083*** (0.002) 
VIF 8.51 8.25 5.40 5.02 
Wald 1 (p-value) 182.33 (0.000) 185.27 (0.000) 185.72 (0.000) 192.92 (0.000) 
Wald 2 (p-value) 130.43 (0.000) 134.29 (0.000) 146.89 (0.000) 155.86 (0.000) 
LL 5004.8957 5029.3644 5099.2042 5325.9842 
R-squared 0.98 0.98 0.98 0.98 

Notes: ***, **, and * denote the significance at the 1 %, 5 %, and 10 % levels. Values in ( ) denote the standard error (SE). W is the spatial weight 
matrix. WX stands for the product of W and the variable X, representing the spillover effect of the variable X on CO2 emissions. The Wald test is 
applied to determine whether DSAR, DSEM, or DSDM would be fit for our estimations. VIF is used to check whether multiple mutual linear problems 
exist. LL is the log-likelihood.  
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emissions. The magnitude spillover impact of nuclear energy consumption is also higher than the effect of renewable energy con
sumption. These findings imply that using clean energy sources (renewable and nuclear) allows countries to reduce their CO2 and CO2 
emissions in their neighbouring countries. 

3.3. Computing the marginal effects of energy consumption 

According to Ref. [51], one could compute the cumulative marginal effects. Therefore, the final stage of the dynamic spatial 
analysis comprises computing the direct, indirect (spillover) and total cumulative marginal effects of the variables under study, 
particularly energy consumption. The effects mentioned above are computed for specifications of the different energy sources using the 
two weighting matrices and are based on estimation regression in Tables 6 and 7 The findings are reported in Table 8. 

The findings reveal that the direct and indirect effects of the gross domestic product are positive and statistically significant under 
the two spatial weight matrices, Wc and Wd. This result shows that economic growth in a country positively and significantly affects 
CO2 emissions. Similarly, neighbouring countries’ GDP has an adverse and significant impact on the CO2 emissions of other countries. 
However, the direct effect of GDP on CO2 emissions is always higher than the indirect spillover effect. The sum of the two effects ranges 
from 0.08 to 0.21 under Wc and 0.55 to 0.69 under Wd. The findings also suggest that the energy intensity band population have direct 
and indirect detrimental effects on environmental quality. The table shows that both variables have positive and statistically signif
icant direct and indirect effects. Furthermore, it can be observed that the indirect effects exceed the direct effect in almost all cases. 
These findings confirm that energy intensity and population in a country deteriorate the environment in the same country and their 
neighbouring countries. The table also shows that human capital, economic globalization, and financial development have adverse 
direct, indirect, and total effects on CO2 emissions [64]. Indeed, the most important outcome here is the existence of a spillover effect 
for both variables. These results confirm that human capital, economic globalization, and financial development in a specific country 
reduce CO2 emissions in the same country and their neighbours. However, human capital has the highest indirect and total effects on 
CO2 emissions. 

Regarding total energy consumption, the results indicate that the direct impact is positive and significant. The indirect effect is also 
positive and significant. This indicates that an increase in total energy consumption in a particular country significantly affects its CO2 
emissions. Similarly, the increase in total energy consumption in neighbouring countries has a detrimental and significant impact on 
the environment of the host country. It is worth noting that the direct adverse effect of total energy consumption is higher than the 
indirect adverse effect. The total marginal impact also appears significant (0.181 under Wc and 0.22 under Wd). Similarly, the same 
result is obtained for fossil energy consumption, with significant direct and indirect impacts. This result reveals that an increase in 
fossil energy consumption in all neighbouring countries leads to more significant pollution in local countries. The cumulative marginal 
impact is 0.51 and 0.60 when Wc and Wd are used, respectively. One could note here that the total environmental effect of fossil energy 
consumption is higher than that of total energy consumption. Unlike fossil energy sources, renewable energy consumption has sig
nificant negative direct and indirect effects. Thus, reducing pollutant emissions in a specific country may be caused by renewable 
energy consumption in the country under consideration and in its neighbouring countries. The cumulative marginal impact was 
negative and significant. The cumulative marginal impact is equal to − 0.005 when Wc and Wd are used. t is noteworthy to 
acknowledge that the direct, indirect, and total effects are relatively low compared to the adverse effects of fossil energy consumption. 
In other words, while renewable energy consumption has been shown to have positive environmental impacts, it is insufficient in 
offsetting the adverse impacts of fossil fuel consumption. At the same time, the estimated direct and indirect effects of nuclear energy 
consumption are negative and significant at the 1 % statistical level. The cumulative marginal effect is found to be negative and 
statistically significant. This suggests that nuclear energy consumption in a specific country allows for decreasing CO2 emissions in 
local countries. Also, the result reveals that the increase in nuclear energy in neighbouring countries reduces the environmental 
degradation of the local country. The total impact is − 0.035 when Wc is used, and − 0.083 when Wd is employed. The positive marginal 
impact suggested a 1 % increase in nuclear energy consumption decreases CO2 emissions by − 0.035 % and − 0.083 % when Wc and Wd 
are used, respectively. 

4. Conclusion and policy implications 

Increased degradation of environmental and ecological indicators has marked the latest decades. However, while there has been a 
boom in empirical research analyzing the effects of energy consumption on environmental degradation [77], the spatial spillover 
effects of energy use still need to be studied. This research aims to fill this gap by conducting a comparative analysis of the spatial 
effects of different energy sources on CO2 emissions for a large sample of 135 countries from 2000 to 2019. The analysis accounts for 
total energy consumption, fossil energy consumption, renewable energy consumption, and nuclear energy consumption. 

We may summarize the empirical results as follows. To start, Moran’s I index, and scatter plots provide strong evidence that CO2 
emissions and energy consumption exhibit significant positive correlations. These results provide an argument for implementing the 
dynamic spatial model to assess the impacts of energy consumption on carbon dioxide emissions. The second significant result is that 
the DSDM model is more appropriate than our case’s DSAR and DSEM models. We then estimated the DSDM model using the inverse 
distance weighting matrix and the contiguity weighting matrix. The findings suggest that total energy consumption has a direct 
detrimental effect on the environment. This effect is further exacerbated when accounting for the indirect spillover effect of total 
energy consumption. While the adverse effects of fossil energy are transmitted via direct and indirect effects, results suggest that the 
direct adverse effect of energy consumption exceeds the indirect spillover effect. 

The empirical investigation also reveals similar results for fossil energy consumption, which is found to harm environmental 
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Table 8 
Results of the cumulative marginal effects.    

Results with Wc Results with Wd 

(1) (2) (3) (4) (1) (2) (3) (4) 

GDP Direct effect 0.174*** 0.132*** 0.154*** 0.062 0.325*** 0.280*** 0.250*** 0.199*** 
Indirect effect 0.037*** 0.039*** 0.015*** 0.025*** 0.370** 0.312** 0.340** 0.351*** 
Total effect 0.211*** 0.171*** 0.169*** 0.087*** 0.695*** 0.592*** 0.590*** 0.550*** 

Squared GDP Direct effect − 0.003*** − 0.002*** − 0.005*** − 0.006*** − 0.171*** − 0.166*** − 0.188*** − 0.166*** 
Indirect effect − 0.001 − 0.002*** − 0.001*** − 0.000 − 0.095*** − 0.072*** − 0.072*** − 0.074*** 
Total effect − 0.004*** − 0.006*** − 0.006*** − 0.006*** − 0.266*** − 0.238*** − 0.260*** − 0.241*** 

Energy intensity Direct effect 0.023 0.108*** 0.133*** 0.122*** 0.005 0.028*** 0.138*** 0.092*** 
Indirect effect 0.145*** 0.298*** 0.153*** 0.119*** 0.235*** 0.179*** 0.150*** 0.119** 
Total effect 0.168** 0.406*** 0.286*** 0.241*** 0.241*** 0.207*** 0.288*** 0.212*** 

Population Direct effect 0.007 0.043*** 0.008*** 0.029*** 0.013*** 0.019*** 0.014*** 0.032*** 
Indirect effect 0.020*** 0.020*** 0,047*** 0.024*** 0.139*** 0.091*** 0.201*** 0.104*** 
Total effect 0.028*** 0.063** 0.055*** 0.054*** 0.152*** 0.110** 0.215*** 0.136*** 

Human capital Direct effect − 0.078*** − 0.130*** − 0.038*** − 0.160*** − 0.067*** − 0.027*** − 0.046*** − 0.051*** 
Indirect effect − 0.056*** − 0,020*** − 0.015 − 0.052** − 0.207*** − 0.220*** − 0.272*** − 0.526*** 
Total effect − 0.124*** − 0,156*** − 0.054*** − 0.212*** − 0.274*** − 0.247*** − 0.318*** − 0.577*** 

Economic globalization Direct effect − 1.18E-03*** − 1.44E-04 1.19E-03*** − 2.27E-04 − 3,68E-04*** − 2.58E-04*** − 5.16E-04*** − 3,50E-04*** 
Indirect effect − 1.65E-05 − 6.17E-04*** − 5.57E-04*** 2.81E-05 − 6,24E-03*** − 6.13E-03*** − 5.45E-03*** − 5,24E-03** 
Total effect − 0.001*** − 0.0007** − 0.001*** − 0.0001 − 0.006*** − 0.006*** − 0.005*** − 0.005*** 

Financial development Direct effect − 0.001*** − 0.001*** − 0.0005*** − 0.0005*** − 0.0005*** − 0.0005*** − 0.0005*** − 0.0003*** 
Indirect effect − 0.005*** − 0.004*** − 0.005*** − 0.004*** − 0.017*** − 0.016*** − 0.013*** − 0.008*** 
Total effect − 0.007*** − 0.006*** − 0.006*** − 0.004*** − 0.017*** − 0.016*** − 0.014*** − 0.008** 

Total energy consumption Direct effect 0.129*** – – – 0.123*** – – – 
Indirect effect 0.052*** – – – 0.099*** – – – 
Total effect 0.181*** – – – 0.222*** – – – 

Fossil energy consumption Direct effect  0.297*** – – – 0.120***   
Indirect effect  0.217*** – – – 0.487***   
Total effect  0.514*** – – – 0.607***   

Renewable energy consumption Direct effect   − 0.001*** – – – − 0.001***  
Indirect effect   − 0.003*** – – – − 0.004***  
Total effect   − 0.005** – – – − 0.005***  

Nuclear energy consumption Direct effect    − 0.010*** – – – − 0.0004*** 
Indirect effect    − 0.025*** – – – − 0.083*** 
Total effect    − 0.035*** – – – − 0.083*** 

Notes: ***, **, and * denote the statistical significance at 1 %, 5 %, and 10 %. 
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quality. In addition, the detrimental effects of fossil energy consumption are higher than total energy consumption for both weighting 
matrices. The analysis suggests that clean energy sources (renewable and nuclear) reduce CO2 emissions via direct and indirect 
channels [78]. Two statements must be made. First, the indirect effects of clean energy consumption are lower than the direct effect. 
Second, the positive impact of nuclear energy consumption on CO2 emissions is higher than that of renewable energy. The empirical 
investigation conducted in this research provides substantial evidence supporting the indirect spillover effects of energy consumption 
on CO2 emissions. Therefore, most previous studies have underestimated the damaging impact of energy consumption on the envi
ronment, as they have ignored the indirect effects. 
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[30] A. Rehman, M.M. Alam, I. Ozturk, R. Alvarado, M. Murshed, C. Işık, H. Ma, Globalization and renewable energy use: how are they contributing to increasing 

CO2 emissions? A global perspective, Environ. Sci. Pollut. Control Ser. 30 (4) (2023) 9699–9712. 
[31] R.S.M. Tsimisaraka, L. Xiang, A.R.N.A. Andrianarivo, E.Z. Josoa, N. Khan, M.S. Hanif, R. Limongi, Impact of financial inclusion, globalization, renewable 

energy, ICT, and economic growth on CO2 emission in OBOR countries, Sustainability 15 (8) (2023) 6534. 
[32] U. Al-Mulali, Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: a panel data analysis, Prog. Nucl. Energy 73 (2014) 

172–178. 
[33] S.T. Hassan, M.A. Baloch, Z.H. Tarar, Is nuclear energy a better alternative for mitigating CO2 emissions in BRICS countries? An empirical analysis, Nucl. Eng. 

Technol. 52 (12) (2020) 2969–2974. 
[34] P.S. Eduardo, S. Naijela, F. Diogo, M.H. Fernando, The drivers of energy-related CO 2 emissions in Brazil: a regional application of the STIRPAT model, Environ. 

Sci. Pollut. Res. Int. 28 (37) (2021) 51745–51762. 
[35] S.A. Bargaoui, N. Liouane, F.Z. Nouri, Environmental impact determinants: an empirical analysis based on the STIRPAT model, Procedia-Social and Behavioral 

Sciences 109 (2014) 449–458. 
[36] Y. Fan, L.C. Liu, G. Wu, Y.M. Wei, Analyzing impact factors of CO2 emissions using the STIRPAT model, Environ. Impact Assess. Rev. 26 (4) (2006) 377–395. 
[37] S. Khan, M.K. Khan, B. Muhammad, Impact of financial development and energy consumption on environmental degradation in 184 countries using a dynamic 

panel model, Environ. Sci. Pollut. Control Ser. 28 (2021) 9542–9557. 
[38] H. Li, H. Mu, M. Zhang, S. Gui, Analysis of regional difference on impact factors of China’s energy–Related CO2 emissions, Energy 39 (1) (2012) 319–326. 
[39] T. Lv, H. Hu, H. Xie, X. Zhang, L. Wang, X. Shen, An empirical relationship between urbanization and carbon emissions in an ecological civilization 

demonstration area of China based on the STIRPAT model, Environ. Dev. Sustain. 25 (3) (2023) 2465–2486. 
[40] P. Poumanyvong, S. Kaneko, S. Dhakal, Impacts of urbanization on national transport and road energy use: evidence from low-, middle- and high-income 

countries, Energy Pol. 46 (2012) 268–277. 
[41] J.H. Wang, J. Mamkhezri, M. Khezri, M.S. Karimi, Y.A. Khan, Insights from European nations on the spatial impacts of renewable energy sources on CO2 

emissions, Energy Rep. 8 (2022) 5620–5630. 
[42] R. Wu, J. Wang, S. Wang, K. Feng, The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: a historical and 

prospective analysis, Renew. Sustain. Energy Rev. 149 (2019) 111328. 
[43] C. Xiong, S. Chen, L. Xu, Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China, Growth Change 

51 (3) (2020) 1401–1416. 
[44] W. Zhou, X. Cao, X. Dong, X. Zhen, The effects of carbon-related news on carbon emissions and carbon transfer from a global perspective: evidence from an 

extended STIRPAT model, J. Clean. Prod. 425 (2023) 138974. 
[45] D. Maddison, Environmental Kuznets curves: a spatial econometric approach, J. Environ. Econ. Manag. 51 (2) (2006) 218–230. 
[46] C. Ertur, W. Koch, Growth, technological interdependence and spatial externalities: theory and evidence, J. Appl. Econom. 22 (6) (2007) 1033–1062. 
[47] R. Ezcurra, V. Rios, Volatility and regional growth in Europe: does space matter? Spatial Econ. Anal. 10 (3) (2015) 344–368. 
[48] M. Khezri, M.S. Karimi, Y.A. Khan, S.Z. Abbas, The spillover of financial development on CO2 emission: a spatial econometric analysis of Asia-Pacific countries, 

Renew. Sustain. Energy Rev. 145 (2021) 111110. 
[49] H. Mahmood, T.T.Y. Alkhateeb, M. Furqan, Exports, imports, foreign direct investment and CO2 emissions in North Africa: spatial analysis, Energy Rep. 6 (2020) 

2403–2409. 
[50] R. Balado-Naves, J.F. Baños-Pino, M. Mayor, Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions, Energy Pol. 123 

(2018) 266–279. 
[51] J. LeSage, R.K. Pace, Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. 
[52] K. Ben-Ahmed, A. Bouratbine, M.A. El-Aroui, Generalized Linear Spatial Models in Epidemiology: a case study of zoonotic cutaneous leishmaniasis in Tunisia, 

J. Appl. Stat. 37 (1) (2010) 159–170. 
[53] J.P. Elhorst, Spatial Panel Models. Handbook of Regional Science, vol. 3, 2014. 
[54] K. Ben-Ahmed, K. Aoun, F. Jeddi, J. Ghrab, M.A. El-Aroui, A. Bouratbine, Visceral leishmaniasis in Tunisia: spatial distribution and association with climatic 

factors, Am. J. Trop. Med. Hyg. 81 (1) (2009) 40–45. 
[55] J.P. LeSage, M.M. Fischer, Spatial growth regressions: model specification, estimation and interpretation, Spatial Econ. Anal. 3 (3) (2008) 275–304. 
[56] L.C. Voumik, M. Rahman, S. Akter, Investigating the EKC hypothesis with renewable energy, nuclear energy, and R&D for EU: fresh panel evidence, Heliyon 8 

(12) (2022) e12447. 
[57] P.R. Ehrlich, J.P. Holdren, Impact of Population Growth: complacency concerning this component of man’s predicament is unjustified and counterproductive, 

Science 171 (3977) (1971) 1212–1217. 
[58] T. Dietz, E.A. Rosa, Effects of population and affluence on CO2 emissions, Proc. Natl. Acad. Sci. USA 94 (1) (1997) 175–179. 
[59] R. York, E.A. Rosa, T. Dietz, STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts, Ecol. Econ. 46 (3) (2003) 

351–365. 
[60] World Meteorological Organization, Economic costs of weather-related disasters soars but early warnings save lives. https://public.wmo.int/en/media/press- 

release/economic-costs-of-weather-related-disasters-soars-early-warnings-save-lives, 2023. (Accessed 23 May 2023). 
[61] S. Gygli, F. Haelg, N. Potrafke, J.E. Sturm, The KOF globalisation index revisited, The Review of International Organizations 14 (2019) 543–574. 
[62] M.H. Pesaran, General diagnostic tests for cross-sectional dependence in panels, Empir. Econ. 60 (1) (2021) 13–50. 
[63] M.H. Pesaran, A simple panel unit root test in the presence of cross-section dependence, Journal of Khan Applied econometrics 22 (2) (2007) 265–312. 
[64] Z. You, L. Li, M. Waqas, How do information and communication technology, human capital and renewable energy affect CO2 emission; New insights from BRI 

countries, Heliyon 10 (2024) e26481. 
[65] Y. Yao, K. Ivanovski, J. Inekwe, R. Smyth, Human capital and CO2 emissions in the long run, Energy Econ. 91 (2020) 104907. 
[66] J. Zhao, Z. Zhao, H. Zhang, The impact of growth, energy and financial development on environmental pollution in China: new evidence from a spatial 

econometric analysis, Energy Econ. 93 (2021) 104506. 
[67] A.O. Acheampong, Modelling for insight: does financial development improve environmental quality? Energy Econ. 83 (2019) 156–179. 
[68] M.A. Boutabba, The impact of financial development, income, energy and trade on carbon emissions: evidence from the Indian economy, Econ. Modell. 40 

(2014) 33–41. 
[69] W. Yin, B. Kirkulak-Uludag, S. Zhang, Is financial development in China green? Evidence from city-level data, J. Clean. Prod. 211 (2019) 247–256. 
[70] L. Xiong, S. Qi, Financial development and carbon emissions in Chinese provinces: a spatial panel data analysis, Singapore Econ. Rev. 63 (2) (2018) 447–464. 
[71] M. Shahbaz, S.J.H. Shahzad, N. Ahmad, S. Alam, Financial development and environmental quality: the way forward, Energy Pol. 98 (2016) 353–364. 
[72] M. Zakaria, S. Bibi, Financial development and environment in South Asia: the role of institutional quality, Environ. Sci. Pollut. Control Ser. 26 (2019) 

7926–7937. 
[73] S.A.H. Zaidi, M.W. Zafar, M. Shahbaz, F. Hou, Dynamic linkages between globalization, financial development, and carbon emissions: evidence from the Asia 

Pacific Economic Cooperation countries, J. Clean. Prod. 228 (2019) 533–543, 2019. 

K. Ben-Ahmed and O. Ben-Salha                                                                                                                                                                                   

http://refhub.elsevier.com/S2405-8440(24)07114-7/sref26
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref27
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref27
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref28
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref28
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref29
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref29
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref30
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref30
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref31
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref31
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref32
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref32
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref33
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref33
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref34
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref34
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref35
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref35
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref36
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref37
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref37
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref38
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref39
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref39
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref40
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref40
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref41
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref41
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref42
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref42
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref43
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref43
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref44
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref44
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref45
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref46
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref47
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref48
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref48
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref49
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref49
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref50
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref50
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref51
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref52
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref52
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref53
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref54
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref54
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref55
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref56
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref56
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref57
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref57
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref58
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref59
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref59
https://public.wmo.int/en/media/press-release/economic-costs-of-weather-related-disasters-soars-early-warnings-save-lives
https://public.wmo.int/en/media/press-release/economic-costs-of-weather-related-disasters-soars-early-warnings-save-lives
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref61
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref62
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref63
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref64
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref64
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref65
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref66
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref66
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref67
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref68
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref68
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref69
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref70
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref71
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref72
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref72
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref73
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref73


Heliyon 10 (2024) e31083

15

[74] G.M. Grossman, A.B. Krueger, Environmental Impacts of a North American Free Trade Agreement, National Bureau of Economic Research Working, 1991. Paper 
3914. 

[75] T. Martins, A.C. Barreto, F.M. Souza, A.M. Souza, Fossil fuels consumption and carbon dioxide emissions in G7 countries: empirical evidence from ARDL bounds 
testing approach, Environnemental Pollution 291 (2021) 118093, https://doi.org/10.1016/j.envpol.2021.118093. 

[76] S. Naz, R. Sultan, K. Zaman, A.M. Aldakhil, A.A. Nassani, M.M.Q. Abro, The moderating and mediating role of renewable energy consumption, FDI inflows, and 
economic growth on carbon dioxide emissions: evidence from the robust least square estimator, Environ. Sci. Pollut. Control Ser. 26 (2019) 2806–2819. 

[77] F. Atsu, S. Adams, J. Adjei, ICT, energy consumption, financial development, and environmental degradation in South Africa, Heliyon 7 (7) (2021) e07328. 
[78] Y. Cao, P. Jiang, Z. Gong, K. Yin, Y. Wang, The spatial spillover effects of clean energy consumption and production on sustainable economic development in 

China, Heliyon 10 (2024) e28976. 
[79] B. Meng, Y. Liu, Y. Gao, M. Li, Z. Wang, J. Xue, K. Wang, Developing countries’ responsibilities for CO2 emissions in value chains are larger and growing faster 

than those of developed countries, One Earth 6 (2) (2023) 167–181. 

K. Ben-Ahmed and O. Ben-Salha                                                                                                                                                                                   

http://refhub.elsevier.com/S2405-8440(24)07114-7/sref74
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref74
https://doi.org/10.1016/j.envpol.2021.118093
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref76
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref76
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref77
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref78
http://refhub.elsevier.com/S2405-8440(24)07114-7/sref78
http://refhub.elsevier.com/S2405-8440(24)07114-7/optZq9MAr9IY2
http://refhub.elsevier.com/S2405-8440(24)07114-7/optZq9MAr9IY2

	Assessing the spillover effects of various forms of energy on CO2 emissions — An empirical study based on dynamic spatial D ...
	1 Introduction
	2 Methodology and data
	2.1 Study area
	2.2 Spatial dependence test
	2.3 Spatial weighting matrix
	2.4 Spatial econometric model
	2.5 Data sources

	3 Empirical findings
	3.1 Data analysis
	3.2 Results and discussion
	3.3 Computing the marginal effects of energy consumption

	4 Conclusion and policy implications
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


